HZB Newsroom

  • IRIS beamline at BESSY II extended with nanomicroscopy
    Science Highlight
    25.04.2024
    IRIS beamline at BESSY II extended with nanomicroscopy
    The IRIS infrared beamline at the BESSY II storage ring now offers a fourth option for characterising materials, cells and even molecules on different length scales. The team has extended the IRIS beamline with an end station for nanospectroscopy and nanoimaging that enables spatial resolutions down to below 30 nanometres. The instrument is also available to external user groups. 

  • A simpler way to inorganic perovskite solar cells
    Science Highlight
    17.04.2024
    A simpler way to inorganic perovskite solar cells
    Inorganic perovskite solar cells made of CsPbI3 are stable over the long term and achieve good efficiencies. A team led by Prof. Antonio Abate has now analysed surfaces and interfaces of CsPbI3 films, produced under different conditions, at BESSY II. The results show that annealing in ambient air does not have an adverse effect on the optoelectronic properties of the semiconductor film, but actually results in fewer defects. This could further simplify the mass production of inorganic perovskite solar cells.
  • Spintronics: A new path to room temperature swirling spin textures
    Science Highlight
    16.04.2024
    Spintronics: A new path to room temperature swirling spin textures
    A team at HZB has investigated a new, simple method at BESSY II that can be used to create stable radial magnetic vortices in magnetic thin films.

  • BESSY II: How pulsed charging enhances the service time of batteries
    Science Highlight
    08.04.2024
    BESSY II: How pulsed charging enhances the service time of batteries
    An improved charging protocol might help lithium-ion batteries to last much longer. Charging with a high-frequency pulsed current reduces ageing effects, an international team demonstrated. The study was led by Philipp Adelhelm (HZB and Humboldt University) in collaboration with teams from the Technical University of Berlin and Aalborg University in Denmark. Experiments at the X-ray source BESSY II were particularly revealing.
  • Fuel Cells: Oxidation processes of phosphoric acid revealed by tender X-rays
    Science Highlight
    03.04.2024
    Fuel Cells: Oxidation processes of phosphoric acid revealed by tender X-rays
    The interactions between phosphoric acid and the platinum catalyst in high-temperature PEM fuel cells are more complex than previously assumed. Experiments at BESSY II with tender X-rays have decoded the multiple oxidation processes at the platinum-electrolyte interface. The results indicate that variations in humidity can influence some of these processes in order to increase the lifetime and efficiency of fuel cells. 
  • Fertilisation under the X-ray beam
    Science Highlight
    19.03.2024
    Fertilisation under the X-ray beam
    After the egg has been fertilized by a sperm, the surrounding egg coat tightens, mechanically preventing the entry of additional sperm and the ensuing death of the embryo. A team from the Karolinska Institutet has now gained this new insight through measurements at the X-ray light sources BESSY II, DLS and ESRF. 
  • The future of BESSY
    News
    07.03.2024
    The future of BESSY
    At the end of February 2024, a team at HZB published an article in Synchrotron Radiation News (SRN). They describe the next development goals for the light source as well as the BESSY II+ upgrade programme and the successor source BESSY III.

  • ERC Consolidator Grant for HZB researcher Robert Seidel
    News
    04.03.2024
    ERC Consolidator Grant for HZB researcher Robert Seidel
    Physicist Dr Robert Seidel has been awarded a Consolidator Grant by the European Research Council (ERC). Over the next five years, he will receive a total of two million euros for his research project WATER-X. Seidel will use state-of-the-art X-ray techniques at BESSY II to study nanoparticles in aqueous solution for the photocatalytic production of "green" hydrogen.
  • BESSY II: Molecular orbitals determine stability
    Science Highlight
    07.02.2024
    BESSY II: Molecular orbitals determine stability
    Carboxylic acid dianions (fumarate, maleate and succinate) play a role in coordination chemistry and to some extent also in the biochemistry of body cells. An HZB team at BESSY II has now analysed their electronic structures using RIXS in combination with DFT simulations. The results provide information not only on electronic structures but also on the relative stability of these molecules which can influence an industry's choice of carboxylate dianions, optimizing both the stability and geometry of coordination polymers.
  • BESSY II: Local variations in the structure of High-Entropy Alloys
    Science Highlight
    30.01.2024
    BESSY II: Local variations in the structure of High-Entropy Alloys
    High-entropy alloys can withstand extreme heat and stress, making them suitable for a variety of specific applications. A new study at the X-ray synchrotron radiation source BESSY II has now provided deeper insights into the ordering processes and diffusion phenomena in these materials. The study involved teams from HZB, the Federal Institute for Materials Research and Testing, the University of Latvia and the University of Münster.
  • Green hydrogen: Perovskite oxide catalysts analysed in an X-ray beam
    Science Highlight
    21.12.2023
    Green hydrogen: Perovskite oxide catalysts analysed in an X-ray beam
    The production of green hydrogen requires catalysts that control the process of splitting water into oxygen and hydrogen. However, the structure of the catalyst changes under electrical tension, which also influences the catalytic activity. A team from the universities of Duisburg-Essen and Twente has investigated at BESSY II and elsewhere how the transformation of surfaces in perovskite oxide catalysts controls the activity of the oxygen evolution reaction. 
  • Green hydrogen: Improving iridium catalysts with titanium oxides
    Science Highlight
    13.12.2023
    Green hydrogen: Improving iridium catalysts with titanium oxides
    Anodes for the electrolytic splitting of water are usually iridium-based materials. In order to increase the stability of the iridium catalyst, a team at HZB and a group at HI-ERN have now produced a so-called material library: a sample in which the concentration of iridium and titanium oxides is systematically varied. Analyses of the individual sample segments at BESSY II in the EMIL laboratory showed that the presence of titanium oxides can increase the stability of the iridium catalyst significantly.
  • BESSY II: Neutralising electronic inhomogeneity in cleaved bulk MoS₂
    Science Highlight
    30.10.2023
    BESSY II: Neutralising electronic inhomogeneity in cleaved bulk MoS₂
    Molybdenum disulphide (MoS₂) is a highly versatile material that can function, for example, as a gas sensor or as a photocatalyst in green hydrogen production. Although the understanding of a material usually starts from investigating its bulk crystalline form, for MoS₂ much more studies have been devoted to mono and few layer nanosheets. The few studies conducted thus far show diverse and irreproducible results for the electronic properties of cleaved bulk MoS₂ surfaces, highlighting the need for a more systematic study.
  • Technology Transfer Prize: Tandem solar cells step closer to industrial pilot production
    News
    08.10.2023
    Technology Transfer Prize: Tandem solar cells step closer to industrial pilot production
    Tandem solar cells achieve high efficiencies: by combining two different types of solar cells, more sunlight is converted into electricity. PV manufacturer Qcells and a HZB team led by Dr. Kári Sveinbjörnsson and Bor Li have developed the technology to an extent, that Qcells invested in setting up a pilot line for the development of tandem cells in Saxony-Anhalt. For this successful transfer into industrial application, both researchers received the Technology Transfer Prize of the Helmholtz-Zentrum Berlin worth 5,000 euros, on 4. October 2023.
  • Diamond materials as solar-powered electrodes – spectroscopy shows what’s important
    Science Highlight
    08.10.2023
    Diamond materials as solar-powered electrodes – spectroscopy shows what’s important
    It sounds like magic: photoelectrodes could convert the greenhouse gas CO₂ back into methanol or N2 molecules into valuable fertiliser – using only the energy of sunlight. An HZB study has now shown that diamond materials are in principle suitable for such photoelectrodes. By combining X-ray spectroscopic techniques at BESSY II with other measurement methods, Tristan Petit’s team has succeeded for the first time in precisely tracking which processes are excited by light as well as the crucial role of the surface of the diamond materials.
  • Spintronics: X-ray microscopy unravels the nature of domain walls
    Science Highlight
    28.08.2023
    Spintronics: X-ray microscopy unravels the nature of domain walls
    Magnetic skyrmions are tiny vortices of magnetic spin textures. In principle, materials with skyrmions could be used as spintronic devices, for example as very fast and energy-efficient data storage devices. But at the moment it is still difficult to control and manipulate skyrmions at room temperature. A new study at BESSY II analyses the formation of skyrmions in ferrimagnetic thin films of dysprosium and cobalt in real time and with high spatial resolution. This is an important step towards characterising suitable materials with skyrmions more precisely in the future.
  • BESSY II: Surface analysis of catalyst particles in aqueous solutions
    Science Highlight
    21.07.2023
    BESSY II: Surface analysis of catalyst particles in aqueous solutions
    In a special issue on the liquid jet method, a team reports on reactions of water molecules on the surfaces of metal oxide particles. The results are relevant for the development of efficient photoelectrodes for the production of green hydrogen.
  • Quantitative analysis of cell organelles with artificial intelligence
    Science Highlight
    18.07.2023
    Quantitative analysis of cell organelles with artificial intelligence
    X-ray microscopy (cryo-SXT) enables high-resolution insights into cells and cell organelles - in three dimensions. Until now, the 3D data sets have been analysed manually, which is very time-consuming. A team from Freie Universität Berlin has now developed a self-learning algorithm based on a convolutional neural network. In collaboration with experts in cell biology (FU Berlin) and X-ray microscopy at the Helmholtz Zentrum Berlin, this algorithm has now been used for the first time to analyse cell components in cryo-SXT data sets. It identified cell organelles and produced highly detailed, complex 3D images within a few minutes.
  • BESSY II: What drives ions through polymer membranes
    Science Highlight
    05.07.2023
    BESSY II: What drives ions through polymer membranes
    Photoelectrolysers and electrolysis cells can produce green hydrogen or fossil-free carbon compounds – but they require ion-exchange membranes. An HZB team has now studied the transport of ions through the membrane in a hybrid liquid gas electrolyzer at the X-ray source BESSY II. Contrary to expectations, however, concentration differences hardly drive electric field ions. Diffusion is therefore the decisive process. This finding could help in the development of highly efficient and significantly more environmentally friendly membrane materials.
  • BESSY II: Experimental verification of an exotic quantum phase in Au2Pb
    Science Highlight
    15.06.2023
    BESSY II: Experimental verification of an exotic quantum phase in Au2Pb
    A team of HZB has investigated the electronic structure of  Au2Pb at BESSY II by angle-resolved photoemission spectroscopy across a wide temperature range: The results are in accordance with the electronic structure of a three-dimensional topological Dirac semimetal, in agreement with theoretical calculations.
  • Spintronics at BESSY II: Domain walls in magnetic nanowires
    Science Highlight
    02.06.2023
    Spintronics at BESSY II: Domain walls in magnetic nanowires
    Magnetic domains walls are known to be a source of electrical resistance due to the difficulty for transport electron spins to follow their magnetic texture. This phenomenon holds potential for utilization in spintronic devices, where the electrical resistance can vary based on the presence or absence of a domain wall. A particularly intriguing class of materials are half metals such as La2/3Sr1/3MnO3 (LSMO) which present full spin polarization, allowing their exploitation in spintronic devices. Still the resistance of a single domain wall in half metals remained unknown. Now a team from Spain, France and Germany has generated a single domain wall on a LSMO nanowire and measured resistance changes 20 times larger than for a normal ferromagnet such as Cobalt.
  • Graphene on titanium carbide triggers a novel phase transition
    Science Highlight
    25.05.2023
    Graphene on titanium carbide triggers a novel phase transition
    Researchers have discovered a Lifshitz-transition in TiC, driven by a graphene overlayer, at the photon source BESSY II. Their study sheds light on the exciting potential of 2D materials such as graphene and the effects they can have on neighboring materials through proximity interactions.
  • How much cadmium is contained in cocoa beans?
    Science Highlight
    06.04.2023
    How much cadmium is contained in cocoa beans?
    Cocoa beans can absorb toxic heavy metals such as cadmium from the soil. Some cultivation areas, especially in South America, are polluted with these heavy metals, in some cases considerably. In combining different X-ray fluorescence techniques, a team at BESSY II has now been able to non-invasively measure for the first time where cadmium accumulates exactly in cocoa beans: Mainly in the shell. Further investigations show that the processing of the cocoa beans can have a great influence on the concentration of heavy metals.
  • SXR2023: Deadline for submissions April 15
    News
    05.04.2023
    SXR2023: Deadline for submissions April 15
    The SXR2023 (Principles of Functionality from Soft-X-Ray Spectroscopy) brings together young and experienced scientists to discuss recent scientific highlights, trends, and current advances with soft X-ray spectroscopy. Our goal is to further understanding on the atomic level. The impetus is to influence and ideally shape functionality in materials and molecular systems. In this effort, scientists cross intentionally the boundaries between physics, chemistry and materials and focus on the unifying aspects of functionality. Insights to the governing principles are often based on the combination of experiment with first principles theory and models. Thus a profound description of X-ray matter interaction — creating the spectroscopic observables — is always underlying.
  • Perovskite solar cells from the slot die coater - a step towards industrial production
    Science Highlight
    16.03.2023
    Perovskite solar cells from the slot die coater - a step towards industrial production
    Solar cells made from metal halide perovskites achieve high efficiencies and their production from liquid inks requires only a small amount of energy. A team led by Prof. Dr. Eva Unger at Helmholtz-Zentrum Berlin is investigating the production process. At the X-ray source BESSY II, the group has analyzed the optimal composition of precursor inks for the production of high-quality FAPbI3 perovskite thin films by slot-die coating. The solar cells produced with these inks were tested under real life conditions in the field for a year and scaled up to mini-module size.
  • Superstore MXene: New proton hydration structure determined
    Science Highlight
    13.03.2023
    Superstore MXene: New proton hydration structure determined
    MXenes are able to store large amounts of electrical energy like batteries and to charge and discharge rather quickly like a supercapacitor. They combine both talents and thus are a very interesting class of materials for energy storage. The material is structured like a kind of puff pastry, with the MXene layers separated by thin water films. A team at HZB has now investigated how protons migrate in the water films confined between the layers of the material and enable charge transport. Their results have been published in the renowned journal Nature Communications and may accelerate the optimisation of these kinds of energy storage materials.
  • TU Berlin appoints Renske van der Veen as professor
    News
    22.02.2023
    TU Berlin appoints Renske van der Veen as professor
    For the past two years, Dr Renske van der Veen has led a research group in time-resolved X-ray spectroscopy and electron microscopy at HZB. Her research focuses on catalytic processes that enable, for example, the production of green hydrogen. She has now been appointed to a S-W2 professorship at the Institute of Optics and Atomic Physics (IOAP) at the Technische Universität Berlin.
  • Electrocatalysis – Iron and Cobalt Oxyhydroxides examined at BESSY II
    Science Highlight
    16.02.2023
    Electrocatalysis – Iron and Cobalt Oxyhydroxides examined at BESSY II
    A team led by Dr. Prashanth W. Menezes (HZB/TU-Berlin) has now gained insights into the chemistry of one of the most active anode catalysts for green hydrogen production. They examined a series of Cobalt-Iron Oxyhydroxides at BESSY II and were able to determine the oxidation states of the active elements in different configurations as well as to unveil the geometrical structure of the active sites. Their results might contribute to the knowledge based design of new highly efficient and low cost catalytical active materials.
  • HZB physicist appointed to Gangneung-Wonju National University, South Korea
    News
    25.01.2023
    HZB physicist appointed to Gangneung-Wonju National University, South Korea
    Since 2016, accelerator physicist Ji-Gwang Hwang has been working at HZB in the department of storage rings and beam physics. He has made important contributions to beam diagnostics in several projects at HZB. He is now returning to his home country, South Korea, having accepted a professorship in physics at Gangneung-Wonju National University.
  • Scientists Develop New Technique to Image Fluctuations in Materials
    Science Highlight
    18.01.2023
    Scientists Develop New Technique to Image Fluctuations in Materials
    A team of scientists, led by researchers from the Max Born Institute in Berlin and Helmholtz-Zentrum Berlin in Germany and from Brookhaven National Laboratory and the Massachusetts Institute of Technology in the United States has developed a revolutionary new method for capturing high-resolution images of fluctuations in materials at the nanoscale using powerful X-ray sources. The technique, which they call Coherent Correlation Imaging (CCI), allows for the creation of sharp, detailed movies without damaging the sample by excessive radiation. By using an algorithm to detect patterns in underexposed images, CCI opens paths to previously inaccessible information. The team demonstrated CCI on samples made of thin magnetic layers, and their results have been published in Nature.
  • Recommended reading: Bunsen magazine with focus on molecular water research
    News
    13.01.2023
    Recommended reading: Bunsen magazine with focus on molecular water research
    Water not only has some well-known anomalies, but is still full of surprises. The first issue 2023 of the Bunsen Magazine is dedicated to molecular water research, from the ocean to processes in electrolysis. The issue presents contributions from researchers cooperating within the framework of a European research initiative in the "Centre for Molecular Water Science" (CMWS). A team at HZB presents results from the synchrotron spectroscopy of water. Modern X-ray sources can be used to study molecular and electronic processes in water in detail.
  • High-energy X-rays leave a trace of destruction in bone collagen
    Science Highlight
    22.12.2022
    High-energy X-rays leave a trace of destruction in bone collagen
    A team of medical researchers at Charité has analyzed damage by focused high energetic X-rays in bone samples from fish and mammals at BESSY II. With a combination of microscopy techniques, the scientists could document the destruction of collagen fibres induced by electrons emitted from the mineral crystals. X-ray methods might impact bone samples when measured for a long time they conclude.
  • New software based on Artificial Intelligence helps to interpret complex data
    Science Highlight
    20.12.2022
    New software based on Artificial Intelligence helps to interpret complex data
    Experimental data is often not only highly dimensional, but also noisy and full of artefacts. This makes it difficult to interpret the data. Now a team at HZB has designed software that uses self-learning neural networks to compress the data in a smart way and reconstruct a low-noise version in the next step. This enables to recognise correlations that would otherwise not be discernible. The software has now been successfully used in photon diagnostics at the FLASH free electron laser at DESY. But it is suitable for very different applications in science.
  • New monochromator optics for tender X-rays
    Science Highlight
    30.11.2022
    New monochromator optics for tender X-rays
    Until now, it has been extremely tedious to perform measurements with high sensitivity and high spatial resolution using X-ray light in the tender energy range of 1.5 - 5.0 keV. Yet this X-ray light is ideal for investigating energy materials such as batteries or catalysts, but also biological systems. A team from HZB has now solved this problem: The newly developed monochromator optics increase the photon flux in the tender energy range by a factor of 100 and thus enable highly precise measurements of nanostructured systems. The method was successfully tested for the first time on catalytically active nanoparticles and microchips.
  • BESSY II: Influence of protons on water molecules
    Science Highlight
    10.11.2022
    BESSY II: Influence of protons on water molecules
    How hydrogen ions or protons interact with their aqueous environment has great practical relevance, whether in fuel cell technology or in the life sciences. Now, a large international consortium at the X-ray source BESSY II has investigated this question experimentally in detail and discovered new phenomena. For example, the presence of a proton changes the electronic structure of the three innermost water molecules, but also has an effect via a long-range field on a hydrate shell of five other water molecules.
  • LEAPS research infrastructures to tackle societal crises
    News
    31.10.2022
    LEAPS research infrastructures to tackle societal crises
    Against a backdrop of the energy crisis, scientists and policymakers convened at Paul Scherrer Institute PSI in Switzerland and set out a vision for European accelerator based photon sources to address current and future societal challenges together.
  • Federal science minister in Berlin-Adlershof
    News
    25.10.2022
    Federal science minister in Berlin-Adlershof
    The Federal Minister for Education and Research, Bettina Stark-Watzinger, was in Berlin-Adlershof today to visit the Catalysis Laboratory (CatLab). CatLab is a research platform of Helmholtz-Zentrum Berlin and the Max Planck Society, dedicated to catalysis research that will deliver important innovations for achieving a green hydrogen economy. Upon her visit to the CatLab, the minister gained an insight into the latest technological advancements on producing and characterising thin-film catalysts and special methods for operando analytics and digital catalysis.
  • Spintronics: A new tool at BESSY II for chirality investigations
    Science Highlight
    24.10.2022
    Spintronics: A new tool at BESSY II for chirality investigations
    Information on complex magnetic structures is crucial to understand and develop spintronic materials. Now, a new instrument named ALICE II is available at BESSY II. It allows magnetic X-ray scattering in reciprocal space using a new large area detector. A team at HZB and Technical University Munich has demonstrated the performance of ALICE II by analysing helical and conical magnetic states of an archetypal single crystal skyrmion host. ALICE II is now available for guest users at BESSY II.
  • High entropy alloys: structural disorder and magnetic properties
    Science Highlight
    20.10.2022
    High entropy alloys: structural disorder and magnetic properties
    High-entropy alloys (HEAs) are promising materials for catalysis and energy storage, and at the same time they are extremely hard, heat resistant and demonstrate great variability in their magnetic behaviour. Now, a team at BESSY II in collaboration with Ruhr University Bochum, BAM, Freie Universität Berlin and University of Latvia has gained new insights into the local environment of a so-called high-entropy Cantor alloy made of chromium, manganese, iron, cobalt and nickel, and has thus also been able to partially explain the magnetic properties of a nanocrystalline film of this alloy.
  • BESSY II: Localisation of d-electrons determined
    Science Highlight
    02.10.2022
    BESSY II: Localisation of d-electrons determined
    Transition metals have many applications in engineering, electrochemistry and catalysis. To understand their properties, the interplay between atomic localisation and delocalisation of the outer electrons in the d orbitals is crucial. This insight is now provided by a special end station at BESSY II with highest precision, as demonstrated by a study of copper, nickel and cobalt with interesting quantitative results. The Royal Society of Chemistry has selected the paper as a HOT Article 2022.
  • 40 years of research with synchrotron light in Berlin
    News
    14.09.2022
    40 years of research with synchrotron light in Berlin
    Press release _ Berlin, 14 September: For decades, science in Berlin has been an important driver of innovation and progress. Creative, talented people from all over the world come together here and develop new ideas from which we all benefit as a society. Many discoveries – from fundamental insights to marketable products – are made by doing research with synchrotron light. Researchers have had access to this intense light in Berlin for 40 years. It inspires many scientific disciplines and is an advantage for Germany.

