What vibrating molecules might reveal about cell biology

The cell is grown on a Si-C-Membrane and embedded in its liquid medium. The tip of the s-SNOM detects vibrations, probed by Infrared-Light from BESSY II.

The cell is grown on a Si-C-Membrane and embedded in its liquid medium. The tip of the s-SNOM detects vibrations, probed by Infrared-Light from BESSY II. © A. Veber/HZB

The microscopic image (left) plus the obtained IR-spectra contain precise information on relevant molecules and molecular processes inside the cell.

The microscopic image (left) plus the obtained IR-spectra contain precise information on relevant molecules and molecular processes inside the cell. © A. Veber/HZB

Infrared vibrational spectroscopy at BESSY II can be used to create high-resolution maps of molecules inside live cells and cell organelles in native aqueous environment, according to a new study by a team from HZB and Humboldt University in Berlin. Nano-IR spectroscopy with s-SNOM at the IRIS beamline is now suitable for examining tiny biological samples in liquid medium in the nanometre range and generating infrared images of molecular vibrations with nanometre resolution. It is even possible to obtain 3D information. To test the method, the team grew fibroblasts on a highly transparent SiC membrane and examined them in vivo. This method will provide new insights into cell biology.

Infrared spectroscopy is a damage free method for characterising biological tissues or cells. With use of an infrared scattering-type near-field optical microscope (s-SNOM) even the smallest sample volumes are sufficient to gain rich information about the molecular composition, structure and interactions, with a spatial resolution of down to 10 nm.

Testing the method on fibroblast cells

The IRIS beamline at BESSY II synchrotron source provides highly brilliant and the extremely broadband infrared light required by this method. In a recent study conducted at BESSY II, under the joint leadership of Dr. Alexander Veber, HZB and Prof. Dr. Janina Kneipp from HUB, a team demonstrated the effectiveness of this method to record vibrational spectra of living cells in liquids on example of fibroblasts, which are responsible for building connective tissue and producing collagen, as test samples.

For the first time, the team used an ultra-thin silicon carbide membrane that serves as a protective biocompatible interface between the cells and their liquid medium and the probing tip of the s-SNOM based infrared nanoscope, which detects the vibrations.

Mapping proteins and other molecules

‘Not only were we able to visualise the nucleus and cell organelles, but we succeeded too in reading the individual contributions of proteins, nucleic acids, carbohydrates and membrane lipids based on the detected vibrational spectra,’ says Veber. This was possible because the silicon carbide membrane is highly transparent to infrared light. The observed cell structure at the nanoscale is consistent with the known heterogeneity of cells, thus validating the new method.

3D information

‘We could also vary the measurement parameters in order to control how deep into the sample we detect signals—allowing us to explore its different layers. This paves the way towards infrared nano-tomography of the cells, i.e. a detailed 3D visualisation of cell structure and composition,’ says Veber. Standardised 2D and 3D vibrational imaging and spectroscopy could enable faster progress in biophysics and nanomaterials.

‘This method offers the possibility of analysing biological samples and liquid-solid interfaces much more accurately than was previously possible,’ says Veber. ‘In principle, we could use it to examine any type of cell, including cancer cells.’ The new development is available for national and international user groups of the IRIS beamline.

arö

  • Copy link

You might also be interested in

  • The future of corals – what X-rays can tell us
    Interview
    12.11.2025
    The future of corals – what X-rays can tell us
    This summer, it was all over the media. Driven by the climate crisis, the oceans have now also passed a critical point, the absorption of CO2 is making the oceans increasingly acidic. The shells of certain sea snails are already showing the first signs of damage. But also the skeleton structures of coral reefs are deteriorating in more acidic conditions. This is especially concerning given that corals are already suffering from marine heatwaves and pollution, which are leading to bleaching and finally to the death of entire reefs worldwide. But how exactly does ocean acidification affect reef structures?

    Prof. Dr. Tali Mass, a marine biologist from the University of Haifa, Israel, is an expert on stony corals. Together with Prof. Dr. Paul Zaslansky, X-ray imaging expert from Charité Berlin, she investigated at BESSY II the skeleton formation in baby corals, raised under different pH conditions. Antonia Rötger spoke online with the two experts about the results of their recent study and the future of coral reefs.

  • Susanne Nies appointed to EU advisory group on Green Deal
    News
    12.11.2025
    Susanne Nies appointed to EU advisory group on Green Deal
    Dr. Susanne Nies heads the Green Deal Ukraina project at HZB, which aims to support the development of a sustainable energy system in Ukraine. The energy expert has now also been appointed to the European Commission's scientific advisory group to comment on regulatory burdens in connection with the net-zero target (DG GROW).

  • Long-term stability for perovskite solar cells: a big step forward
    Science Highlight
    07.11.2025
    Long-term stability for perovskite solar cells: a big step forward
    Perovskite solar cells are inexpensive to produce and generate a high amount of electric power per surface area. However, they are not yet stable enough, losing efficiency more rapidly than the silicon market standard. Now, an international team led by Prof. Dr. Antonio Abate has dramatically increased their stability by applying a novel coating to the interface between the surface of the perovskite and the top contact layer. This has even boosted efficiency to almost 27%, which represents the state-of-the-art. After 1,200 hours of continuous operation under standard illumination, no decrease in efficiency was observed. The study involved research teams from China, Italy, Switzerland and Germany and has been published in Nature Photonics.