  • New road towards spin-polarised currents
    Science Highlight
    08.09.2022
    New road towards spin-polarised currents
    The transition metal dichalcogenide (TMD) series are a family of promising candidate materials for spintronics. A study at lightsource BESSY II has unveiled that in one of those materials even simple linear polarised light is sufficient to selectively manipulate spins of different orientations. This result provides an entirely new route for the generation of spin-polarised currents and is a milestone for the development of spintronic and opto-spintronic devices.
  • BESSY II resumes operation after a long shutdown
    News
    25.08.2022
    BESSY II resumes operation after a long shutdown
    On 30 August, BESSY II ligth source will resume user operation: the research centre will then welcome guest researchers from all over the world and support them in their various experiments. The 14-week  shutdown was the longest in BESSY II history. Among other works, the main supply was completely renewed. The successful completion of the work was celebrated with all those involved.

  • Humboldt Fellow Alexander Gray comes to HZB
    News
    12.08.2022
    Humboldt Fellow Alexander Gray comes to HZB
    Alexander Gray from Temple University in Philadelphia, USA, is working with HZB physicist Florian Kronast to investigate novel 2D quantum materials at BESSY II. With the fellowship from the Alexander von Humboldt Foundation, he can now deepen this cooperation. At BESSY II, he wants to further develop depth-resolved X-ray microscopic and spectroscopic methods in order to investigate 2D quantum materials and devices for new information technologies even more thoroughly.
  • Green hydrogen: Nanostructured nickel silicide shines as a catalyst
    Science Highlight
    11.08.2022
    Green hydrogen: Nanostructured nickel silicide shines as a catalyst
    Electrical energy from wind or sun can be stored as chemical energy in hydrogen, an excellent fuel and energy carrier. The prerequisite for this, however, is efficient electrolysis of water with inexpensive catalysts. For the oxygen evolution reaction at the anode, nanostructured nickel silicide now promises a significant increase in efficiency. This was demonstrated by a group from the HZB, Technical University of Berlin and the Freie Universität Berlin as part of the CatLab research platform with measurements among others at BESSY II.
  • Buckyballs on gold are less exotic than graphene
    Science Highlight
    21.07.2022
    Buckyballs on gold are less exotic than graphene
    C60 molecules on a gold substrate appear more complex than their graphene counterparts, but have much more ordinary electronic properties. This is now shown by measurements with ARPES at BESSY II and detailed calculations.
  • Fine particles back into the raw material cycle
    News
    19.07.2022
    Fine particles back into the raw material cycle
    Industrial processes always produce fine-grained residues. These rarely find their way back into the industrial value chain, but are usually disposed of and represent a potential environmental risk. The FINEST project records and investigates various of these fine-grained material flows with the aim of developing new concepts to keep them in the cycle and safely dispose of remaining residues. 
    FINEST was successful in the Helmholtz Association's sustainability competition and will now receive 5 million euros in funding. 
  • Third-highest oxidation state secures rhodium a place on the podium
    Science Highlight
    14.07.2022
    Third-highest oxidation state secures rhodium a place on the podium
    Oxidation states of transition metals describe how many electrons of an element are already engaged in bonding, and how many are still available for further reactions. Scientists from Berlin and Freiburg have now discovered the highest oxidation state of rhodium, indicating that rhodium can involve more of its valence electrons in chemical bonding than previously thought. This finding might be relevant for the understanding of catalytic reactions involving highly-oxidized rhodium. The result was recognized as a „very important paper“ in Angewandte Chemie.

  • Potential energy surfaces of water mapped for the first time
    Science Highlight
    07.07.2022
    Potential energy surfaces of water mapped for the first time
    Liquids are more difficult to describe than gases or crystalline solids. An HZB team has now mapped the potential energy surfaces of water molecules in liquid water under ambient conditions for the first time at the Swiss Light Source SLS of the Paul Scherrer Institute, Switzerland. This contributes to a better understanding of the chemistry of water and in aqueous solutions. These investigations can soon be continued at the newly built METRIXS station at the X-ray source BESSY II.
  • Spintronics: Giant Rashba semiconductors show unconventional dynamics with potential applications
    Science Highlight
    06.07.2022
    Spintronics: Giant Rashba semiconductors show unconventional dynamics with potential applications
    Germanium telluride is a strong candidate for use in functional spintronic devices due to its giant Rashba-effect. Now, scientists at HZB have discovered another intriguing phenomenon in GeTe by studying the electronic response to thermal excitation of the samples. To their surprise, the subsequent relaxation proceeded fundamentally different to that of conventional semimetals. By delicately controlling the fine details of the underlying electronic structure, new functionalities of this class of materials could be conceived. 

  • Atomic displacements in High-Entropy Alloys examined
    Science Highlight
    27.06.2022
    Atomic displacements in High-Entropy Alloys examined
    High-entropy alloys of 3d metals have intriguing properties that are interesting for applications in the energy sector. An international team at BESSY II has now investigated the local order on an atomic scale in a so-called high-entropy Cantor alloy of chromium, manganese, iron, cobalt and nickel. The results from combined spectroscopic studies and statistical simulations expand the understanding of this group of materials.
  • Deputy Prime Minister of Singapore visits HZB
    News
    21.06.2022
    Deputy Prime Minister of Singapore visits HZB
    On Friday, 17 June, a delegation from Singapore visited HZB. Heng Swee Keat, Deputy Prime Minister of Singapore, was accompanied by the Ambassador to Singapore in Germany, Laurence Bay, as well as representatives from research and industry.
  • Calculating the "fingerprints" of molecules with artificial intelligence
    Science Highlight
    13.06.2022
    Calculating the "fingerprints" of molecules with artificial intelligence
    With conventional methods, it is extremely time-consuming to calculate the spectral fingerprint of larger molecules. But this is a prerequisite for correctly interpreting experimentally obtained data. Now, a team at HZB has achieved very good results in significantly less time using self-learning graphical neural networks.
  • New discoveries into how the body stores zinc
    Science Highlight
    25.05.2022
    New discoveries into how the body stores zinc
    Zinc deficiency is a global health problem affecting many people and results in a weak immune system in adults and especially in children. This is a challenge for health systems and is quite evident in the Mexican population, for example. Seeking explanations, researchers in Mexico teamed up with international synchrotron experts and gained new insights from studying Drosophila fruit flies, which are known to be a decent model system for human zinc metabolism.
    Thanks to beamtime at BESSY II and at the SLS (PSI), they were able to show that the zinc stores in Drosophila flies depend on the tryptophan content of their diet.
  • Shutdown at BESSY II: new supply technology ensures long-term operation
    News
    20.05.2022
    Shutdown at BESSY II: new supply technology ensures long-term operation
    The X-ray source BESSY II is in a three-month period of shutdown. During this period, the low voltage main distribution panel in the supply building outside the electron storage ring is being renovated. This will secure the long-term operation of BESSY II over the next decade.
  • Magnetic nanoparticles in biological vehicles individually characterised
    Science Highlight
    17.05.2022
    Magnetic nanoparticles in biological vehicles individually characterised
    Magnetic nanostructures are promising tools for medical applications.  Incorporated into biological structures, they can be steered via external magnetic fields inside the body to release drugs or to destroy cancer cells. However, until now, only average information on the magnetic properties of those nanoparticles could be obtained, thus limiting their successful implementations in therapies. Now a team at HZB conceived and tested a new method to assess the characteristic parameters of every single magnetic nanoparticle.
  • Royal visit from Sweden at HZB
    News
    16.05.2022
    Royal visit from Sweden at HZB
    King Carl XVI Gustaf of Sweden as well as a group of business leaders from large corporations such as Ericsson, Nordholt, Vattenfall, ABB, Schneider Electric and Swedish representatives from the public sector and academia visited the Adlershof Technology Park on 11 May 2022.
  • Jan Lüning heads HZB Institute for Electronic Structure Dynamics
    News
    09.05.2022
    Jan Lüning heads HZB Institute for Electronic Structure Dynamics
    The HZB Institute for Electronic Structure Dynamics, newly founded on 1 May, develops experimental techniques and infrastructures to investigate the dynamics of elementary microscopic processes in novel material systems. This will help to optimise functional materials for sustainable technologies.
  • BESSY Facility Speaker: “I am absolutely thrilled at how international we have become”
    News
    05.05.2022
    BESSY Facility Speaker: “I am absolutely thrilled at how international we have become”
    For 75 years, synchrotron radiation sources have been indispensable for gaining knowledge. Antje Vollmer talks about international networking, a new record at the X-ray source BESSY II – and how she can tell from the research applications alone which social problems are particularly pressing at the moment.
  • Perovskite solar cells: Properties still remain enigmatic
    Science Highlight
    02.05.2022
    Perovskite solar cells: Properties still remain enigmatic
    In order to explain the particularly favourable properties of perovskite semiconductors for solar cells, various hypotheses are circulating. Polarons or a giant Rashba effect, for example, are thought to play a major role. A team at BESSY II has now experimentally disproved these hypotheses. In doing so, they further narrow down the possible causes for the transport properties and enable better approaches for the targeted optimisation of this class of materials.
  • Researchers discover why tendons are strong as wire ropes
    News
    11.04.2022
    Researchers discover why tendons are strong as wire ropes
    A team at the Max Planck Institute of Colloids and Interfaces (MPICI) has discovered with help of BESSY II new properties of collagen: During the intercalation of minerals in collagen fibers, a contraction tension is generated that is hundreds of times stronger than muscle strength. The associated changes in the collagen structure were observed using X-ray diffraction at the BESSY II synchrotron in Berlin-Adlershof while mineralization was taking place.

  • An ultrafast X-ray glance into photoacid electronic structure
    Science Highlight
    25.03.2022
    An ultrafast X-ray glance into photoacid electronic structure
    Photoacids are molecules that release a proton upon electronic excitation, thus enhancing the acidity of a liquid. Pioneering work by Theodor Förster has shown the direct relationship between the wavelength position of optical absorption and acidity properties with which the increase in acidity  in the first electronic excited state can be quantified. However, underlying full microscopic explanations for the photoacidity phenomenon have remained sparse. With ultrafast X-ray spectroscopy, locally probing the electronic structure of a proton donating group of an amine aromatic photoacid has now provided direct insight in the changes of electronic structure. The long standing open question for photoacidity has now finally been resolved: major electronic structure changes occur on the base side of the so-called Förster cycle, whereas the acid side plays a minor role. 
  • Fermi Arcs in an Antiferromagnet detected at BESSY II
    Science Highlight
    23.03.2022
    Fermi Arcs in an Antiferromagnet detected at BESSY II
    An international cooperation has analysed samples of NdBi crystals which display interesting magnetic properties. In their experiments including measurements at BESSY II they could find evidence for so called Fermi arcs in the antiferromagnetic state of the sample at low temperatures. This observation is not yet explained by existing theoretical ideas and opens up exciting possibilities to make use of these kind of materials for innovative information technologies based on the electron spin rather than the charge.
  • Unravelling tautomeric mixtures: RIXS at BESSY II allows to see clearly
    Science Highlight
    17.03.2022
    Unravelling tautomeric mixtures: RIXS at BESSY II allows to see clearly
    A team at HZB has developed a method of experimentally unravelling tautomeric mixtures. Based on resonant inelastic X-ray scattering (RIXS) at BESSY II, not only proportions of the tautomers can be deduced, but the properties of each individual tautomer can be studied selectively. This method could yield to detailed information on the properties of molecules and their biological function. In the present study, now advertised on the cover of “The Journal of Physical Chemistry Letters” the technique was applied to the prototypical keto-enol equilibrium.
  • "We can be proud that it worked out": BESSY and the Transregio-SFB on ultrafast spin dynamics
    Interview
    14.03.2022
    "We can be proud that it worked out": BESSY and the Transregio-SFB on ultrafast spin dynamics

    Collaborative Research projects as “Sonderforschungsbereiche” funded by Deutsche Forschungsgemeinschaft enable universities to build up their own research capacities. In the Transregio Sonderforschungsbereich 227 Ultrafast Spin Dynamic, the Freie Universität Berlin and the University in Halle-Wittenberg have also included HZB as a partner. The slicing facility of BESSY II plays a central role in this collaboration. With excellent results from the first phase, the Transregio-SFB 227 has completed its first interim review and is now preparing for the challenges ahead. A conversation with the two HZB physicists Niko Pontius and Christian Schüßler-Langeheine about the importance of such funding programmes for the research field.

  • From Dublin to Berlin as a Humboldt Research Fellow
    News
    10.03.2022
    From Dublin to Berlin as a Humboldt Research Fellow
    Dr. Katarzyna Siewierska joins the group of Prof. Alexander Föhlisch as a postdoctoral Humboldt Research fellow. She has earned her PhD at Trinity College in Dublin, Ireland, and plans in the next two years to explore the electronic structure and spin dynamics of half-metallic thin films at BESSY II.  Understanding these spintronic materials better may pave the way for more energy efficient data storage technologies.
  • International research at BESSY II continued even in the corona year 2021
    News
    23.02.2022
    International research at BESSY II continued even in the corona year 2021

    2021 was not an easy year for international research: owing to lockdowns and travel bans, science was hit hard by the pandemic situation. Nevertheless, experiments continued at a high level at the BESSY II light source in Berlin Adlershof – thanks in part to new remote service offers. Here are the figures at a glance.

  • User research at BESSY II: Unveiling the secrets of biofilms
    Science Highlight
    31.01.2022
    User research at BESSY II: Unveiling the secrets of biofilms
    Most bacteria have the ability to form communities, biofilms, that adhere to a wide variety of surfaces and are difficult to remove. This can lead to major problems, for example in hospitals or in the food industry. Now, an international team led by Hebrew University, Jerusalem, and the Technical University Dresden, has studied a model system for biofilms at the synchrotron radiation facilities BESSY II at HZB and the ESRF and found out what role the structures within the biofilm play in the distribution of nutrients and water.
  • New 12 T magnet on BESSY II’s experimental floor strengthens energy and magnetism research
    News
    28.01.2022
    New 12 T magnet on BESSY II’s experimental floor strengthens energy and magnetism research
    Electron paramagnetic resonance (THz-EPR) at BESSY II provides important information on the electronic structure of novel magnetic materials and catalysts. In mid-January 2022, the researchers brought a new, superconducting 12-T magnet into operation at this end station, which promises new scientific insights.
  • Ernst Eckhard Koch Prize and Innovation Award on Synchrotron Radiation
    News
    09.12.2021
    Ernst Eckhard Koch Prize and Innovation Award on Synchrotron Radiation
    This year, the Friends of HZB awarded the Ernst Eckhard Koch Prize to the outstanding doctoral thesis of Dr Fredrik Johansson (Institut des NanoSciences de Paris, CNRS, Sorbonne). The European Innovation Award on Synchrotron Radiation went to Professor Marianne Liebi and Dr Manuel Guizar-Sicairos, both from the Paul Scherrer Institute (PSI, Switzerland). The award ceremony took place at this year's HZB user meeting, which had to be held digitally again this year and attracted nearly 400 participants.
  • Liquid crystals for fast switching devices
    Science Highlight
    06.12.2021
    Liquid crystals for fast switching devices
    An international team has investigated a newly synthesized liquid-crystalline material that promises applications in optoelectronics. Simple rod-shaped molecules with a single center of chirality self-assemble into helical structures at room temperature. Using soft X-ray resonant scattering at BESSY II, the scientists have now been able to determine the pitch of the helical structure with high precision. Their results indicate an extremely short pitch at only about 100 nanometres which would enable applications with particularly fast switching processes.

  • Green information technologies: Superconductivity meets Spintronics
    Science Highlight
    02.12.2021
    Green information technologies: Superconductivity meets Spintronics
    Superconducting coupling between two regions separated by a one micron wide ferromagnetic compound has been proved by an international team. This macroscopic quantum effect, known as Josephson effect, generates an electrical current within the ferromagnetic compound made of superconducting Cooper-pairs. Magnetic imaging of the ferromagnetic region at BESSY II has contributed to demonstrate that the spin of the electrons forming the Cooper pairs are equal. These results pave the way for low-power consumption superconducting spintronic-applications where spin-polarized currents can be protected by quantum coherence.

  • Walter-Schottky-Award for Felix Büttner
    News
    18.11.2021
    Walter-Schottky-Award for Felix Büttner
    The Walter Schottky Prize honours outstanding work by young physicists in solid-state research. For 2022, the award goes to HZB physicist Dr Felix Büttner for his groundbreaking achievements in the field of magnetic skyrmions.

  • "Green" chemistry: BESSY II sheds light on mechanochemical synthesis
    Science Highlight
    16.11.2021
    "Green" chemistry: BESSY II sheds light on mechanochemical synthesis
    In mechanochemistry, reagents are finely ground and mixed so that they combine to form the desired product, even without need for solvent. By eliminating solvent, this technology promises to contribute significantly towards ‘green’ and environmentally benign chemical manufacture in the future. However, there are still major gaps in understanding the key processes that occur during mechanical treatment and reaction. A team led by the Federal Institute for Materials Research (BAM) has now developed a method at BESSY II to observe these processes in situ with X-ray scattering. 

  • 20 Years Russian-German Joint Laboratory at BESSY II
    News
    12.11.2021
    20 Years Russian-German Joint Laboratory at BESSY II
    To mark its 20th anniversary, the Russian-German Laboratory at the BESSY II storage ring for synchrotron radiation in Berlin is organising an online workshop on 18 and 19 November. Scientists will discuss the future perspectives of Russian-German cooperation as well as innovative projects and new goals of the laboratory.

  • Spintronics: Exotic ferromagnetic order in two-dimensions
    Science Highlight
    29.10.2021
    Spintronics: Exotic ferromagnetic order in two-dimensions
    An international team has detected at HZB's vector magnet facility VEKMAG an unusual ferromagnetic property in a two-dimensional system, known as “easy-plane anisotropy”. This could foster new energy efficient information technologies based on spintronics for data storage, among other things. The team has published its results in the renowned journal Science.

  • Life Time Achievement Award for Roland Müller
    News
    21.10.2021
    Life Time Achievement Award for Roland Müller
    Accelerator and control systems expert Roland Müller received the ICALEPCS Lifetime Achievement Award. In the more than thirty years of his career at BESSY, the physicist has advanced many projects on control systems at accelerators and has been particularly committed to the international exchange of knowledge.

  • Ultrafast magnetism: heating magnets, freezing time
    Science Highlight
    15.10.2021
    Ultrafast magnetism: heating magnets, freezing time
    Magnetic solids can be demagnetized quickly with a short laser pulse, and there are already so-called HAMR (Heat Assisted Magnetic Recording) memories on the market that function according to this principle. However, the microscopic mechanisms of ultrafast demagnetization remain unclear. Now, a team at HZB has developed a new method at BESSY II to quantify one of these mechanisms and applied it to the rare-earth element Gadolinium, whose magnetic properties are caused by electrons on both the 4f and the 5d shells. This study is completing a series of experiments done by the team on Nickel, Iron-Nickel Alloys. Understanding these mechanisms is useful for developing ultrafast data storage devices.

  • Portrait Annette Pietzsch: Researching fundamental phenomena of our world
    Portrait
    07.10.2021
    Portrait Annette Pietzsch: Researching fundamental phenomena of our world
    Annette Pietzsch has many jobs: the physicist develops instruments for BESSY II that researchers can use to observe how molecules interact with each other. She mostly prefers to use the instruments to do her own research. This is what brought her from Sweden to HZB ten years ago.
  • Beam diagnostics for future laser wakefield accelerators
    Science Highlight
    30.09.2021
    Beam diagnostics for future laser wakefield accelerators
    For decades, particle accelerators have been getting bigger and bigger. In the meantime, ring accelerators with circumferences of many kilometres have reached a practical limit. Linear accelerators in the GHz range also require very long construction lengths. For some years now, however, an alternative is explored: "tabletop particle accelerators" based on the laser excitation of charge waves in plasmas (laser wakefield). Such compact particle accelerators would be particularly interesting for future accelerator-driven light sources, but are also being investigated for high-energy physics. A team from Helmholtz-Zentrum Berlin (HZB) and the Physikalisch-Technische Bundesanstalt (PTB) has developed a method to precisely measure the cross-section of electron bunches accelerated in this way.  This brings applications of these new accelerator technologies for medicine and research closer.

  • Surface analysis at BESSY II: sharper insights into thin-film systems
    Science Highlight
    16.09.2021
    Surface analysis at BESSY II: sharper insights into thin-film systems

    Interfaces in semiconductor components or solar cells play a crucial role for functionality. Nevertheless, until now it has often been difficult to investigate adjacent thin films separately using spectroscopic methods. An HZB team at BESSY II has combined two different spectroscopic methods and used a model system to demonstrate how well they can be distinguished.

  • Disorder brings out quantum physical talents
    Science Highlight
    01.09.2021
    Disorder brings out quantum physical talents
    Quantum effects are most noticeable at extremely low temperatures, which limits their usefulness for technical applications. Thin films of MnSb2Te4, however, show new talents due to a small excess of manganese. Apparently, the resulting disorder provides spectacular properties: The material proves to be a topological insulator and is ferromagnetic up to comparatively high temperatures of 50 Kelvin, measurements at BESSY II show.  This makes this class of material suitable for quantum bits, but also for spintronics in general or applications in high-precision metrology.

  • Review: X-ray scattering methods with synchrotron radiation
    News
    18.08.2021
    Review: X-ray scattering methods with synchrotron radiation
    Synchrotron light sources provide brilliant light with a focus on the X-ray region and have enormously expanded the possibilities for characterising materials. In the Reviews of Modern Physics, an international team now gives an overview of elastic and inelastic X-ray scattering processes, explains the theoretical background and sheds light on what insights these methods provide in physics, chemistry as well as bio- and energy related themes.

  • HZB coordinates European collaboration to develop active agents against Corona
    News
    11.08.2021
    HZB coordinates European collaboration to develop active agents against Corona
    X-ray structure analysis at BESSY II enables the systematic testing of many thousands of molecules that could inhibit the reproduction and virulence of SARS-CoV2 viruses. Now, a team at HZB with partners from Austria and the Czech Republic has set up the NECESSITY project to investigate more than 8000 compounds in a high-throughput procedure and develop active agents against COVID-19.

  • Green hydrogen: Why do certain catalysts improve in operation?
    Science Highlight
    09.08.2021
    Green hydrogen: Why do certain catalysts improve in operation?
    Crystalline cobalt arsenide is a catalyst that generates oxygen during electrolytic water splitting in the production of hydrogen. The material is considered to be a model system for an important group of catalysts whose performance increases under certain conditions in the course of electrolysis. Now a HZB-team headed by Marcel Risch has observed at BESSY II how two simultaneous mechanisms are responsible for this. The catalytic activity of the individual catalysis centres decreases in the course of electrolysis, but at the same time the morphology of the catalyst layer also changes. Under favourable conditions, considerably more catalysis centres come into contact with the electrolyte as a result, so that the overall performance of the catalyst increases.

  • Water as a metal - detected at BESSY II
    Science Highlight
    28.07.2021
    Water as a metal - detected at BESSY II
    Under normal conditions, pure water is an almost perfect insulator. Water only develops metallic properties under extreme pressure, such as exists deep inside of large planets. Now, an international collaboration has used a completely different approach to produce metallic water and documented the phase transition at BESSY II. The study is published now in Nature.

  • Lead-free perovskite solar cells - How fluoride additives improve quality
    Science Highlight
    26.07.2021
    Lead-free perovskite solar cells - How fluoride additives improve quality
    Tin halide perovskites are currently considered the best alternative to their lead-containing counterparts, which are, however, still significantly less efficient and stable. Now, a team led by Prof. Antonio Abate from HZB has analysed the chemical processes in the perovskite precursor solution and the fluoride compounds in detail. Using a clever combination of measurement methods at BESSY II and with NMR at the Humboldt-University Berlin, they were able to show that fluoride prevents the oxidation of tin and leads to a more homogeneous film formation with fewer defects, increasing the quality of the semiconductor layer.

  • Virtual visits at HZB and 360° Panorama
    News
    23.07.2021
    Virtual visits at HZB and 360° Panorama
    Due to Corona, it is currently not possible to welcome groups of visitors at HZB and guide them through the facility. Nevertheless, we open our doors virtually for you and provide insights into research facilities and labs at HZB. Make yourself comfortable and start your own virtual tour through BESSY II. Move through 360-degree images, have a look and linger at selected stations.

  • Future information technologies: Topological materials for ultrafast spintronics
    Science Highlight
    16.07.2021
    Future information technologies: Topological materials for ultrafast spintronics
    A team led by HZB physicist Dr. Jaime Sánchez-Barriga has gained new insights into the ultrafast response of topological states of matter to femtosecond laser excitation. Using time- and spin-resolved methods at BESSY II, the physicists explored how, after optical excitation, the complex interplay in the behavior of excited electrons in the bulk and on the surface results in unusual spin dynamics. The work is an important step on the way to spintronic devices based on topological materials for ultrafast information processing.

  • Synchrotrons accelerate corona research
    News
    29.06.2021
    Synchrotrons accelerate corona research
    Information by the German Committee Research with Synchrotron Radiation (KFS).

    Synchrotron light sources were originally built to study particles. Today, they are even used in the fight against COVID-19. The projects are as diverse as the fields of the synchrotron users, who come from universities, research institutions and companies like BioNTech.

  • BESSY II: universal mechanism of regulation in plant cells discovered
    Science Highlight
    21.06.2021
    BESSY II: universal mechanism of regulation in plant cells discovered
    In pioneering work, a German-Japanese research team at BESSY II has been able to determine the 3D structure of a metalloprotein that plays an important role as a catalyst in all plant cells. This involves the DYW deaminase domain of what is referred to as the RNA editosome. The DYW domain alters messenger RNA nucleotides in chloroplasts and mitochondria and contains a zinc ion whose activity is controlled by a very unusual mechanism. The team has now been able to describe this mechanism in detail for the first time. Their study, published in Nature Catalysis, is considered a breakthrough in the field of plant molecular biology and has far-reaching implications for bioengineering.

  • Perovskite Solar Cells: Insights into early stages of structure formation
    Science Highlight
    18.06.2021
    Perovskite Solar Cells: Insights into early stages of structure formation
    Using small-angle scattering at the PTB X-ray beamline of BESSY II, an HZB team was able to experimentally investigate the colloidal chemistry of perovskite precursor solutions used for solar cell production. The results contribute to the targeted and systematic optimization of the manufacturing process and quality of these exciting semiconductor materials.

  • Renske van der Veen heads new department "Atomic Dynamics in Light-Energy Conversion"
    News
    02.06.2021
    Renske van der Veen heads new department "Atomic Dynamics in Light-Energy Conversion"
    From June 2021, Dr. Renske van der Veen is setting up a new research group at HZB. The chemist is an expert in time-resolved X-ray spectroscopy and electron microscopy and studies catalytic processes that enable the conversion of solar energy into chemical energy.

  • BESSY II: New insights into switchable MOF structures at the MX beamlines
    Science Highlight
    27.05.2021
    BESSY II: New insights into switchable MOF structures at the MX beamlines
    Metal-organic framework compounds (MOFs) are widely used in gas storage, material separation, sensor technology or catalysis. A team led by Prof. Dr. Stefan Kaskel, TU Dresden, has now investigated a special class of these MOFs at the MX beamlines of BESSY II. These are "switchable" MOFs that can react to external stimuli. Their analysis shows how the behaviour of the material is related to transitions between ordered and disordered phases. The results have now been published in Nature Chemistry.

  • “The gain in insights for structural biology has continued for five decades”
    Interview
    11.05.2021
    “The gain in insights for structural biology has continued for five decades”

    Prof. Dr. Udo Heinemann works at the Max Delbrück Center for Molecular Medicine, where he has been researching in structural biology for 40 years. From 2008 to 2012, he was a member of the Advisory Board for the Protein Data Bank in Europe. In an interview, he speaks of the value added by the Protein Data Bank for research today, and why it is important that there are specialised beamlines for structural biology analysis in Berlin.

  • MYSTIIC at BESSY II: New X-ray microscope put into operation
    News
    22.04.2021
    MYSTIIC at BESSY II: New X-ray microscope put into operation
    A new X-ray microscope has started operation at the Energy Materials in situ Lab (EMIL). It is a scanning transmission X-ray microscope designed to examine both sample surfaces and bulk sample. With the soft X-ray light from BESSY II, it is even possible to localise individual elements and chemical compounds; the spatial resolution is below 20 nanometres.

  • Direct observation of the ad- and desorption of guest atoms into a mesoporous host
    Science Highlight
    21.04.2021
    Direct observation of the ad- and desorption of guest atoms into a mesoporous host
    Battery electrodes, storage devices for gases, and some catalyst materials have tiny functional pores that can accommodate atoms, ions, and molecules. How these guest atoms are absorbed into or released from the pores is crucial to understanding the porous materials' functionality. However, usually these processes can only be observed indirectly. A team from the Helmholtz Zentrum Berlin (HZB) has employed two experimental approaches using the ASAXS instrument at the PTB X-ray beamline of the HZB BESSY II synchrotron to directly observe the adsorption process of atoms in a mesoporous model system. The work lays the foundations for new insights into these kinds of energy materials.

  • Virtual tours: Experience the HZB in 360 degrees!
    News
    15.04.2021
    Virtual tours: Experience the HZB in 360 degrees!

    Unfortunately, due to Corona, we are currently unable to receive groups of visitors at HZB and guide them through our centre. Despite Corona, we would like to provide you with insights into HZB. Simply follow our 360-degree tours and experience how we conduct research at the BESSY II accelerator. Further tours are being planned.

  • Instrument at BESSY II shows how light activates MoS2 layers to become catalysts
    Science Highlight
    05.03.2021
    Instrument at BESSY II shows how light activates MoS2 layers to become catalysts
    Thin films of molybdenum and sulfur belong to a class of materials that can be considered for use as photocatalysts. Inexpensive catalysts such as these are needed to produce hydrogen as a fuel using solar energy. However, they are still not very efficient as catalysts. A new instrument at the Helmholtz-Berlin Zentrum’s BESSY II now shows how a light pulse alters the surface properties of the thin film and activates the material as a catalyst.

  • The perfect recipe for efficient perovskite solar cells
    Science Highlight
    22.02.2021
    The perfect recipe for efficient perovskite solar cells
    A long-cherished dream of materials researchers is a solar cell that converts sunlight into electrical energy as efficiently as silicon, but that can be easily and inexpensively fabricated from abundant materials. Scientists at the Helmholtz-Zentrum Berlin have now come a step closer to achieving this. They have improved a process for vertically depositing a solution made from an inexpensive perovskite solute onto a moving substrate below. Not only have they discovered the crucial role played by one of the solvents used, but they have also taken a closer look at the aging and storage properties of the solution.

  • World's first video recording of a space-time crystal
    Science Highlight
    10.02.2021
    World's first video recording of a space-time crystal
    A German-Polish research team has succeeded in creating a micrometer-sized space-time crystal consisting of magnons at room temperature. With the help of the scanning transmission X-ray microscope MAXYMUS at Bessy II at Helmholtz Zentrum Berlin, they were able to film the recurring periodic magnetization structure in a crystal. The research project was a collaboration between scientists from the Max Planck Institute for Intelligent Systems (MPI-IS) in Stuttgart, Germany, the Adam Mickiewicz University and the Polish Academy of Sciences in Poznań in Poland.

  • An efficient tool to link X-ray experiments and ab initio theory
    Science Highlight
    28.01.2021
    An efficient tool to link X-ray experiments and ab initio theory
    The electronic structure of complex molecules and their chemical reactivity can be assessed by the method of resonant inelastic X-ray scattering (RIXS) at BESSY II. However, the evaluation of RIXS data has so far required very long computing times. A team at BESSY II has now developed a new simulation method that greatly accelerates this evaluation. The results can even be calculated during the experiment. Guest users could use the procedure like a black box.

  • Solar hydrogen: Photoanodes made of α-SnWO4 promise high efficiencies
    Science Highlight
    26.01.2021
    Solar hydrogen: Photoanodes made of α-SnWO4 promise high efficiencies
    Photoanodes made of metal oxides are considered to be a viable solution for the production of hydrogen with sunlight. α-SnWO4 has optimal electronic properties for photoelectrochemical water splitting with sunlight, but corrodes easily. Protective layers of nickel oxide prevent corrosion, but reduce the photovoltage and limit the efficiency. Now a team at HZB has investigated at BESSY II what happens at the interface between the photoanode and the protective layer. Combined with theoretical methods, the measurement data reveal the presence of an oxide layer that impairs the efficiency of the photoanode.


  • HZB and Humboldt University agree to set up a catalysis laboratory
    News
    25.01.2021
    HZB and Humboldt University agree to set up a catalysis laboratory
    Helmholtz-Zentrum Berlin (HZB) and Humboldt-Universität zu Berlin (HU) have signed a cooperation agreement with the aim of establishing a joint research laboratory for catalysis in the IRIS research building of HU in Adlershof. The IRIS research building offers optimal conditions for the research and development of complex material systems.

  • Accelerator Physics: HF-Couplers for bERLinPro prove resilient
    News
    07.01.2021
    Accelerator Physics: HF-Couplers for bERLinPro prove resilient
    In synchrotron light sources, an electron accelerator brings electron bunches to almost the speed of light so that they can emit the special "synchrotron light". The electron bunches get their enormous energy and their special shape from a standing electromagnetic alternating field in so-called cavities. With high electron currents, as required in the bERLinPro project, the power needed for the stable excitation of this high-frequency alternating field is enormous. The coupling of this high power is achieved with special antennas, so-called couplers, and is considered a great scientific and technical challenge. Now, a first measurement campaign with optimised couplers at bERLinPro shows that the goal can be achieved.

  • Ernst Eckhard Koch Prize and Innovation Award Synchrotron Radiation
    News
    15.12.2020
    Ernst Eckhard Koch Prize and Innovation Award Synchrotron Radiation
    This year, the Friends of HZB awarded the Ernst Eckhard Koch Prize to Dr. Martin Bluschke (MPI for Solid State Research and TU Berlin) for his outstanding doctoral thesis. The European Innovation Award for Synchrotron Radiation went to a team of four physicists for their work on the FERMI free electron laser at the Elettra synchrotron source in Trieste. The award ceremony took place at this year's HZB user meeting, which had to be held digitally this year.
  • Perovskite Solar Cells: paving the way for rational ink design for industrial-scale manufacturing
    Science Highlight
    27.11.2020
    Perovskite Solar Cells: paving the way for rational ink design for industrial-scale manufacturing
    For the production of high-quality metal-halide perovskite thin-films for large area photovoltaic modules often optimized inks are used which contain a mixture of solvents. An HZB team at BESSY II has now analysed the crystallisation processes within such mixtures. A model has also been developed to assess the kinetics of the crystallisation processes for different solvent mixtures. The results are of high importance for the further development of perovskite inks for industrial-scale deposition processes of these semiconductors.

  • User research at BESSY II: Graphite electrodes for rechargeable batteries investigated
    Science Highlight
    20.11.2020
    User research at BESSY II: Graphite electrodes for rechargeable batteries investigated
    Rechargeable graphite dual ion batteries are inexpensive and powerful. A team of the Technical University of Berlin has investigated at the EDDI Beamline of BESSY II how the morphology of the graphite electrodes changes reversibly during cycling (operando). The 3D X-ray tomography images combined with simultaneous diffraction now allow a precise evaluation of the processes, especially of changes in the volume of the electrodes. This can help to further optimise graphite electrodes.

  • Future Information Technologies: Germanium telluride's hidden properties at the nanoscale revealed
    Science Highlight
    05.11.2020
    Future Information Technologies: Germanium telluride's hidden properties at the nanoscale revealed
    Germanium Telluride is an interesting candidate material for spintronic devices. In a comprehensive study at BESSY II, a Helmholtz-RSF Joint Research Group has now revealed how the spin texture switches by ferroelectric polarization within individual nanodomains.

  • Order in the disorder: density fluctuations in amorphous silicon discovered
    Science Highlight
    29.10.2020
    Order in the disorder: density fluctuations in amorphous silicon discovered
    For the first time, a team at HZB has identified the atomic substructure of amorphous silicon with a resolution of 0.8 nanometres using X-ray and neutron scattering at BESSY II and BER II. Such a-Si:H thin films have been used for decades in solar cells, TFT displays, and detectors. The results show that three different phases form within the amorphous matrix, which dramatically influences the quality and lifetime of the semiconductor layer. The study was selected for the cover of the actual issue of Physical Review Letters.

  • University of Kassel and HZB establish Joint Lab for the use of artificial intelligence
    News
    06.10.2020
    University of Kassel and HZB establish Joint Lab for the use of artificial intelligence

    The University of Kassel and Helmholtz-Zentrum Berlin are setting up a joint laboratory for the use of artificial intelligence, where they will be developing new experimental methods and improving the analysis of data from experiments performed at BESSY II.

  • HZB & IKZ bundle their competencies In crystalline energy and quantum materials
    News
    29.09.2020
    HZB & IKZ bundle their competencies In crystalline energy and quantum materials
    On September 11, 2020, the Helmholtz-Zentrum Berlin (HZB) and the Leibniz-Institut für Kristallzüchtung (IKZ) signed a cooperation agreement to advance joint research on energy and quantum materials. As part of the cooperation, new types of X-ray optics for synchrotron radiation sources are also being developed.
  • Carl-Ramsauer-Award for excellent dissertation
    News
    29.09.2020
    Carl-Ramsauer-Award for excellent dissertation
    Dr. Raphael Jay has received this year's Carl-Ramsauer-Prize of the German Physical Society of Berlin (DPGzB). The prize honours outstanding dissertations in physics and related fields and will be awarded during a festive colloquium on 18 November 2020 in the Magnus-Haus.

  • HZB and TU Berlin: New joint research group at BESSY II
    News
    21.09.2020
    HZB and TU Berlin: New joint research group at BESSY II
    Birgit Kanngießer is setting up a joint research group to combine X-ray methods in laboratories and at large-scale facilities. In particular, the physicist wants to investigate how X-ray experiments on smaller laboratory instruments can be optimally complemented with more complex experiments that are only possible at synchrotron sources such as BESSY II. 
  • A new cooling tower flying to BESSY's roof
    News
    07.09.2020
    A new cooling tower flying to BESSY's roof
    Early September a huge crane near BESSY II could be seen from afar. A series of pictures for you to discover the exciting installation of the fourth cooling tower.
  • New Materials for Energy Storage: ERC Starting Grant for Tristan Petit
    News
    03.09.2020
    New Materials for Energy Storage: ERC Starting Grant for Tristan Petit
    Dr. Tristan Petit has received a prestigious Starting Grant from the European Research Council for 1.5 million euros over the next five years. The materials researcher will use the grant to investigate a new class of materials known as MXenes for storing electrical energy. MXenes can store and deliver large amounts of electrical energy extremely quickly. They might play an important role in energy storage alongside batteries and supercapacitors. The ERC Starting Grant is one of the most important European research grants.

  • New substance library to accelerate the search for active compounds
    Science Highlight
    13.07.2020
    New substance library to accelerate the search for active compounds
    In order to accelerate the systematic development of drugs, the MX team at the Helmholtz-Zentrum Berlin (HZB) and the Drug Design Group at the University of Marburg have established a new substance library. It consists of 1103 organic molecules that could be used as building blocks for new drugs. The MX team has now validated this library in collaboration with the FragMAX group at MAX IV. The substance library of the HZB is available for research worldwide and also plays a role in the search for substances active against SARS-CoV-2.

  • User research at BESSY II: Formation of a 2D meta-stable oxide in reactive environments
    Science Highlight
    10.06.2020
    User research at BESSY II: Formation of a 2D meta-stable oxide in reactive environments

    The chemical behaviour of solid material surfaces is an important physical characteristic for applications of catalysis, chemical sensors, fuel cells and electrodes. A research team from the Max Planck Institute for Chemical Energy Conversion has now described an important phenomenon that can occur when metal alloys are exposed to reactive environments at the synchrotron source BESSY II.

  • Start your accelerator tour - the Long Night of Science in a different way
    News
    05.06.2020
    Start your accelerator tour - the Long Night of Science in a different way
    Due to corona restrictions, unfortunately there will be no Long Night of Science this year. This is not only a pity for all those interested in science, but also for us! We look forward to it every year when many people come to us, asking us questions or being amazed by the huge facilities and laboratories in which we do our research. To make sure that the long night doesn't fall flat, we take you on a virtual journey through our accelerator BESSY II.

  • BESSY II: Experiment shows for the first time in detail how electrolytes become metallic
    Science Highlight
    05.06.2020
    BESSY II: Experiment shows for the first time in detail how electrolytes become metallic
    An international team has developed a sophisticated experimental technique at BESSY II to observe the formation of a metallic conduction band in electrolytes. To accomplish this, the team first prepared cryogenic solutions of liquid ammonia containing different concentrations of alkali metals. The colour of the solutions changes with concentration from blue to golden as the individual atoms of metal in solution transition to a metallic compound. The team then examined these liquid jets using soft X-rays at BESSY II and subsequently has been able to analyse this process in detail from the data they acquired combined with theoretical predictions. The work has been published in Science and appears even on the cover.
  • User research at BESSY II: Insights into the visual perception of plants
    Science Highlight
    07.05.2020
    User research at BESSY II: Insights into the visual perception of plants
    Plants use light not only for photosynthesis. Although the plant cell does not have eyes, it can still perceive light and thus its environment. Phytochromes, certain turquoise proteins, play the central role in this process. How exactly they function is still unclear. Now a team led by plant physiologist Jon Hughes (Justus Liebig University Gießen) has been able to decipher the three-dimensional architecture of various plant phytochrome molecules at BESSY II. Their results demonstrate how light alters the structure of the phytochrome so that the cell transmits a signal to control the development of the plant accordingly.
  • User research at BESSY II: How new materials increase the efficiency of direct ethanol fuel cells
    Science Highlight
    04.05.2020
    User research at BESSY II: How new materials increase the efficiency of direct ethanol fuel cells
    A group from Brazil and an HZB team have investigated a novel composite membrane for ethanol fuel cells. It consists of the polymer Nafion, in which nanoparticles of a titanium compound are embedded by the rarely explored melt extrusion process. At BESSY II they were able to observe in detail, how the nanoparticles in the Nafion matrix are distributed and how they contribute to increase proton conductivity.
  • 04.05.2020 - #Corona: HZB resumes operation step by step
    News
    04.05.2020
    04.05.2020 - #Corona: HZB resumes operation step by step
    After a careful assessment of the situation, the management decided that operations at HZB would be resumed step by step from 4 May onwards. Strict security regulations apply. BESSY II will be available again for in-house research from 11 May. For Sars-CoV-2-relevant measurements a fast access to BESSY II has been established.
  • Corona research: Consortium of Berlin research and industry seeks active ingredients
    News
    29.04.2020
    Corona research: Consortium of Berlin research and industry seeks active ingredients

    The Berlin biotech company Molox GmbH and a team at the Helmholtz-Zentrum Berlin (HZB) have initiated a consortium of regional research groups and BASF. Together, they want to identify a starting point for the development of a potential active substance against the new coronavirus. Targets of potential inhibitors will be SARS-CoV2 proteins that promote the spread or infectivity of the viruses. Scientists from Freie Universität Berlin are also involved in the research work.

  • New interaction between light and matter discovered at BESSY II
    Science Highlight
    23.04.2020
    New interaction between light and matter discovered at BESSY II
    A German-Chinese team led by Gisela Schütz from the MPI for Intelligent Systems has discovered a new interaction between light and matter at BESSY II. They succeeded in creating nanometer-fine magnetic vortices in a magnetic layer. These are so-called skyrmions, and candidates for future information technologies.
  • Corona research at BESSY II: Two days of measuring operation to find the right key
    News
    02.04.2020
    Corona research at BESSY II: Two days of measuring operation to find the right key
    The Berlin Synchrotron Source BESSY II of the Helmholtz-Zentrum Berlin (HZB) will resume operation for two days. Scientists intend to use the intense X-ray radiation from BESSY II to search for active substances against the corona virus SARS-CoV2. Almost two hundred samples from an important protein of the virus will be examined in the coming hours. The samples are saturated with different molecules that could be used as components of active substances. The analyses will show whether certain molecules can dock particularly well to the protein molecule and thus hinder the reproduction of the virus. These molecules are best candidates as components of a future drug. 
  • BESSY II: Ultra-fast switching of helicity of circularly polarized light pulses
    Science Highlight
    01.04.2020
    BESSY II: Ultra-fast switching of helicity of circularly polarized light pulses
    At the BESSY II storage ring, a joint team of accelerator physicists, undulator experts and experimenters has shown how the helicity of circularly polarized synchrotron radiation can be switched faster - up to a million times faster than before. They used an elliptical double-undulator developed at HZB and operated the storage ring in the so-called two-orbit mode. This is a special mode of operation that was only recently developed at BESSY II and provides the basis for fast switching. The ultra-fast change of light helicity is particularly interesting to observe processes in magnetic materials and has long been expected by a large user community.
  • Coronavirus SARS-CoV2: BESSY II data accelerate drug development
    Science Highlight
    19.03.2020
    Coronavirus SARS-CoV2: BESSY II data accelerate drug development
    A coronavirus is keeping the world in suspense. SARS-CoV-2 is highly infectious and can cause severe pneumonia with respiratory distress (COVID-19). Scientists are doing research in order to prevent the viruses from multiplying. A team from the University of Lübeck and from Helmholtz Centre for Infection Research (HZI) has now found a promising approach. Using the high-intensity X-ray light from the Berlin synchrotron source BESSY II, they have decoded the three-dimensional architecture of the main protease of SARS-CoV-2. This protein is involved in the reproduction of the virus. Analysing its 3D architecture allows the systematic development of drugs which inhibit the reproduction of the virus.
  • Fast and furious: New class of 2D materials stores electrical energy
    Science Highlight
    02.03.2020
    Fast and furious: New class of 2D materials stores electrical energy
    Two dimensional titanium carbides, so-called MXenes, are being discussed as candidates for the rapid storage of electrical energy. Like a battery,MXenes can store large amounts of electrical energy through electrochemical reactions- but unlike batteries,can be charged and discharged in a matter of seconds. In collaboration with Drexel University, a team at HZB showed that the intercalation of urea molecules between the MXene layers can increase the capacity of such "pseudo-capacitors" by more than 50 percent. At BESSY II they have analysed how changes of the MXene surface chemistry after urea intercalation are responsible for this.
  • New Helmholtz Young Investigator Group at HZB
    News
    28.02.2020
    New Helmholtz Young Investigator Group at HZB
    Dr. Felix Büttner will establish a Helmholtz Young Investigator Group (YIG) on topological solitons at the HZB beginning in March 2020. Topological solitons occur in magnetic quantum materials and can contribute to extremely energy-efficient switching processes. Büttner wants to develop a new imaging technique at BESSY II to study these quasi-particles.
  • New detector accelerates protein crystallography
    News
    17.02.2020
    New detector accelerates protein crystallography

    Last week a new detector was installed at one of the three MX beamlines at HZB. Compared to the old detector the new one is better, faster and more sensitive. It allows to acquire complete data sets of complex proteins within a very short time.

  • X-ray microscopy at BESSY II: Nanoparticles can change cells
    Science Highlight
    12.02.2020
    X-ray microscopy at BESSY II: Nanoparticles can change cells
    Nanoparticles easily enter into cells. New insights about how they are distributed and what they do there are shown for the first time by high-resolution 3D microscopy images from the lightsources BESSY II and ALBA. For example, certain nanoparticles accumulate preferentially in certain organelles of the cell. This can increase the energy costs in the cell. "The cell looks like it has just run a marathon, apparently, the cell requires energy to absorb such nanoparticles" says lead author James McNally.
  • Watching complex molecules at work
    Science Highlight
    14.01.2020
    Watching complex molecules at work
    A new method of infrared spectroscopy developed at BESSY II makes single-measurement observation and analysis of very fast as well as irreversible reaction mechanisms in molecules feasible for the first time. Previously, thousands of such reactions have had to be run and measured for this purpose. The research team has now used the new device to investigate how rhodopsin molecules change after activation by light – a process that is the basis of how we see.
  • Topological materials for information technology offer lossless transmission of signals
    Science Highlight
    18.12.2019
    Topological materials for information technology offer lossless transmission of signals
    New experiments with magnetically doped topological insulators at BESSY II have revealed possible ways of lossless signal transmission that involve a surprising self-organisation phenomenon. In the future, it might be possible to develop materials that display this phenomenon at room temperature and can be used as processing units in a quantum computer, for example. The study has been published in the renowned journal Nature.
  • Ernst-Eckhard-Koch-Award and Innovation Award for Research in Synchrotron Radiation
    News
    13.12.2019
    Ernst-Eckhard-Koch-Award and Innovation Award for Research in Synchrotron Radiation
    This year, the circle of friends of the HZB awarded the Ernst Eckhard Koch Prize to two young scientists for their outstanding PhD theses. The European Synchrotron Radiation Innovation Award went to a team of physicists from DESY and the Paul Scherrer Institute. The award ceremony took place at this year's User Meeting of the HZB, which was very well attended with over 500 participants and more than 50 exhibitors.
  • Cancer research at BESSY II: Binding Mechanisms of Therapeutic Substances Deciphered
    Science Highlight
    12.12.2019
    Cancer research at BESSY II: Binding Mechanisms of Therapeutic Substances Deciphered
    In tumor cells, the DNA is altered in comparison to normal body cells. How such changes can be prevented or inhibited is an exciting field of research with great relevance for the development of cancer treatments. An interdisciplinary team has now analysed the possible binding mechanisms in certain therapeutic substances from the tetrazole hydrazide group using protein crystallography at BESSY II.
  • X-ray microscopy at BESSY II reveals how antimalaria-drugs might work
    Science Highlight
    30.10.2019
    X-ray microscopy at BESSY II reveals how antimalaria-drugs might work
    Malaria is one of the most threatening infectious diseases in the world. An international team has now been able to investigate malaria pathogens in red blood cells in vivo using the BESSY II X-ray microscope and the ALBA and ESRF synchrotron sources. The scientists reveal the mechanisms used by active substances to attack the pathogen. This could contribute to improve treatment strategies and drug design.
  • Dynamic pattern of Skyrmions observed
    Science Highlight
    15.10.2019
    Dynamic pattern of Skyrmions observed
    Tiny magnetic vortices known as skyrmions form in certain magnetic materials, such as Cu2OSeO3. These skyrmions can be controlled by low-level electrical currents – which could facilitate more energy-efficient data processing. Now a team has succeeded in developing a new technique at the VEKMAG station of BESSY II for precisely measuring these vortices and observing their three different predicted characteristic oscillation modes (Eigen modes).
  • FOCUS TOPIC: From MIT to Wannsee
    Portrait
    19.09.2019
    FOCUS TOPIC: From MIT to Wannsee

    For Marcel Risch, it feels like a homecoming: as a student, he had previously run experiments at the Berlin particle accelerator BESSY II. After working for several years at Massachusetts Institute of Technology (MIT) and then in Göttingen, he is now establishing his own group at HZB – supported by funding from the European Research Council.

  • New sample holder for protein crystallography
    Science Highlight
    16.09.2019
    New sample holder for protein crystallography
    An HZB research team has developed a novel sample holder that considerably facilitates the preparation of protein crystals for structural analysis. A short video by the team shows how proteins in solution can be crystallised directly onto the new sample holders themselves, then analysed using the MX beamlines at BESSY II. A patent has already been granted and a manufacturer found.
  • World record in tomography: Watching how metal foam forms
    Science Highlight
    21.08.2019
    World record in tomography: Watching how metal foam forms
    An international research team at the Swiss Light Source (SLS) has set a new tomography world record using a rotary sample table developed at the HZB. With 208 three-dimensional tomographic X-ray images per second, they were able to document the dynamic processes involved in the foaming of liquid aluminium. The method is presented in the journal Nature Communications.
  • Archaeology at BESSY II: “Invisible ink” on antique Nile papyrus revealed
    Science Highlight
    14.08.2019
    Archaeology at BESSY II: “Invisible ink” on antique Nile papyrus revealed
    Researchers from the Egyptian Museum and Papyrus Collection, Berlin universities and Helmholtz-Zentrum Berlin studied a small piece of papyrus that was excavated on the island of Elephantine on the River Nile a little over 100 years ago. The team used serval methods including non-destructive techniques at BESSY II. The researchers’ work, reported in the Journal of Cultural Heritage, blazes a trail for further analyses of the papyrus collection in Berlin.
  • FOCUS TOPIC: Using BESSY II to combat plastic waste
    News
    30.07.2019
    FOCUS TOPIC: Using BESSY II to combat plastic waste
    Plastics are excellent materials: extremely versatile and almost eternally durable. But this is also exactly the problem, because after only about 100 years of producing plastics, plastic particles are now found everywhere – in groundwater, in the oceans, in the air, and in the food chain.

  • Accelerator physics: alternative material investigated for superconducting radio-frequency cavity resonators
    Science Highlight
    15.07.2019
    Accelerator physics: alternative material investigated for superconducting radio-frequency cavity resonators
    In modern synchrotron sources and free-electron lasers, superconducting radio-frequency cavity resonators are able to supply electron bunches with extremely high energy. These resonators are currently constructed of pure niobium. Now an international collaboration has investigated the potential advantages a niobium-tin coating might offer in comparison to pure niobium.
  • Charge transfer within transition-metal dyes analysed
    Science Highlight
    09.07.2019
    Charge transfer within transition-metal dyes analysed
    Transition-metal complexes in dye-based solar cells are responsible for converting light into electrical energy. A model of spatial charge separation within the molecule has been used to describe this conversion. However, an analysis at BESSY II shows that this description of the process is too simple. For the first time, a team there has investigated the fundamental photochemical processes around the metal atom and its ligands. The study has now been published in “Angewandte Chemie, international Edition” and is displayed on the cover.
  • Utrafast magnetism: electron-phonon interactions examined at BESSY II
    Science Highlight
    28.06.2019
    Utrafast magnetism: electron-phonon interactions examined at BESSY II
    How fast can a magnet switch its orientation and what are the microscopic mechanisms at play ? These questions are of first importance for the development of data storage and computer chips. Now, an HZB team at BESSY II has for the first time been able to experimentally assess the principal microscopic process of ultra-fast magnetism. The methodology developed for this purpose can also be used to investigate interactions between spins and lattice oscillations in graphene, superconductors or other (quantum) materials.
  • Laser-driven Spin Dynamics in Ferrimagnets: How does the Angular Momentum flow?
    Science Highlight
    10.05.2019
    Laser-driven Spin Dynamics in Ferrimagnets: How does the Angular Momentum flow?
    When exposed to intense laser pulses, the magnetization of a material can be manipulated very fast. Fundamentally, magnetization is connected to the angular momentum of the electrons in the material. A team of researchers led by scientists from the Max Born Institute for Nonlinear Optics and Short Pulse Spectroscopy (MBI) has now been able to follow the flow of angular momentum during ultrafast optical demagnetization in a ferrimagnetic iron-gadolinium alloy at the femtoslicing facility of BESSY II. Their results are helpful to understand the fundamental processes and their speed limits. The study is published in Physical Review Letters.
  • 3D tomographic imagery reveals how lithium batteries age
    Science Highlight
    06.05.2019
    3D tomographic imagery reveals how lithium batteries age
    Lithium batteries lose amp-hour capacity over time. Microstructures can form on the electrodes with each new charge cycle, which further reduces battery capacity. Now an HZB team together with battery researchers from Forschungszentrum Jülich, the University of Munster, and partners in China have documented the degradation process of lithium electrodes in detail for the first time. They achieved this with the aid of a 3D tomography process using synchrotron radiation at BESSY II (HZB) as well at the Helmholtz-Zentrum Geesthacht (HZG). Their results have been published open access in the scientific journal "Materials Today".
  • High-efficiency thermoelectric materials: new insights into tin selenide
    Science Highlight
    24.04.2019
    High-efficiency thermoelectric materials: new insights into tin selenide
    Tin selenide might considerably exceed the efficiency of current record holding thermoelectric materials made of bismuth telluride. However, it was thought its efficiency became enormous only at temperatures above 500 degrees Celsius. Now measurements at the BESSY II and PETRA III synchrotron sources show that tin selenide can also be utilised as a thermoelectric material at room temperature – so long as high pressure is applied.
  • "Molecular scissors" for plastic waste
    Science Highlight
    12.04.2019
    "Molecular scissors" for plastic waste
    A research team from the University of Greifswald and Helmholtz-Zentrum-Berlin (HZB) has solved the molecular structure of the important enzyme MHETase at BESSY II. MHETase was discovered in bacteria and together with a second enzyme - PETase - is able to break down the widely used plastic PET into its basic building blocks. This 3D structure already allowed the researchers to produce a MHETase variant with optimized activity in order to use it, together with PETase, for a sustainable recycling of PET. The results have been published in the research journal Nature Communications.
  • HZB contributions to special edition on Ultrafast Dynamics with X-ray Methods
    Science Highlight
    02.04.2019
    HZB contributions to special edition on Ultrafast Dynamics with X-ray Methods
    In the new special issue of the "Philosophical Transactions of the Royal Society of London", internationally renowned experts report on new developments in X-ray sources and ultrafast time-resolved experiments. HZB physicists have also been invited to contribute.
  • Godehard Wüstefeld receives the Horst Klein Research Prize
    News
    25.03.2019
    Godehard Wüstefeld receives the Horst Klein Research Prize
    The physicist Dr. Godehard Wüstefeld was awarded the Horst Klein Research Prize at the annual conference of the German Physical Society. The award recognizes his outstanding scientific achievements in accelerator physics in the development of BESSY II and BESSY VSR.
  • Water is more homogeneous than expected
    Science Highlight
    20.02.2019
    Water is more homogeneous than expected
    In order to explain the known anomalies in water, some researchers assume that water consists of a mixture of two phases even under ambient conditions. However, new X-ray spectroscopic analyses at BESSY II, ESRF and Swiss Light Source show that this is not the case. At room temperature and normal pressure, the water molecules form a fluctuating network with an average of 1.74 ± 2.1% donor and acceptor hydrogen bridge bonds per molecule each, allowing tetrahedral coordination between close neighbours.
  • Spintronics by “straintronics”: Superferromagnetism with electric-field induced strain
    Science Highlight
    14.02.2019
    Spintronics by “straintronics”: Superferromagnetism with electric-field induced strain
    Data storage in today’s magnetic media is very energy consuming. Combination of novel materials and the coupling between their properties could reduce the energy needed to control magnetic memories thus contributing to a smaller carbon footprint of the IT sector. Now an international team led by HZB has observed at the HZB lightsource BESSY II a new phenomenon in iron nanograins: whereas normally the magnetic moments of the iron grains are disordered with respect each other at room temperature, this can be changed by applying an electric field: This field induces locally a strain on the system leading to the formation of a so-called superferromagnetic ordered state.
  • Two new Helmholtz Young Investigator Groups will start in 2019
    News
    15.01.2019
    Two new Helmholtz Young Investigator Groups will start in 2019

    Starting in 2019, Helmholtz-Zentrum Berlin (HZB) will be establishing two new Helmholtz Young Investigator Groups and thereby strengthening its competencies in catalysis research. The Helmholtz Association will be funding each group with 150,000 euros annually over a period of five years, and HZB will be matching that sum with its own funds.

  • Outstanding master thesis on the structure and function of a bacterial enzyme honoured
    News
    20.12.2018
    Outstanding master thesis on the structure and function of a bacterial enzyme honoured
    On December 17, 2018, Lena Graß, a PhD student from the Structural Biochemistry Group at Freie Universität Berlin, was awarded the Master Prize of the Gesellschaft für Biochemie und Molekularbiologie e.V. (Society for Biochemistry and Molecular Biology) (GBM). For her master thesis at Freie Universität Berlin and the MX beamlines of BESSY II, she deciphered the structure and function of a so-called RNA helicase.
  • Ernst Eckhard Koch Prize and Synchrotron Radiation Innovation Award
    News
    12.12.2018
    Ernst Eckhard Koch Prize and Synchrotron Radiation Innovation Award
    On December 6, 2018, the Association of Friends of Helmholtz-Zentrum Berlin awarded the Ernst Eckhard Koch Prize for an outstanding doctoral thesis in the field of research with synchrotron radiation at the HZB or at DESY as well as the European Innovation-Award on Synchrotron Radiation. The award ceremonies took place during the 10th User Meeting at the HZB.
  • Milestone for bERLinPro: photocathodes with high quantum efficiency
    Science Highlight
    07.12.2018
    Milestone for bERLinPro: photocathodes with high quantum efficiency
    A team at the HZB has improved the manufacturing process of photocathodes and can now provide photocathodes with high quantum efficiency for bERLinPro.
  • Delegation from Jordan visited the HZB
    News
    04.12.2018
    Delegation from Jordan visited the HZB
    The Helmholtz-Zentrum Berlin (HZB) will intensify its cooperation with Jordanian large-scale research facilities. This was agreed between Prof. Dr. Jan Lüning and representatives of a high-ranking Jordanian research delegation, which visited the HZB at the end of November 2018. 
  • Transition metal complexes: mixed works better
    Science Highlight
    14.11.2018
    Transition metal complexes: mixed works better
    A team at BESSY II has investigated how various iron-complex compounds process energy from incident light. They were able to show why certain compounds have the potential to convert light into electrical energy. The results are important for the development of organic solar cells. The study has now been published in the journal PCCP, and its illustration selected for the cover.
  • Graphene on the way to superconductivity
    Science Highlight
    10.11.2018
    Graphene on the way to superconductivity
    Scientists at HZB have found evidence that double layers of graphene have a property that may let them conduct current completely without resistance. They probed the bandstructure at BESSY II with extremely high resolution ARPES and could identify a flat area at a surprising location.
  • Nanodiamonds as photocatalysts
    Science Highlight
    18.10.2018
    Nanodiamonds as photocatalysts
    Diamond nanomaterials are considered hot candidates for low-cost photocatalysts. They can be activated by light and can then accelerate certain reactions between water and CO2 and produce carbon-neutral "solar fuels". The EU project DIACAT has now doped such diamond materials with boron and shown at BESSY II how this could significantly improve the photocatalytic properties.
  • Blue phosphorus - mapped and measured for the first time
    Science Highlight
    15.10.2018
    Blue phosphorus - mapped and measured for the first time
    Until recently, the existence of "blue" phosphorus was pure theory: Now an HZB team was able to examine samples of blue phosphorus at BESSY II for the first time and confirm via mapping of their electronic band structure that this is actually this exotic phosphorus modification. Blue phosphorus is an interesting candidate for new optoelectronic devices. The results have been published in Nano Letters.
  • HZB researchers boost the efficiency of silicon solar cells
    Science Highlight
    02.10.2018
    HZB researchers boost the efficiency of silicon solar cells
    The efficiency of a solar cell is one of its most important parameters. It indicates what percentage of the solar energy radiated into the cell is converted into electrical energy. The theoretical limit for silicon solar cells is 29.3 percent due to physical material properties. In the journal Materials Horizons, researchers from Helmholtz-Zentrum Berlin (HZB) and international colleagues describe how this limit can be abolished. The trick: they incorporate layers of organic molecules into the solar cell. These layers utilise a quantum mechanical process known as singlet exciton fission to split certain energetic light (green and blue photons) in such a way that the electrical current of the solar cell can double in that energy range.
  • Future information technologies: nanoscale heat transport under the microscope
    Science Highlight
    21.08.2018
    Future information technologies: nanoscale heat transport under the microscope
    A team of researchers from the Helmholtz-Zentrum Berlin (HZB) and the University of Potsdam has investigated heat transport in a model system comprising nanometre-thin metallic and magnetic layers. Similar systems are candidates for future high-efficiency data storage devices that can be locally heated and rewritten by laser pulses (Heat-Assisted Magnetic Recording). Measurements taken with extremely short X-ray pulses have now shown that the heat is distributed a hundred times slower than expected in the model system. The results are published in Nature Communications.
  • World record: Fastest 3D tomographic images at BESSY II
    Science Highlight
    08.08.2018
    World record: Fastest 3D tomographic images at BESSY II
    An HZB team has developed an ingenious precision rotary table at the EDDI beamline at BESSY II and combined it with particularly fast optics. This enabled them to document the formation of pores in grains of metal during foaming processes at 25 tomographic images per second - a world record.
  • Insight into catalysis through novel study of X-ray absorption spectroscopy
    Science Highlight
    31.07.2018
    Insight into catalysis through novel study of X-ray absorption spectroscopy
    An international team has made a breakthrough at BESSY II. For the first time, they succeeded in investigating electronic states of a transition metal in detail and drawing reliable conclusions on their catalytic effect from the data. These results are helpful for the development of future applications of catalytic transition-metal systems. The work has now been published in Chemical Science, the Open Access journal of the Royal Society of Chemistry.
  • Shutdown BESSY II: work has started
    News
    30.07.2018
    Shutdown BESSY II: work has started
    As of 30 July 2018, BESSY II will be down for several weeks. In the summer shutdown, important components in the storage ring tunnel will be replaced and overhauled. The first conversion work for the BESSY VSR project also begins.  Upgrading BESSY II into a variable-pulse-length storage ring (BESSY-VSR) will provide unique experimental conditions for researchers worldwide. The shutdown lasts until 30 September 2018, and user operation will recommence on 30 October 2018.
  • Helmholtz International Fellow Award for Nils Mårtensson
    News
    09.07.2018
    Helmholtz International Fellow Award for Nils Mårtensson
    The Helmholtz Association has presented the Swedish physicist Nils Mårtensson with a Helmholtz International Fellow Award.  The synchrotron expert of the University of Uppsala, who heads the nobel comitee for physics, cooperates closely with the HZB-Institute Methods and Instrumentation for Synchrotron Radiation Research.
  • Dr. Raül Garcia Diez received poster award at the international synchrotron conference SRI 2018
    News
    26.06.2018
    Dr. Raül Garcia Diez received poster award at the international synchrotron conference SRI 2018
    HZB researcher introduces unique operando characterization by soft X-ray spectroscopy
  • Writing and deleting magnets with lasers
    Science Highlight
    18.04.2018
    Writing and deleting magnets with lasers
    Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia in Charlottesville, USA have found a way to write and delete magnets in an alloy using a laser beam – a surprising effect. The reversibility of the process opens up new possibilities in the fields of material processing, optical technology, and data storage.
  • LEAPS join forces with the European Commission to strengthen Europe’s leading role in science
    News
    22.03.2018
    LEAPS join forces with the European Commission to strengthen Europe’s leading role in science
    “A world where European science is a catalyst for solving global challenges, a key driver for competitiveness and a compelling force for closer integration and peace through scientific collaboration.” This is the vision of LEAPS, League of European Accelerator-based Photon Sources, on which the LEAPS Strategy 2030 is based. Director Jean-David Malo, DG Research and Innovation, received the strategy today at the Bulgarian Presidency Flagship Conference on Research Infrastructures.
  • HZB scientist got the dissertation prize at the spring conference of the Deutsche Physikalische Gesellschaft
    News
    19.03.2018
    HZB scientist got the dissertation prize at the spring conference of the Deutsche Physikalische Gesellschaft
    Dr. Nele Thielemann-Kühn was awarded the dissertation prize of the magnetism research group at the spring conference of the Deutsche Physikalische Gesellschaft (German physical society/DPG) in Berlin. The prize is awarded for outstanding research in the field of magnetism. 
  • Twin Orbit operation successfully tested at BESSY II
    Science Highlight
    15.03.2018
    Twin Orbit operation successfully tested at BESSY II
    The first “Twin Orbit User Test week” at BESSY II in February 2018 was a big success and can be considered as an important step towards real user operation. Physicists at Helmholtz-Zentrum Berlin have been able to store two separate electron beams in one storage ring. The twin orbit operation mode can serve users with different needs of the time structure of the photon pulses simultaneously and offers elegant options regarding the future project BESSY VSR.
  • Solar–to-hydrogen conversion: nanostructuring increases efficiency of metal-free photocatalysts by factor eleven
    Science Highlight
    28.02.2018
    Solar–to-hydrogen conversion: nanostructuring increases efficiency of metal-free photocatalysts by factor eleven
    Polymeric carbon nitrides exhibit a catalytic effect in sunlight that can be used for the production of hydrogen from solar energy. However, the efficiency of these metal-free catalysts is extremely low. A team at the Tianjin University in China, in collaboration with a group at the Helmholtz-Zentrum Berlin, has increased the catalytic efficiency of these polymeric carbon nitrides by a factor eleven through a simple process resulting in a larger surface area. The paper was published in the journal Energy & Environmental Science.
  • Dr. Raul Garcia Diez wins the Dissertationspreis Adlershof 2017
    News
    20.02.2018
    Dr. Raul Garcia Diez wins the Dissertationspreis Adlershof 2017
    With his talk on the properties of nanoparticles and how they can be measured more accurately at BESSY II, Dr. Raul Garcia Diez convinced the jury and was awarded the Dissertationspreis Adlershof 2017. Humboldt-Universität zu Berlin, IGAFA e. V. and the WISTA MANAGEMENT GmbH are the sponsors of this prize endowed with 3000 Euros. Garcia Diez completed his PhD in 2017 at PTB and TU Berlin and is now active as a post-doctoral researcher at HZB.
  • 40-year controversy in solid-state physics resolved
    Science Highlight
    06.02.2018
    40-year controversy in solid-state physics resolved
    An international team at BESSY II headed by Prof. Oliver Rader has shown that the puzzling properties of samarium hexaboride do not stem from the material being a topological insulator, as it had been proposed to be. Theoretical and initial experimental work had previously indicated that this material, which becomes a Kondo insulator at very low temperatures, also possessed the properties of a topological insulator. The team has now published a compelling alternative explanation in Nature Communications, however.
  • User experiment at BESSY II:  Complex tessellations, extraordinary materials
    Science Highlight
    23.01.2018
    User experiment at BESSY II: Complex tessellations, extraordinary materials
    Simple organic molecules form complex materials through self-organization
  • Perovskite solar cells: perfection not required!
    Science Highlight
    15.01.2018
    Perovskite solar cells: perfection not required!
    Experiments at BESSY II reveal why even inhomogeneous perovskite films are highly functional 
  • BER II and BESSY II User Meeting at HZB
    News
    18.12.2017
    BER II and BESSY II User Meeting at HZB
    More than 600 scientists registered this year for the 9th annual BER II and BESSY II User Meeting from Wednesday to Friday, 13-15 December 2017. The Friends of Helmholtz-Zentrum Berlin recognised outstanding work in the field of synchrotron radiation with an Innovation Award, and the best doctoral dissertation with the Ernst-Eckard-Koch prize.
  • Future IT: Antiferromagnetic dysprosium reveals magnetic switching with less energy
    Science Highlight
    06.11.2017
    Future IT: Antiferromagnetic dysprosium reveals magnetic switching with less energy
    HZB scientists have identified a mechanism with which it may be possible to develop a form of magnetic storage that is faster and more energy-efficient. They compared how different forms of magnetic ordering in the rare-earth metal named dysprosium react to a short laser pulse. They discovered that the magnetic orientation can be altered much faster and with considerably less energy if the magnetic moments of the individual atoms do not all point in the same direction (ferromagnetism), but instead point are rotated against each other (anti-ferromagnetism). The study was published in Physical Review letters on 6. November 2017 and on the cover of the print edition.
  • “Distinguished Award 2017 for Novel Materials and their Synthesis” for Norbert Koch
    News
    01.11.2017
    “Distinguished Award 2017 for Novel Materials and their Synthesis” for Norbert Koch
    At the IUPAC NMS-XIII conference in Nanjing, Professor Dr. Norbert Koch has been awarded the "Distinguished Award 2017 for Novel Materials and their Synthesis "of IUPAC (International Union of Pure and Applied Chemistry) and of the Conference Committee. Koch received the award for his research on hybrid electronic materials and their interfaces in electronic and optoelectronic components. He is Professor at the Department of Physics at Humboldt-Universität zu Berlin, member of IRIS Adlershof and head of a joint research group at the Helmholtz-Zentrum Berlin.
  • Missing link between new topological phases of matter discovered
    Science Highlight
    17.10.2017
    Missing link between new topological phases of matter discovered
    HZB-Physicists at BESSY II have investigated a class of materials that exhibit characteristics of topological insulators. During these studies they discovered a transition between two different topological phases, one of which is ferroelectric, meaning a phase in the material that exhibits spontaneous electric polarisation and can be reversed by an external electric field. This could also lead to new applications such as switching between differing conductivities.
  • The use coordination on a EU trip: promoting European light sources
    News
    02.10.2017
    The use coordination on a EU trip: promoting European light sources
    Synchrotrons are outstanding tools for studying materials, cells and even cultural assets. Yet, many researchers in Eastern Europe are unaware that they are entitled to use them. The EU project Calipsoplus supports potential users from these countries.
  • Novel soft X-ray spectrometer enables individual steps of photosynthetic water oxidation to be observed
    Science Highlight
    30.09.2017
    Novel soft X-ray spectrometer enables individual steps of photosynthetic water oxidation to be observed
    HZB scientists have developed a novel spectrometer at BESSY II that enables researchers to obtain detailed insights about catalytic processes in metalloenzymes. Their international collaboration was successful in delineating individual steps in the catalytic oxidation of water to dioxygen in photosystem II. They published their study in the journal Structural Dynamics. Photosystem II is a part of the of photosynthetic electron transport chain, a process that is responsible for the conversion of solar energy to chemical energy in plants, algae and cyanobacteria.
  • The miracle material graphene: convex as a chesterfield
    Science Highlight
    18.09.2017
    The miracle material graphene: convex as a chesterfield
    Graphene possesses extreme properties and can be utilised in many ways. Even the spins of graphene can be controlled through use of a trick. This had already been demonstrated by a HZB team some time ago: the physicists applied a layer of graphene onto a nickel substrate and introduced atoms of gold in between (intercalation). The scientists now show why this has such a dramatic influence on the spins in a paper published in 2D Materials. As a result, graphene can also be considered as a material for future information technologies that are based on processing spins as units of information.
  • Breakthrough at EMIL: First undulator radiation in the CAT experiment
    News
    12.09.2017
    Breakthrough at EMIL: First undulator radiation in the CAT experiment
    When the EMIL laboratory (Energy-Materials In-Situ Laboratory Berlin) was ceremoniously inaugurated a year ago in the presence of Federal Minister for Research Johanna Wanka, it was a major milestone for energy materials research at HZB. Ever since, HZB has been building the system that will bring X-ray beams all the way from BESSY II to the EMIL apparatuses. Until the BESSY light is fully available, the scientists have been working with X-rays from a conventional laboratory source. Now, the beamline operators have succeeded in guiding the X-rays from Undulator UE48 in the BESSY II experimental hall to the CAT experiment in the EMIL laboratory. There, it was quantitatively measured using a focus measuring chamber.
  • Optical control of magnetic memory – new insights into fundamental mechanisms
    Science Highlight
    25.08.2017
    Optical control of magnetic memory – new insights into fundamental mechanisms
    A research team at Helmholtz-Zentrum Berlin (HZB) has shown for the first time how laser modulation of magnetic properties in materials is influenced by thermal effects and how the process occurs under moderate experimental parameters. At the same time, the scientists discovered a previously unknown dependence on the thickness of the magnetic layer. This is an important clue for our theoretical understanding of optically controlled magnetic data storage media. The findings are published today in the journal Scientific Reports.
  • Kickoff for Joint Lab with IFW Dresden
    News
    03.07.2017
    Kickoff for Joint Lab with IFW Dresden
    The Leibniz Institute for Solid State and Materials Research Dresden (IFW) and Helmholtz-Zentrum Berlin (HZB) have created a Joint Lab for “functional quantum materials” and under its umbrella a Young Investigator Group.
  • EU project CALIPSOplus has started for free access to European light sources
    News
    20.06.2017
    EU project CALIPSOplus has started for free access to European light sources
    The EU is providing ten million euros in funding for the project CALIPSOplus, submitted by 19 European light sources. The project consortium, of which Helmholtz-Zentrum Berlin is a member, kicked off on May 2017. CALIPSOplus is aimed at promoting the international exchange of scientists and transnational access to the light sources in Europe. Other priorities are to integrate the relatively less active regions of Europe and to initiate research projects with small and mid-sized companies. 
  • New at Campus Wannsee: CoreLab Quantum Materials
    News
    19.06.2017
    New at Campus Wannsee: CoreLab Quantum Materials
    Helmholtz-Zentrum Berlin has expanded its series of CoreLabs for energy materials research. In addition to the five established CoreLabs, it has now set up a CoreLab for Quantum Materials. A research team from the HZB Institute for Quantum Phenomena in New Materials is responsible for the CoreLab and its modern equipment. The CoreLab is also open to experimenters from other research institutes. 
  • New lab for electrochemical interfaces at BESSY II
    News
    14.06.2017
    New lab for electrochemical interfaces at BESSY II
    The Helmholtz-Zentrum Berlin (HZB) is establishing a joint lab together with the Max Planck Society (MPS) to study electrochemical phenomenon at solid/liquid interfaces. The Berlin Joint Lab for Electrochemical Interfaces, or BElChem for short, will employ X-rays from BESSY II to analyse materials for renewable energy production.
  • Three-dimensional graphene: experiment at BESSY II shows that optical properties are tuneable
    News
    18.05.2017
    Three-dimensional graphene: experiment at BESSY II shows that optical properties are tuneable
    An international research team has for the first time investigated the optical properties of three-dimensional nanoporous graphene at the IRIS infrared beamline of the BESSY II electron storage ring. The experiments show that the plasmonic excitations (oscillations of the charge density) in this new material can be precisely controlled by the pore size and by introducing atomic impurities. This could facilitate the manufacture of highly sensitive chemical sensors.
  • New Helmholtz Young Investigator Group for electrochemical conversion of carbon dioxide at HZB has started
    News
    16.05.2017
    New Helmholtz Young Investigator Group for electrochemical conversion of carbon dioxide at HZB has started
    Dr. Matthew T. Mayer is setting up a Helmholtz Young Investigator Group in the field of energy materials research at HZB. He investigates how carbon dioxide and water can be converted electrochemically into hydrocarbons such as methane and methanol by using renewable energies. Matthew Mayer will receive 300,000 euros per year over a period of five years.
  • HZB and Freie Universität Berlin establish the joint research group “X-Ray Microscopy” for studying complex cellular processes
    News
    15.05.2017
    HZB and Freie Universität Berlin establish the joint research group “X-Ray Microscopy” for studying complex cellular processes
    In May this year, the joint research group “X-Ray Microscopy” was launched, combining the expertise of teams led by Prof. Dr. Gerd Schneider (Helmholtz-Zentrum Berlin) and Prof. Dr. Helge Ewers (Freie Universität Berlin). While Ewers’ group contributes its experience in the field of optical microscopy and biological research, the HZB workgroup is responsible for X-ray microscopy at the synchrotron source BESSY II. The two methods help researchers to gain a detailed insight into the processes taking place inside cells.
  • The Young Investigators Workshop 2017 on Dynamic Pathways in Multidimensional Landscapes
    News
    04.05.2017
    The Young Investigators Workshop 2017 on Dynamic Pathways in Multidimensional Landscapes
    24 scientists from various countries participated in the Young Investigators Workshop 2017 on Dynamic Pathways in Multidimensional Landscapes in Grainau am Eibsee in the Bavarian Alps. This workshop which was organized by Professor Alexander Föhlisch was dedicated to study the research topics of the Helmholtz Virtual Institute 419. It included both experimental and theoretical projects on molecular and chemical dynamics, phase transitions and switching as well as fundamental light-matter interaction.
  • X-Ray microscopy: HZB-TXM is back in operation
    News
    03.05.2017
    X-Ray microscopy: HZB-TXM is back in operation
    The X-ray microscope (HZB-TXM) is back in operation. The TXM offers significantly  better quality images compared to the former X-ray microscopy station.
  • Green IT: New switching process in non-volatile spintronics devices
    News
    19.04.2017
    Green IT: New switching process in non-volatile spintronics devices
    Physicists achieved a robust and reliable magnetization switching process by domain wall displacement without any applied fields. The effect is observed in tiny asymmetric permalloy rings and may pave the way to extremely efficient new memory devices. The results have been published in Physical Review Applied, highlighted as an Editors' Suggestion.
  • Proton transfer: Researcher find mecanism to protect biomolecules against light induced damage
    Science Highlight
    07.04.2017
    Proton transfer: Researcher find mecanism to protect biomolecules against light induced damage
    A team at the Helmholtz-Zentrum Berlin (HZB) together with researchers in Sweden and the USA has analysed a mecanism which protects biomolecules such as the DNA against damage by light. They observed how the energy of incoming photons can be absorbed by the molecule without destroying important bonds. The experiments took place at the Linac Coherent Light Source (LCLS) free-electron laser in California as well as the BESSY II synchrotron source at the HZB in Berlin, where with resonant inelastic X-ray-diffraction a very sensitive method is available.
  • 20 participants join the first Photon School at HZB
    News
    16.03.2017
    20 participants join the first Photon School at HZB
    From 14 to 24 March, the first Photon School takes place at HZB. 20 students from 8 countries get an unique opportunity for a first-hand training covering a wide range of experimental and theoretical methods for probing the molecular structure, function, and dynamics of complex material systems. Leading experts from all fields of spectroscopy give lectures, share their latest results, and present future research strategies.
  • Highly sensitive method for detecting ion pairs in aqueous solution developed
    Science Highlight
    09.03.2017
    Highly sensitive method for detecting ion pairs in aqueous solution developed

    Scientists of the Helmholtz-Zentrum Berlin, Freie Universität Berlin, Universität Heidelberg, and the University of Chemistry and Technology Prague have empirically detected a very specialised type of electron transfer in an aqueous salt solution, one which had only been predicted theoretically up to now. Based on these results, they now expect to have an extremely sensitive method for detecting ion pairs in solutions.

  • Helmholtz-Zentrum Berlin is establishing a Helmholtz Young Investigator Group for electrochemical conversion of carbon dioxide
    News
    22.12.2016
    Helmholtz-Zentrum Berlin is establishing a Helmholtz Young Investigator Group for electrochemical conversion of carbon dioxide
    Dr. Matthew T. Mayer from the École Polytechnique Fédérale de Lausanne (EPFL), Switzerland, will be putting together a Helmholtz Young Investigator Group in the field of energy materials research at HZB. He will be researching into how carbon dioxide and water can be converted electrochemically into hydrocarbons such as methane and methanol using renewable energies. Matthew Mayer will receive 300,000 euros per year over a period of five years for establishing and running his Young Investigator Group.
  • A new record at BESSY II: ten million ions in an ion trap cooled for the first time to 7.4 K
    Science Highlight
    28.11.2016
    A new record at BESSY II: ten million ions in an ion trap cooled for the first time to 7.4 K
    Magnetic ground states spectroscopically ascertained
  • Research for Germany’s energy transition: EMIL@BESSY II approved for the Kopernikus “Power-to-X” project
    News
    21.11.2016
    Research for Germany’s energy transition: EMIL@BESSY II approved for the Kopernikus “Power-to-X” project
    The storage of excess solar and wind power is one of the greatest challenges in Germany’s energy transition. To address this, the German Federal Ministry for Education and Research (BMBF) has created the “Power-to-X” (P2X) project under its Kopernikus programme. P2X will advance research into converting electrical energy from the sun and wind into basic chemical compounds, gaseous energy media, and fuels. A total of 17 research institutions, 26 industrial enterprises, as well as three non-governmental organisations are involved, and the BMBF is funding the first development phase of the project at a level of 30 million Euros. The Helmholtz-Zentrum Berlin will participate in the planned research, using the advanced synthesis capabilities and the BESSY II synchrotron-based X-ray characterization tools at the recently inaugurated EMIL@BESSY II laboratory complex.
  • Methods at BESSY II: Versatile cross-correlator for ultrafast X-ray experiments
    Science Highlight
    14.11.2016
    Methods at BESSY II: Versatile cross-correlator for ultrafast X-ray experiments
    Particularly in the soft X-ray range experimentalists are lacking a broadband method to correlate ultrashort X-ray and laser pulses in space and time. Only recently, a team from Helmholtz-Zentrum Berlin and the University of Potsdam was able to achieve this by utilizing a standard molybdenum-silicon (Mo/Si) multilayer mirror at the FemtoSpeX facility at BESSY II. They use femtosecond laser pulses to modulate the multilayer period under the Bragg condition on a sub-picosecond up to nanosecond timescale which in turn strongly affects the mirror’s X-ray reflectivity. The presented Mo/Si cross-correlator works for the soft up to the hard X-ray regime as well as for a broad range of laser pump wavelengths (mid-IR to UV) and renders this technique as an easy to implement and versatile timing tool for various synchrotron- and lab-based pump-probe experiments. The results are published in the journal of "Structural Dynamics".
  • EMIL, a 2000-square-metre laboratory complex, has opened for research into new energy materials
    News
    01.11.2016
    EMIL, a 2000-square-metre laboratory complex, has opened for research into new energy materials
    After three years of construction, the Energy Materials In-Situ Laboratory (EMIL) is now open. The new laboratory complex for researching energy materials, annexed to BESSY II in Berlin-Adlershof, was ceremonially inaugurated with the involvement of the Federal Minister of Research, Johanna Wanka, on 31 October 2016. At the new laboratory, which offers direct access to the brilliant light of the electron storage ring BESSY II, researchers are looking to synthesise and analyse materials for future renewable energy generation. Around 20 million euros were invested in the construction of the laboratory.
  • Future Information Technologies: New combinations of materials for producing magnetic monopoles
    Science Highlight
    10.10.2016
    Future Information Technologies: New combinations of materials for producing magnetic monopoles
    An international collaboration at BESSY II has discovered a new method to inscribe exotic magnetic patterns such as magnetic monopoles into thin ferromagnetic films. Such unconventional orientation of magnetic domains might open a new path for the design of energy efficient data storage. The new materials system consists of regular arrays of superconducting YBaCuO-dots covered with an extremely thin permalloy film. A shortly applied external magnetic field leads to the creation of supercurrents within the superconducting dots. These currents produce a complex magnetic field pattern, which is inscribed into the permalloy film above. The results are published in Advanced Science.
  • Advancing methodology at BESSY II: Automated evaluation speeds up the search for new active substance
    Science Highlight
    26.09.2016
    Advancing methodology at BESSY II: Automated evaluation speeds up the search for new active substance
    The macromolecular crystallography (MX) beamlines at the BESSY II X-ray source are specially designed to highly automated structural analyses of protein crystals. With up to now more than 2000 solved structures of protein molecules, these beamlines are by far the most productive ones in Germany and are in vigorous demand by groups from either an academic and industrial research area. Now teams from HZB and Philipps-Universität Marburg in Germany have automated the evaluation of data records as well. The newly developed expert system identifies small molecule fragments bound to proteins in the raw X-ray diffraction data. These fragments represent suitable starting points for the development of an active substance. Using a series of 364 samples, the collaborating partners demonstrated that the expert system works reliably and can speed up the search for a suitable active agents.
  • VI-Conference "Dynamic Pathways in Multidimensional Landscapes 2016"
    News
    19.09.2016
    VI-Conference "Dynamic Pathways in Multidimensional Landscapes 2016"
    Near the museum island, in the heart of Berlin, the International Conference "Dynamic Pathways in Multidimensional Landscapes 2016" has taken place last week. More than 100 international experts met at the Magnus-Haus of the German Physical Society from 12 -16 September 2016.
  • Manual of characterisation techniques for thin-film solar cells published with the involvement of HZB researchers
    Science Highlight
    15.09.2016
    Manual of characterisation techniques for thin-film solar cells published with the involvement of HZB researchers
    In August 2016, the second, enlarged edition of the reference book "Advanced Characterization Techniques for Thin-Film Solar Cells" appeared from renowned publisher WILEY-VCH. Co-editor is HZB researcher Dr. Daniel Abou-Ras. A total of eleven authors from HZB wrote chapters for this reference. It provides a comprehensive overview of many characterisation and modelling techniques that can be employed for solar cell materials and components.
  • User research at BESSY II: How water moves glass
    News
    09.09.2016
    User research at BESSY II: How water moves glass
    In the realm of plants, capillary forces are a widely observed impetus for actuation. They are the physical basis for the expansion of porous materials during uptake of fluid. Such materials include the cones of conifers with their readily observable movement during drying or wetting. Scientists at the Chair of Biogenic Polymers of the Technical University Munich, located at the Science Center Straubing, have succeeded in retaining this plant-derived movement when the respective plant has been replaced by an artificial petrification process. Elaborate analyses at the synchrotron source BESSY II in Berlin showed that the internal structure of the pine cone was retained. Thereby, they laid the foundations for a new generation of sensoric materials.
  • Two Freigeist Fellows interweave their research at HZB
    News
    01.08.2016
    Two Freigeist Fellows interweave their research at HZB
    Two Freigeist Fellows are conducting research at the HZB Institute for Methods of Material Development through support received from the Volkswagen Foundation. Theoretical chemist Dr. Annika Bande is modelling fast electron processes, while Dr. Tristan Petit is investigating carbon nanoparticles. Annika Bande has now been awarded an ancillary grant of an additional 150,000 Euros from the Volkswagen Foundation to fund another doctoral student position for three years. The doctoral research will connect the two Freigeist research projects with one another.
  • User Community Science: Soft decoupling of organic molecules on metal
    Science Highlight
    22.06.2016
    User Community Science: Soft decoupling of organic molecules on metal
    An international team has discovered an elegant way to decouple organic nanosheets grown on metal surfaces. After iodine intercalation, measurements at the synchrotron source BESSY II of Helmholtz-Zentrum Berlin (HZB) showed that a network of organic molecules behaved almost as it was free-standing. The strong influence of the metal on the network was reduced. This opens up new ways to transfer organic nanostructures from metal surfaces onto more suitable substrates for molecular electronics.  The results have been published in “Angewandte Chemie”.
  • New effect on laser induced switching for higher data densities
    Science Highlight
    22.06.2016
    New effect on laser induced switching for higher data densities
    An international collaboration has now demonstrated a completely new approach to increase data density in storage media. They used ultra-short laser pulses to trigger a phase transition in the ferromagnetic material BaFeO3 (BFO). Experiments at the Femtospex facility at BESSY II of Helmholtz-Zentrum Berlin showed that by inducing this phase transition, magnetic domains can be easily manipulated. These magnetic domains are otherwise very stable and therefore suited for long-time data storage. The results have been published in Phys. Rev. Letters now.
  • Spintronics: Resetting the future of Heat Assisted Magnetic Recording
    Science Highlight
    14.06.2016
    Spintronics: Resetting the future of Heat Assisted Magnetic Recording
    A HZB team has examined thin films of Dysprosium-Cobalt sputtered onto a nanostructured membrane at BESSY II. They showed that new patterns of magnetization could be written in a quick and easy manner after warming the sample to only 80 °Celsius, which is a much lower temperature as compared to conventional Heat Assisted Magnetic Recording systems. This paves the way to fast and energy efficient ultrahigh density data storage. The results are published now in the new journal Physical Review Applied.
  • Ferrous chemistry in aqueous solution unravelled
    Science Highlight
    11.05.2016
    Ferrous chemistry in aqueous solution unravelled
    An HZB team has combined two different analytical methods at the BESSY II synchrotron source in order to extract more information about the chemistry of transition-metal compounds in solution. These kinds of compounds can act as catalysts to promote desirable reactions in energy materials, but their behaviour has not been completely understood thus far.  The team demonstrated how a detailed picture of the electronic states can be ascertained by systematically comparing all of the interactive electronic processes in a simple system of aqueous iron(II).  The results have now been published in Scientific Reports, the open access journal from Nature Group publishing.
  • Spintronics for future information technologies: spin currents in topological insulators controlled
    Science Highlight
    29.04.2016
    Spintronics for future information technologies: spin currents in topological insulators controlled
    An international team headed by HZB researcher Jaime Sánchez-Barriga has shown how spin-polarised currents can be initiated in a controlled manner within samples of topological insulator material. In addition, they were able to manipulate the orientation of the spins of these currents. They thereby demonstrated that this class of materials is suitable for data processing based on spin. The work has been published in the renowned periodical Physical Review B and was selected as “Editor’s Suggestion” article.
  • Helmholtz Virtual Institute International Conference "Dynamic Pathways in Multidimensional Landscapes" 2016
    News
    28.04.2016
    Helmholtz Virtual Institute International Conference "Dynamic Pathways in Multidimensional Landscapes" 2016
    We invite you to join the International Conference "Dynamic Pathways in Multidimensional Landscapes" which will take place in the heart of Berlin at the Magnus-Haus of the German Physical Society from September, 12th -16th, 2016. Now, the Online registration is open.
  • Energy Materials: Dr. Catherine Dubourdieu sets up the institute “Functional Oxides for Energy-Efficient Information Technology” at the HZB
    News
    12.04.2016
    Energy Materials: Dr. Catherine Dubourdieu sets up the institute “Functional Oxides for Energy-Efficient Information Technology” at the HZB
    The Helmholtz-Zentrum Berlin (HZB) is boosting its energy materials research and setting up a new institute. Through the Helmholtz Recruitment Initiative, the HZB has gained renowned researcher Catherine Dubourdieu as Institute Director. In the newly established institute “Functional Oxides for Energy-Efficient Information Technology”, she is researching into thin films of metal oxides that make especially promising candidates for information technologies of the future. Dubourdieu formerly worked at the institute “Nanotechnologies de Lyon” of the CNRS and has been at the HZB since 11 April 2016.
  • Energy storage materials under pressure
    Science Highlight
    08.04.2016
    Energy storage materials under pressure
    Surprising discovery at BESSY II: the adsorption capacity of MOFs does not rise automatically with increasing pressure
  • Measuring chemistry: local fingerprint of hydrogen bonding captured in experiments
    Science Highlight
    16.03.2016
    Measuring chemistry: local fingerprint of hydrogen bonding captured in experiments
    A team from Helmholtz-Zentrum Berlin has been able for the first time to measure how new bonds influence molecules: they have reconstructed the “energy landscape” of acetone molecules using measurement data from the Swiss Light Source (SLS) of the Paul Scherrer Institut, and thereby empirically established the formation of hydrogen bonds between acetone and chloroform molecules. The results have been published in Nature Scientific Reports and assist in understanding fundamental phenomena of chemistry.
  • Topological insulators: Magnetism is not causing loss of conductivity
    Science Highlight
    19.02.2016
    Topological insulators: Magnetism is not causing loss of conductivity
    If topological insulators are doped with impurities that possess magnetic properties, they lose their conductivity. Yet contrary to what has been assumed thus far, it is not the magnetism that leads to this. This has been shown by recent experiments with BESSY II at HZB. The results are now published in Nature Communications. Understanding these effects is crucial for applications of topological insulators in information technology.
  • Metal Oxide Sandwiches:  New option to manipulate  properties of interfaces
    Science Highlight
    04.02.2016
    Metal Oxide Sandwiches: New option to manipulate properties of interfaces
    A Franco-German cooperation has investigated a sandwich system of transition metal oxides at BESSY II. The scientists discovered a new option to control properties of the interface between the two layers, for instance the amount of charge transferred from one layer to the other or the emergence of ferromagnetism.  Their insights might help to create new properties at the interface, not present in the primary materials, maybe even novel forms of High Tc superconductivity.
  • A Fast Way of Electron Orbit Simulation in Complex Magnetic Fields
    Science Highlight
    20.01.2016
    A Fast Way of Electron Orbit Simulation in Complex Magnetic Fields
    The design  of  advanced synchrotron radiation sources requires precise  algorithms  for the  simulation of electron trajectories in  complex magnetic fields. However, multi-parameter studies can  be very time consuming. Now, a team of the HZB has developed a new algorithm which significantly reduces the computation time.  This approach is now published in the renowned journal “Physical Review Special Topics Accelerator & Beams”.
  • MacQueen is researching into optical energy converters for generating fuels: Funding through the Helmholtz Postdoc Programme
    News
    07.01.2016
    MacQueen is researching into optical energy converters for generating fuels: Funding through the Helmholtz Postdoc Programme
    Dr. Rowan W. MacQueen will come in spring 2016 to the Helmholtz-Zentrum Berlin (HZB) and will receive funding for his research project through the Helmholtz Postdoc Programme. He will be studying the optoelectronic properties at the boundaries of thin organic layers to oxides. These are relevant in developing optical energy converters for generating fuels. The “Helmholtz Postdoc Programme” will fund the Australian researcher with 100,000 Euro annually for a period of up to three years. 
  • Common platform for macromolecular crystallography at European synchrotrons
    News
    09.12.2015
    Common platform for macromolecular crystallography at European synchrotrons
    Researchers use high-intensity X-ray light from synchrotron radiation sources to decipher the structures of biological molecules and thus the blueprints of life. A cooperation agreement has been effective since 2012 to establish common software standards at several European sources. Its aim: The eight synchrotrons involved want to create user-friendly, standardised conditions at the 30 experimental stations for macromolecular crystallography, which will greatly facilitate the work of research groups. In the new project “MXCuBE3”, the existing software platform is being adapted to include the latest developments in technology.
  • Filming microscopic and macroscopic changes within materials
    News
    19.11.2015
    Filming microscopic and macroscopic changes within materials
    The EDDI beamline at BESSY II is now offering even more options. It has recently become possible to also obtain high-resolution three-dimensional images of microscopic structure with it, up to four such tomographies per second are possible. X-ray diffraction (energy-dispersive diffraction) can simultaneously be carried out to draw conclusions about the crystal structure of the material just as before.
  • rbb-Inforadio: Andreas Jankowiak im Gespräch über bERLinPro
    Nachricht
    13.11.2015
    rbb-Inforadio: Andreas Jankowiak im Gespräch über bERLinPro
    Die Baustelle für bERLinPro fällt auf. Sie ist auch dem Wissenschaftsredakteur des rbb-Inforadio, Thomas Prinzler, nicht entgangen. Und so kam es zu einem kurzweiligen Gespräch, in dem Andreas Jankowiak die Herausforderungen des Projekts erläutert. Hohe Ströme, hohe Emitanzen - viel Physik. Aber auch die Anforderungen an die Gebäudeplanung kamen zur Sprache. Und die Synergie zu BESSY-VSR. Nachzuhören im Inforadio-Gespräch vom 8. November.
  • BESSY II electron highway gets second lane
    News
    11.11.2015
    BESSY II electron highway gets second lane
    The particle accelerator team at Helmholtz-Zentrum Berlin (HZB) has demonstrated that BESSY II, the 3rd generation synchrotron radiation source in Berlin, can be operated with not just one, but two simultaneous electron paths. By precisely tuning the magnetic components, physicists can create an additional orbital path. Packets of electrons can travel along it and emit intense light pulses at the experiment stations. This could provide the user community with the option to select light pulses from either path as needed in their experiments. The newly developed orbital mode has already been stably implemented and initial tests at the experiment stations (beamlines) show promising results. HZB is the first to enter this new territory and at the same time has reached another milestone in its pioneering BESSY-VSR project.
  • Poster award to Markus Kubin
    News
    20.10.2015
    Poster award to Markus Kubin
    At the International Conference on X-Ray Absorption Fine Structure Markus Kubin has been selected to receive one out of five poster awards. More than 300 posters have been presented at the poster session.
  • Science-Video Wettbewerb: Der vom HZB eingereichte Beitrag aus dem Happy Undulator ist einer der Finalisten.
    Nachricht
    01.10.2015
    Science-Video Wettbewerb: Der vom HZB eingereichte Beitrag aus dem Happy Undulator ist einer der Finalisten.
    Jetzt gilt‘s: bitte teilen, kommentieren und voten. Der von Wissenschaft im Dialog durchgeführte Video-Wettbewerb „Fast Forward Science 2015“ geht in die heiße Phase. 109 Videos sind bis zum Stichtag 31. Juli eingereicht worden, von denen eine Jury nun 17 Beiträge fürs Online-Voting ausgewählt hat, darunter der vom HZB eingereichte Beitrag „Bessy II: What can I do for you?“. Gefragt waren in dem Wettbewerb Wissenschaftsvideos, die zugleich unterhalten, wissenschaftlich fundiert und verständlich sind.
  • Catalysis research strengthened: Helmholtz-Zentrum Berlin participates in newly approved Einstein Center for Catalysis
    News
    28.09.2015
    Catalysis research strengthened: Helmholtz-Zentrum Berlin participates in newly approved Einstein Center for Catalysis
    The Einstein Foundation will fund the new Einstein Center for Catalysis (EC2) beginning in 2016 in which Technical University Berlin (TU Berlin) and selected non-university institutions in Berlin will be participating. Prof. Emad Aziz, head of the HZB Institute for Methods of Materials Research at Helmholtz-Zentrum Berlin will be taking part in setting up the institution. His team will be contributing particular expertise in analytics of ultrafast processes in catalytic reactions.
  • How to Flow Ultrathin Water Layers - A Liquid Flatjet for X-Ray Spectroscopy
    News
    25.09.2015
    How to Flow Ultrathin Water Layers - A Liquid Flatjet for X-Ray Spectroscopy
    A collaboration between scientists from the Max Born Institute for Nonlinear Optics and Short Pulse Spectroscopy (MBI), the Helmholtz-Zentrum Berlin (HZB) and the Max Planck Institute for Dynamics and Self-Organization (MPIDS) have now demonstrated the successful implementation of a liquid flatjet with a thickness in the μm range, allowing for XAS transmission measurements in the soft-x-ray regime. This paves the way for novel steady-state and time-resolved experiments.
  • Gemeinsames Treffen der Strukturbiologen in Berlin: der 6. Joint-MX-Day am 23. September 2015 am HZB
    Nachricht
    21.09.2015
    Gemeinsames Treffen der Strukturbiologen in Berlin: der 6. Joint-MX-Day am 23. September 2015 am HZB
    Die Hauptstadt hat sich in den letzten Jahren zu einem Hotspot der Strukturbiologie in Deutschland entwickelt. Entscheidend dazu beigetragen hat das hohe Maß an Kooperation zwischen außeruniversitären Forschungseinrichtungen und Universitäten. Aber auch Wissenschaft und Industrie arbeiten in der Strukturbiologie sehr eng zusammen. Am 23. September 2015 findet der 6. Joint-MX-Day statt, bei dem sich Forscher über neue Methoden, Ansätze und Erkenntnisse in der Strukturbiologie austauschen werden.
  • Rohbauarbeiten für Beschleunigerhalle am HZB beginnen: Spatenstich für eine Testanlage eines Linearbeschleuniger mit Energierückgewinnung (ERL)
    Nachricht
    11.09.2015
    Rohbauarbeiten für Beschleunigerhalle am HZB beginnen: Spatenstich für eine Testanlage eines Linearbeschleuniger mit Energierückgewinnung (ERL)
    Unmittelbar vor dem Beginn der Rohbauarbeiten wurde am 10. September 2015 der Spatenstich für die neue Beschleunigerhalle von bERLinPro gefeiert, in der eine kompakte Testanlage für einen Linearbeschleuniger mit Energierückgewinnung aufgebaut wird. Zirka 200 geladene Gäste verfolgten diesen Meilenschritt auf dem Weg zur Realisierung eines technologisch einzigartigen Projekts.
  • Milch, Wirkstoff-Taxis und andere kolloide Materialsysteme analysieren:  SAS 2015 tagt in Berlin
    Nachricht
    11.09.2015
    Milch, Wirkstoff-Taxis und andere kolloide Materialsysteme analysieren: SAS 2015 tagt in Berlin
    Vom 13. - 18. September treffen sich über 400 Expertinnen und Experten zur 16. Internationalen Konferenz zur Kleinwinkelstreuung (16. International Conference on Small Angle Scattering, SAS 2015) in Berlin. Mit Kleinwinkelstreuung lassen sich biologische und anorganische Materialsysteme auf Nanometerskala untersuchen und dynamische Prozesse beobachten.
  • BESSY II launches New Filling Pattern in User Mode
    News
    28.07.2015
    BESSY II launches New Filling Pattern in User Mode
    Since July 2015 BESSY II has been providing a new bunch filling pattern in Top-Up mode. It will open new opportunities especially for research teams dealing with time-resolved x-ray experiments. It is of significant importance for us and the community anticipating BESSY VSR.
  • Spins in Graphene with a Hedgehog Texture
    Science Highlight
    27.07.2015
    Spins in Graphene with a Hedgehog Texture
    HZB researchers demonstrate a fundamental property of the electron spin in graphene
  • Freigeist Fellowship for Tristan Petit
    News
    23.07.2015
    Freigeist Fellowship for Tristan Petit
    For his project on nanodiamond materials and nanocarbon, Dr. Tristan Petit has been awarded a Freigeist Fellowship from the VolkswagenStiftung. The grant covers a five-year period and will enable him to establish his own research team. The VolkswagenStiftung is funding with these prestigious fellowships outstanding postdocs planning original research that transcends the bounds of their own field.
  • Gerd Schneider receives a professorship for "X-ray microscopy" at Humboldt-Universität zu Berlin
    News
    08.07.2015
    Gerd Schneider receives a professorship for "X-ray microscopy" at Humboldt-Universität zu Berlin
    On 29 April 2015, Gerd Schneider (HZB) accepted the call to a W2-S “X-ray microscopy” professorship at the Department of Physics of Humboldt-Universität zu Berlin. The professorship is associated with heading the workgroup “X-ray microscopy” at the Helmholtz-Zentrum Berlin für Materialien und Energie. With his group, the internationally recognised expert is developing new methods and applications for X-ray microscopy, which delivers crucial information for many scientific disciplines – from material and energy research to the life sciences. 
  • New technique enables magnetic patterns to be mapped in 3D
    News
    07.07.2015
    New technique enables magnetic patterns to be mapped in 3D
    An international collaboration has succeeded in using synchrotron light to detect and record the complex 3D magnetisation in wound magnetic layers. This technique could be important in the development of devices that are highly sensitive to magnetic fields, such as in medical diagnostics for example. Their results are published now in Nature Communications.
  • From Excited Atoms to Functionality – ERC Advanced Grant Awarded to Alexander Föhlisch
    News
    03.07.2015
    From Excited Atoms to Functionality – ERC Advanced Grant Awarded to Alexander Föhlisch
    Under the EU Horizon 2020 Programme for Research and Innovation, Alexander Föhlisch has been awarded an ERC Advanced Grant. The physicists is holding a joint appointment at the Institute for Physics and Astronomy of the University of Potsdam and at the Helmholtz-Zentrum Berlin für Materialien und Energie. He is to receive a total of 2.5 million Euros over a five-year period to support his work on highly selective methods of detection using synchrotron light and X-ray lasers.
  • Green solutions with diamond materials:
    News
    02.07.2015
    Green solutions with diamond materials:
    Horizon 2020 invests 3.9 million Euro in research project to convert CO2 into fuels using sunlight and diamond materials
  • Emergence of a “devil’s staircase” in a spin-valve system
    Science Highlight
    01.07.2015
    Emergence of a “devil’s staircase” in a spin-valve system
    A Japanese-German team observes at BESSY II how spins form unusual magnetic structures in a complex cobalt oxide single crystal. Such a material offers new perspectives for spintronic applications.
  • BESSY II - What can I do for you?
    News
    15.06.2015
    BESSY II - What can I do for you?
    To this very special question the current movie published by HZB gives an answer. We didn't produce a classic image film and show the xth series of images from a storage ring, but chose a different approach. The result is a funny puppet animation, in which our message is very clear but subtle: The Berlin Electron Storage Ring for Synchrotron Radiation
  • Realistic computer model of battery electrodes
    Science Highlight
    02.06.2015
    Realistic computer model of battery electrodes
    A research team has developed a new approach for more realistic computer models of battery electrodes. They combined images from synchrotron tomography that capture three-dimensional structure at micron resolution with those from an electron microscope that can even resolve nanometre-scale features over a small section. They were able to transfer these nano-features to areas beyond the section using a mathematical model. Properties and processes within battery electrodes can now be simulated highly realistically using this method.
  • Poster award for MatSEC PhD student at the MRS Spring Meeting
    News
    29.05.2015
    Poster award for MatSEC PhD student at the MRS Spring Meeting
    The poster contribution of Kai Neldner (HZB-Department Crystallography) was awarded a poster price of the Symposium "Thin-Film Compound Semiconductors" at the MRS Spring Meeting in San Francisco. Kai Neldner, a PhD student in the HZB Graduate School "Materials for Solar Energy Conversion" (MatSEC) has presented results on structural properties of Kesterites (Cu2ZnSnS4 - CZTS) in relation to its stoichiometry deviations.
  • New options for spintronic devices: Switching between 1 and 0 with low voltage
    Science Highlight
    18.05.2015
    New options for spintronic devices: Switching between 1 and 0 with low voltage
    Scientists from Paris and Helmholtz-Zentrum Berlin have been able to switch ferromagnetic domains on and off with low voltage in a structure made of two different ferroic materials. The switching works slightly above room temperature. Their results, which are published online in  Scientific Reports, might inspire future applications in low-power spintronics, for instance for fast and efficient data storage.
  • Wheel with triple sound velocity for pulse selection at BESSY II
    News
    04.05.2015
    Wheel with triple sound velocity for pulse selection at BESSY II
    In order to pick out only one pulse per turn out of the 400 possible x-ray flashes at BESSY II, a joint team of physicists and engineers from Forschungszentrum Jülich, MPI of Microstructure Physics and HZB have developed an extremely fast rotating “MHz-pulse selector”, which is now at the core of the Uppsala Berlin joint Lab to extract the hybrid bunch within the 200 nanosecond ion clearing gap of BESSY II. The device consists of a wheel made of a special Aluminum alloy which has tiny slits of 70 micrometer width at its outer rim. They move frictionless in a vacuum at triple sound velocity perpendicular to the beam. Users can now decide to operate their experiment in a single bunch mode even during normal multibunch operation of BESSY II.
  • EU funding strengthens solar cell research at HZB
    News
    29.04.2015
    EU funding strengthens solar cell research at HZB
    Marcus Bär and his team are participating in two international projects being funded under the EU Horizon 2020 research programme. Both research projects are concerned with development and optimisation of high-efficiency thin-film solar cells based on chalcopyrites (“Sharc 25") and kesterites (“SWInG”). These two projects will together bring in about 900,000 EUR of additional research funding for solar cell research.
  • BESSY II is ready for user service
    News
    21.04.2015
    BESSY II is ready for user service
    BESSY II was shut down as scheduled from February 9th until the end of March for refurbishment and modernization. The accelerator is operational once again, and has been running since the beginning of April, beginning with beam scrubbing to increase the lifetime of the electrons in the storage ring and to improve operation. At the same time teams have been working on the calibration and commissioning of their instruments. BESSY II will be ready for user service once again on April 21 2015.
  • BESSY II changes over to solid state RF amplifiers
    News
    20.04.2015
    BESSY II changes over to solid state RF amplifiers
    BESSY II storage ring has four cavity resonators that are excited with high-power oscillating electromagnetic fields to compensate for the energy lost by the electron beam. Four Klystrons, as they are called (large high-power linear RF vacuum tubes), have provided extremely pure 500-MHz RF power for exciting these cavity resonators up to now. But there are no replacement klystrons available on the market. Wolfgang Anders and his team at the HZB’s Institute SRF – Science and Technology have therefore used the shutdown to replace two of the klystrons with modern solid-state RF amplifiers. The other klystrons are to be replaced until the end of the year.
  • Femto-snapshots of reaction kinetics
    News
    02.04.2015
    Femto-snapshots of reaction kinetics
    Bonding behaviour of iron pentacarbonyl experimentally decoded. Application as a catalyst for storing solar energy.
  • Susan Schorr named DGK Chair
    News
    23.03.2015
    Susan Schorr named DGK Chair
    Prof. Dr. Susan Schorr was elected Chair at the German Crystallographic Society’s (DGK) recent annual conference. The conference took place from March 16-19, 2015, in Göttingen, Germany. Prior to her current appointment, Susan Schorr was head of the DGK’s National Committee.
  • Baubeginn für Beschleunigerhalle bERLinPro am Helmholtz-Zentrum Berlin
    Nachricht
    13.03.2015
    Baubeginn für Beschleunigerhalle bERLinPro am Helmholtz-Zentrum Berlin
    Am HZB- Standort Adlershof entsteht ein neuer Linearbeschleuniger mit Energierückgewinnung
  • Stretch and relax! – Losing one electron switches magnetism on in dichromium
    Science Highlight
    23.02.2015
    Stretch and relax! – Losing one electron switches magnetism on in dichromium
    An international team of scientists from Berlin, Freiburg and Fukuoka has provided the first direct experimental insight into the secret quantum life of dichromium. Whereas in its normal state the 12 valence electrons form a strong multiple bond between the two chromium atoms, removing only one electron changes the situation dramatically: 10 electrons localize and align their spins, thus resulting in ferromagnetic behavior of the dichromium-kation. The bonding is done by one electron only, resulting in a much weaker bond. The scientists used the unique Nanocluster Trap experimental station at the BESSY II synchrotron radiation source at Helmholtz-Zentrum Berlin and published their results in the Journal Angewandte Chemie.
  • Insight into inner magnetic layers
    Science Highlight
    17.02.2015
    Insight into inner magnetic layers
    Measurements at BESSY II have shown how spin filters forming within magnetic sandwiches influence tunnel magnetoresistance – results that can help in designing spintronic components.
  • Details of a crucial reaction: Physicists uncover oxidation process of carbon monoxide on a ruthenium surface
    Science Highlight
    12.02.2015
    Details of a crucial reaction: Physicists uncover oxidation process of carbon monoxide on a ruthenium surface
    An international team has observed the elusive intermediates that form when carbon monoxide is oxidized on a hot ruthenium metal surface. They used ultrafast X-ray and optical laser pulses at the SLAC National Accelerator Laboratory, Menlo Park, California. The reaction between carbon monoxide and adsorbed oxygen atoms was initiated by heating the ruthenium surface with optical laser pulses. Directly afterwards, changes in the electronic structure of oxygen atoms were probed via X-ray absorption spectroscopy as they formed bonds with the carbon atoms.The observed transition states are consistent with density functional theory and quantum oscillator models.
  • BESSY II – From Pico to Femto – time resolved studies at BESSY II
    News
    05.02.2015
    BESSY II – From Pico to Femto – time resolved studies at BESSY II
    180 scientists attended the workshop on time resolved studies
  • Holes in valence bands of nanodiamonds discovered
    Science Highlight
    28.01.2015
    Holes in valence bands of nanodiamonds discovered
    Researchers hope that their properties might be altered to permit nanodiamonds to be used as catalysts for generating hydrogen from sunlight
  • Messages From Space
    Science Highlight
    22.01.2015
    Messages From Space
    Geologists from the University of Cambridge uncover hidden magnetic messages from the early solar system in meteorites measured at BESSY II. The team of scientists led by Dr. Richard Harrison has captured information stored inside tiny magnetic regions in meteorite samples using the PEEM-Beamline at BESSY II.
  • Dancing BESSY-VSR
    News
    20.01.2015
    Dancing BESSY-VSR
    Paul Goslawski from Godehard Wüstefeld's team was the initiator of this project: Why not demonstrate in vivid form, what the future project BESSY-VSR is all about? With novel cavities to be introduced in synchrotron storage ring BESSY II, the new BESSY-VSR is supposed to compress some of the stored electron buckets. So it is possible to produce brilliant light pulses with variable length: short and long pulses in one ring. The user is able to choose what kind of pulse he needs for his experiment. But the team still has to solve some tricky problems.
  • “VEKMAG” at BESSY II creates 3D magnetic fields in samples
    News
    15.01.2015
    “VEKMAG” at BESSY II creates 3D magnetic fields in samples
    Together with HZB, teams from the Universität Regensburg, from the Freie Universität Berlin and from  the  Ruhr Universität Bochum have jointly set up a unique measurement station at BESSY II: a vector electromagnet consisting of three mutually perpendicular Helmholtz coils which enables  setting the local magnetic field at the sample position  to any orientation desired. The first measurements of magnetic materials, spin systems, and nanostructured magnetic samples are scheduled for early 2015.
  • Batman lights the way to compact data storage
    Science Highlight
    12.01.2015
    Batman lights the way to compact data storage
    Researchers at the Paul Scherrer Institute (PSI) have succeeded in switching tiny, magnetic structures using laser light and tracking the change over time. In the process, a nanometre-sized area bizarrely reminiscent of the Batman logo appeared. The research results could render data storage on hard drives faster, more compact and more efficient.
  • New light shed on electron spin flips
    Science Highlight
    06.01.2015
    New light shed on electron spin flips
    Researchers from Berlin Joint EPR Lab at Helmholtz-Zentrum Berlin (HZB) and University of Washington (UW) derived a new set of equations that allows for calculating electron paramagnetic resonance (EPR) transition probabilities with arbitrary alignment and polarization of the exciting electromagnetic radiation. The validity of the equations could be demonstrated with a newly designed THz-EPR experiment at HZB’s storage ring BESSY II. This progress is relevant for a broad community of EPR users and is published in Physical Review Letters on January 6. 2015 (DOI 10.1103/PhysRevLett.114.010801).
  • Universality of charge order in cuprate superconductors
    Science Highlight
    22.12.2014
    Universality of charge order in cuprate superconductors
    Charge order has been established in another class of cuprate superconductors, highlighting the importance of the phenomenon as a general property of these high-Tc materials.
  • D-Lecture: A Light and a Beam
    News
    10.12.2014
    D-Lecture: A Light and a Beam
    Dr. Alexander Zholents from Argonne National Laboratory will present on 18th December 2014 his thoughts on "A Light and a Beam: a Theme with Variations". The presentation will be given at the lecture hall of the Wilhem-Conrad-Röntgen-Campus of HZB at 2 pm. After the presentation, we invite you to “Glühwein” and informal discussion.
  • Lively exchange at User Meeting
    News
    08.12.2014
    Lively exchange at User Meeting
    From December 3 to 5, more than 500 users of HZB's BER II and BESSY II large-scale equipment met up to discuss the current state of technology and exchange their views on pressing scientific issues.
  • New in situ cell for investigating solid- and liquid-state samples and their interfaces under electrical voltage
    News
    05.11.2014
    New in situ cell for investigating solid- and liquid-state samples and their interfaces under electrical voltage
    A team headed by Dr. Kathrin Aziz-Lange has developed a new in-situ cell for X-ray spectroscopy of fluid samples and their interfaces to solid bodies. What is special is the cell contains electrodes that can expose the sample to voltage during or between measurements. The resulting changes triggered in the electrical structure of the sample can be observed with the help of X-ray absorption and emission spectroscopy in real time.
  • Root canal treatment procedures investigated at BESSY II
    News
    30.10.2014
    Root canal treatment procedures investigated at BESSY II
    Two scientists have examined several dozen dental roots at BESSY II, both before and after treatment and found that the mechanical procedures during treatment are rather not contributing to micro fractures.
  • “Multi-spectra glasses” for scanning electron microscopy
    Science Highlight
    26.09.2014
    “Multi-spectra glasses” for scanning electron microscopy
    Reflection zone plates produced by HZB enable lighter elements in material samples to be precisely detected using scanning electron microscopy (SEM) by providing high resolution in the range of 50-1120 eV.
  • Science Highlight
    26.09.2014
    German Society for Materials Science awards publication with HZB scientist as co-author

    At its annual conference on September 22, 2014, the German Society for Materials Science (DGM), presented the Werner Köster Award for best publication. The work, whose authors include HZB scientist Dr. Michael Tovar and which has been published in the International Journal of Materials Research, examines the catalytic effect of vanadium pentoxide in propene synthesis from propane using spectroscopic, microscopic, and radiographic methods.

  • Deutsche Tagung für Forschung mit Synchrotronstrahlung, Neutronen und Ionenstrahlen an Großgeräten in Bonn
    Nachricht
    23.09.2014
    Deutsche Tagung für Forschung mit Synchrotronstrahlung, Neutronen und Ionenstrahlen an Großgeräten in Bonn
    Das HZB ist mit eigenem Stand, Vortrag und Postern präsent auf der Deutschen Tagung für Forschung mit Synchrotronstrahlung, Neutronen und Ionenstrahlen an Großgeräten (SNI). Die dreitägige Veranstaltung findet vom 21. bis 23.09. im ehemaligen Plenarsaal der Bundesregierung im heutigen World Conference Centers in Bonn statt.
  • Leading scientists on topological insulators met in Berlin
    News
    01.09.2014
    Leading scientists on topological insulators met in Berlin
    From July 7-10, 150 researchers met in Berlin to discuss recent findings in the field of topological insulators.
  • Proteins: New class of materials discovered
    Science Highlight
    22.08.2014
    Proteins: New class of materials discovered
    German-Chinese research team gleans seminal insights into protein crystalline frameworks at HZB's BESSY II
  • Self-assembly of gold nanoparticles into small clusters
    Science Highlight
    04.08.2014
    Self-assembly of gold nanoparticles into small clusters
    Researchers at HZB in co-operation with Humboldt-Universität zu Berlin (HU, Berlin) have made an astonishing observation: they were investigating the formation of gold nanoparticles in a solvent and observed that the nanoparticles had not distributed themselves uniformly, but instead were self-assembled into small clusters.
  • DFG-Präsident besucht BESSY II
    Nachricht
    29.07.2014
    DFG-Präsident besucht BESSY II
    Am 18. Juli besuchte Prof. Dr. Peter Strohschneider den Berliner Elektronenspeicherrng BESSY II am HZB und informierte sich über die Bedeutung der Synchrotronstrahlung für die Material- und Energieforschung. Außerdem konnte er das PVcomB besichtigen.
  • BMBF-Staatsekretär Stefan Müller bei BESSY II zu Gast
    Nachricht
    28.07.2014
    BMBF-Staatsekretär Stefan Müller bei BESSY II zu Gast
    Seit Dezember 2013 ist Stefan Müller Parlamentarischer Staatssekretär bei der Bundesministerin für Bildung und Forschung Prof. Dr. Johanna Wanka. Nun informierte sich Stefan Müller über die Forschung am BESSY II. Der Besuch fand am Mittwoch, den 16. Juli 2014 statt.
  • Collecting light with artificial moth eyes
    Science Highlight
    01.07.2014
    Collecting light with artificial moth eyes
    Scientists at EMPA in Zürich and University of Basel have developed a photoelectrochemical cell, recreating a moth’s eye to drastically increase its light collecting efficiency. The cell is made of cheap raw materials – iron and tungsten oxide. Analyses at BESSY II have revealed which chemical processes are useful to facilitate the absorption of light.
  • Sharper imaging using X-rays
    Science Highlight
    18.06.2014
    Sharper imaging using X-rays
    HZB team develops three-dimensional volume diffraction optics for X-rays
  • 1200 accelerator physicists from around the world meet in Dresden
    News
    16.06.2014
    1200 accelerator physicists from around the world meet in Dresden
    The world’s largest particle accelerator conference is being held in Germany for the first time, with around 1200 scientists expected to visit the Saxon capital Dresden from 15 to 20 June. The 5th international conference IPAC is the place for experts to share the advancements they have made in developing particle accelerators and their components.
  • X-ray pulses on demand from Electron Storage Rings
    News
    30.05.2014
    X-ray pulses on demand from Electron Storage Rings
    HZB physicists recently devised a new method to pick single x-ray pulses out of the pulse trains usually emitted from synchrotron radiation facilities. The technique is very useful to support studies of electronic properties of quantum materials and superconductors and paves the way for future synchrotron facilities with variable pulse lengths.
  • Energy efficient LEDs and lasers with Chalcogenide monolayers
    News
    09.05.2014
    Energy efficient LEDs and lasers with Chalcogenide monolayers
    As reported by nanotechweb.org, monolayers of certain chalcogenides might be used to make energy-efficient nano-optoelectronics devices, such as LEDs, lasers, solar cells, and high-electron-mobility transistors. Scientists of the University of California at Berkeley, the Lawrence Berkeley National Lab and the Helmholtz-Zentrum Berlin für Materialien und Energie in Berlin investigated the electronic and optoelectronic properties of a so called heterojunction of WSe2/MoS2.
  • New tool for Joint Lab to investigate the chemistry of nature
    News
    29.04.2014
    New tool for Joint Lab to investigate the chemistry of nature
    The Aziz’ team at the Joint Laboratory between Freie Universität Berlin and HZB has built a laser-based tabletop setup which generates ultrashort XUV light pulses and achieves their monochromatization by implementing special reflection zone plates, developed and produced by the team of Alexei Erko.
  • A new concept for the treatment of cancer
    Science Highlight
    08.04.2014
    A new concept for the treatment of cancer
    A team of researchers from five Swedish universities has identified a new way to treat cancer. They present their concept in the journal „Nature“. It is based on inhibiting a specific enzyme called MTH1. Cancer cells, unlike normal cells, need MTH1 to survive. Without this enzyme, oxidized nucleotides are incorporated into DNA, resulting in lethal DNA double-strand breaks in the cancer cells. The research group at Stockholm University has determined the structure of MTH1 based on diffraction measurements at HZB´s MX-beamline at BESSY II. These detailed structural studies are important for the development of efficient inhibitors targeting MTH1.
  • Controlling electron spins by light
    Science Highlight
    27.03.2014
    Controlling electron spins by light
    Researchers of HZB manipulate the electron spin at the surface of topological insulators systematically by light
  • How to use light to manipulate the spin in topological insulators
    News
    25.02.2014
    How to use light to manipulate the spin in topological insulators
    Researchers at HZB investigated the topological insulator bismuth selenide (Bi2Se3) by spin-resolved photoelectron spectroscopy at BESSY II. They found an astonishing difference depending on whether it is illuminated by circularly polarized light in the vacuum ultraviolet (50 electron volts, eV) and in the ultraviolet spectral range (6 eV). This result could help explaining how spin currents can be generated in topological insulators.
  • A new cluster tool for EMIL
    News
    21.02.2014
    A new cluster tool for EMIL
    The Helmholtz-Zentrum Berlin für Materialien und Energie (HZB) and Altatech, a subsidiary of Soitec, have launched a collaborative partnership to research and develop materials for the next generation of high-efficiency solar cells, including new classes of materials and innovative device structures for photovoltaic and photocatalysis applications.
  • New holographic process uses image-stabilised X-ray camera
    Science Highlight
    07.01.2014
    New holographic process uses image-stabilised X-ray camera
    A team headed by Stefan Eisebitt has developed a new X-ray holography method that will enable snap-shots of dynamic processes at highest spatial resolution. The efficiency of the new method is based on a X-ray focussing optics being firmly fixed to the object to be imaged. While this approach initially provides a blurry image, this can be focussed in the computer based on the hologram information. At the same time, the rigid connection between the object and the focussing optics elegantly solves the problem of vibration induced jitter that plays an enormous role at the nanometre scale.
  • Charge Order competes with superconductivity
    Science Highlight
    19.12.2013
    Charge Order competes with superconductivity
    Today in Science Express: Charge carriers in cuprate high-Tc superconductors form nanostripes that suppress superconductivity, as shown by guest researchers from Princeton and Vancouver using synchrotron radiation at BESSY II
  • Die Vermessung von Molekülen: Physiker der Uni Graz spüren Elektronenzustände auf
    Nachricht
    17.12.2013
    Die Vermessung von Molekülen: Physiker der Uni Graz spüren Elektronenzustände auf
    Seit der Formulierung der Quantenphysik vor gut hundert Jahren träumen Wissenschaftlerinnen und Wissenschaftler davon, die quantenmechanischen Orbitale von Elektronen in Atomen, Molekülen und Festkörpern zu messen. Denn diese Orbitale bestimmen die chemischen und physikalischen Eigenschaften des Materials. Zwei Arbeitsgruppen um Ass.-Prof. Dr. Peter Puschnig und Ao.Univ.-Prof. Dr. Michael Ramsey am Institut für Physik an der Karl-Franzens-Universität Graz ist es nun gelungen, Elektronenorbitale von Kohlenwasserstoff-Molekülen auf einem Silbersubstrat sichtbar zu machen, indem sie Messungen an BESSY II  mit ab inititio-Berechnungen  kombiniert haben. Auch KollegInnen des deutschen „Forschungszentrums Jülich“ sind an der Arbeit beteiligt, die nun in der aktuellen Ausgabe der „Proceedings of the National Academy of Sciences (PNAS)“ publiziert worden ist.
  • News
    27.11.2013
    HZB part of new metal oxide/water systems CRC

    A team of HZB researchers is part of the new collaborative research center, "Molecular insights into metal oxide/water systems" funded by the German Research Association. As part of this CRC, Dr. Bernd Winter of Prof. Dr. Emad Aziz's junior research group will be studying metal ions and metal oxide complexes in aqueous solution at BESSY II.

  • Anbau an BESSY II im Rekordtempo: EMIL hat jetzt ein Dach über dem Kopf
    Nachricht
    26.11.2013
    Anbau an BESSY II im Rekordtempo: EMIL hat jetzt ein Dach über dem Kopf
    Das Forschungsgebäude für das neue Labor EMIL an BESSY II nimmt Form an: Am Mittwoch, 4. Dezember 2013, ab 13 Uhr feiert das „Energy Materials In-Situ Laboratory Berlin“ Richtfest. Die Zeremonie findet auf dem Wilhelm Conrad Röntgen Campus des Helmholtz-Zentrum Berlin, Albert-Einsteinstraße 15, 12489 Berlin, statt. Vertreter der Medien sind herzlich eingeladen.
  • Blocking the active site of thiolase
    News
    07.11.2013
    Blocking the active site of thiolase
    Scientists at the University of Oulu, Finland, and at the HZB break new ground for drug discovery research in the fight against sleeping sickness
  • New cavities successfully installed
    News
    25.10.2013
    New cavities successfully installed
    At the heart of BESSY II are four cavities, hollow resonators, providing the energy that electrons in the storage ring re-absorb after they have released it as light packets. The old cavities were still from the 1970s and were employed at DESY in Hamburg, then at BESSY I, and finally at BESSY II beginning in 1998. “However, the limit of their operating life has been reached”, says Dr. Wolfgang Anders from the HZB Institute of SRF – Science and Technology. Anders, an expert in the field, was responsible for replacing two of the four old cavities with new units during the summer shutdown.
  •  Resumption of full scientific operation at BESSY II delayed
    News
    21.10.2013
    Resumption of full scientific operation at BESSY II delayed
    While the lengthy summer shutdown with its comprehensive updating and maintenance work has been completed as planned, there have been some unforeseeable disruptions that will delay the resumption of regular Top-Up operations at present. The scientific operating time for users which was unavailable in October will be made up at the beginning of 2014.
  • Technology Transfer Prize for development of an optimised cutting tool
    News
    18.10.2013
    Technology Transfer Prize for development of an optimised cutting tool
    Dr. Manuela Klaus and Prof. Dr. Christoph Genzel have won the HZB Technology Transfer Prize awarded 17 October 2013. In collaboration with the Walter Company, they developed a new method for analysing and establishing the relationship between the structure and the properties of cutting tools having complicated coatings. They used synchrotron radiation for this purpose created in the electron storage ring of BESSY II. As a result of the insight gained, a production series of cutting tools having outstanding wear properties far superior to competing products was able to be patented and successfully introduced into the market.
  • Wiederaufnahme des Messbetriebs nach Sommershutdown:
    Nachricht
    18.10.2013
    Wiederaufnahme des Messbetriebs nach Sommershutdown:
    Seit Anfang der Woche läuft der Messbetrieb am Berliner Elektronenspeicherring BESSY II wieder. Damit ist der planmäßige neunwöchige Sommer-Shutdown 2013 beendet. Er stand in diesem Jahr unter besonderer Aufmerksamkeit, denn an BESSY II wird das große EMIL-Labor für die Solar- und Katalyseforschung angedockt.
  • Festsymposium zur 1000. Proteinstruktur an BESSY II
    Nachricht
    11.10.2013
    Festsymposium zur 1000. Proteinstruktur an BESSY II
    Im Juli 2013 wurde die 1000. Proteinstruktur veröffentlicht, die auf bei BESSY II gemessenen Daten beruht. Aus diesem Anlass lädt das HZB am Mittwoch, den 16.10.2013, zu einem Festsymposium ein.
  • At an international conference in Berlin, researchers were discussing options for using X-rays to take time-resolved measurements
    News
    08.10.2013
    At an international conference in Berlin, researchers were discussing options for using X-rays to take time-resolved measurements
    The Helmholtz Virtual Institute “Dynamic pathways in multidimensional landscapes” is striving for a holistic view of material properties
  • Göttingen scientists use BESSY II to decode basic mechanism underlying biochemical reactions
    News
    12.09.2013
    Göttingen scientists use BESSY II to decode basic mechanism underlying biochemical reactions
    Enzymes are life’s molecular catalysts and figure prominently in cellular metabolism. It has been speculated that in the course of a biochemical reaction enzymes physically bend their substrates to split them. Now for the first time ever, scientists at the Göttingen Center for Molecular Biosciences (GZMB) have successfully used BESSY II's MX beamline to unequivocally confirm this hypothesis. The results from this study have been published in the renowned scientific journal Nature Chemistry.
  • Domain walls as new information storage
    News
    11.09.2013
    Domain walls as new information storage
    Domain wall motion imaging: at high speeds, material defects no longer play a role
  • Better insight into molecular interactions
    Science Highlight
    21.08.2013
    Better insight into molecular interactions
    How exactly atoms and molecules in biochemical solutions or at solid-liquid interfaces do interact, is a question of great importance. Answers will provide insights at processes in catalysts, smart functional materials and even physiological processes in the body, which are essential for health. Until now, scientists could have a look at these interactions by methods of spectroscopy, but it was hard to distinguish the many different interactions, which take place simultaneously.
  • Researchers from HZB open a door for solid state physics
    Science Highlight
    21.08.2013
    Researchers from HZB open a door for solid state physics
    Laser processes observed with X-rays on a solid
  • Ideal nanocrystal produced from bulk plastics
    Science Highlight
    14.08.2013
    Ideal nanocrystal produced from bulk plastics
    Polyethylene is an inexpensive commodity plastic found in many household objects. Now, a consortium of researchers from Constance, Bayreuth, and Berlin has successfully used this plastic to synthesize the ideal polymer nanocrystal. The prerequisite was a new type of catalyst produced by Constance University researchers as well as a combination of unique analytic tools like those found at the Helmholtz Zentrum Berlin (HZB). The crystalline nanostructure, which gives the polymer its new properties, could prove of interest to production of new kinds of coatings. The scientists’ findings are being published in the Journal of the American Chemical Society’s current issue (DOI: 10.1021/ja4052334).
  • HZB-Forscher stellen Zukunftsprojekte für BESSY II vor
    Nachricht
    09.08.2013
    HZB-Forscher stellen Zukunftsprojekte für BESSY II vor
    „Synchrotron Radiation News“ zu Neuen Trends in der Beschleunigertechnologie enthält Beiträge zu BESSYVSR und BERLinPro
  • 1000th protein structure decoded at BESSY II
    News
    06.08.2013
    1000th protein structure decoded at BESSY II
    In July of this year, the 1000th protein structure based on measurements obtained at BESSY II was published. The molecule in question belongs to a class of proteins called sirtuins, which are involved in aging, stress, and metabolic processes within the human organism. Bayreuth University’s Prof. Clemens Steegborn and his team uncovered a clever mechanism used by active substances to inhibit sirtuin activity. The results have been published in the renowned scientific journal Proceedings of the National Academy of Sciences, USA, and could potentially point the way to new cancer therapies.
  •  Groundbreaking for EMIL
    News
    06.08.2013
    Groundbreaking for EMIL
    On Monday, August 5, 2013, a festive groundbreaking ceremony was the official  signal for the start of construction of the new BESSY II research lab EMIL. The new cutting-edge solar energy and catalysis research preparation and analysis lab "Energy Materials In-Situ Laboratory Berlin" will be a direct BESSY II add-on. The joint project by the HZB and the Max Planck Society provides a one-of-a-kind infrastructure for the interdisciplinary and industry compatible development of new materials and technologies to facilitate the energy transition. This includes new material systems for solar modules as well as storage solutions for which new kinds of catalysts are warranted.
  • Die Bauarbeiten beginnen: BESSY II erhält Anbau für neuen Laborkomplex
    Nachricht
    02.08.2013
    Die Bauarbeiten beginnen: BESSY II erhält Anbau für neuen Laborkomplex
    Mit einem feierlichen Spatenstich beginnen am Montag, dem 5. August 2013 um 16:00 die Bauarbeiten für das neue Forschungslabor EMIL an BESSY II: Das „Energy Materials In-Situ Laboratory Berlin“, kurz EMIL, wird als hochmodernes  Präparations- und Analyselabor für die Solarenergie- und Katalyseforschung aufgebaut. Das Gemeinschaftsprojekt vom HZB und der Max-Planck-Gesellschaft soll eine einzigartige Infrastruktur bieten, um interdisziplinär und industriekompatibel neue Materialien und Technologien zu entwickeln, die die Energiewende ermöglichen. Dazu zählen neue Materialsysteme für Solarmodule und Speicherlösungen, für die neuartige Katalysatoren entwickelt werden müssen.
  • Picosecond accurate slow-motion confirms oxide materials exhibit considerably faster switching properties than do semi-conductors
    Science Highlight
    29.07.2013
    Picosecond accurate slow-motion confirms oxide materials exhibit considerably faster switching properties than do semi-conductors
    As part of an international team of researchers, scientists at the Helmholtz Center Berlin (HZB) have observed the switching mechanism from a non-conducting to a conducting state in iron oxide (specifically, magnetite) with previously unrealized precision. This switching mechanism - which, in oxides, proceeds in two consecutive steps and which is thousands of times faster than it is in current transistors - is described in the current epub-ahead-of-print issue of the scientific journal Nature Materials (DOI: 10.1038/NMAT3718).  
  • Watching catalysts at work – at the atomic scale
    Science Highlight
    25.07.2013
    Watching catalysts at work – at the atomic scale
    Innovative combination of methods at HZB leads to fundamental insights in catalyst research
  • First Observation of Undulator Photon Beams Carrying Orbital Angular Momentum
    News
    16.07.2013
    First Observation of Undulator Photon Beams Carrying Orbital Angular Momentum
    For the first time researchers of HZB observed 99eV photons carrying Orbital Angular Momentum (OAM). The photons were detected in the 2nd harmonic off-axis radiation of a helical undulator. The measurements confirm a theoretical prediction from five years ago. In the visible regime these singular photon beams or OAM-photons can be generated from laser light utilizing phase modulating techniques. The proof-of-principle experiment at BESSY II demonstrates the availability of OAM-photons up to the X-ray regime in low emittance machines, with helical undulators being used for the generation of circularly polarized radiation similar to today’s 3rd generation light sources.
  • Grating manufacture at Helmholtz-Zentrum Berlin scores breakthrough - Sawtooth gratings for photon sources are once again available
    News
    15.07.2013
    Grating manufacture at Helmholtz-Zentrum Berlin scores breakthrough - Sawtooth gratings for photon sources are once again available
    The Technology Center for Optical Precision Gratings at the Helmholtz-Zentrum Berlin (HZB) has scored a breakthrough in the manufacture of these optical building elements. Gratings are used in photon sources to diffract light and filter out those wavelengths that are needed for a given experiment. Now, after two and a half years of work, for the first time ever, the developers have created high precision sawtooth gratings that meet the demands of scientific experimentation. These sawtooth (or blazed) gratings recently underwent testing at BESSY II, the HZB’s own electron storage ring. The result: The gratings’ behavior conformed to the researchers’ theoretical predictions. The HZB Technology Center is the World’s sole manufacturer of high efficiency precision gratings for use in photon sources. The project has received EU funding in the form of an EFRE grant.
  • Shedding light on magnetoelectric coupling
    News
    03.07.2013
    Shedding light on magnetoelectric coupling
    Effect opens up new possibilities for digital data storage
  • Watching solar cells grow
    Science Highlight
    27.06.2013
    Watching solar cells grow
    For the first time, a team of researchers at the HZB led by Dr. Roland Mainz and Dr. Christian Kaufmann has managed to observe growth of high-efficiency chalcopyrite thin film solar cells in real time and to study the formation and degradation of defects that compromise efficiency. To this end, the scientists set up a novel measuring chamber at the Berlin electron storage ring BESSY II, which allows them to combine several different kinds of measuring techniques. Their results show during which process stages the growth can be accelerated and when additional time is required to reduce defects. Their work has now been published online in Advanced Energy Materials.
  • Humboldt Fellow new addition to Aziz team
    News
    31.05.2013
    Humboldt Fellow new addition to Aziz team
    Starting June 1st, Dr. Tristan Petit will be joining Prof. Dr. Emad Flear Aziz’ team for a two-year postdoc. His Humboldt Foundation Fellowship for Postdoctoral Researchers gave Petit the option to choose his German scientific host. Ultimately, he decided on the Joint Ultrafast Dynamics Lab in Solutions and at Interfaces (JULiq) that was set up by Aziz. Says Petit: “I really wanted to be on Aziz’ team as they have a lot of collective expertise with spectroscopy in water.”
  • Discovery of how a key enzyme of the spliceosome exerts its controlling function
    News
    31.05.2013
    Discovery of how a key enzyme of the spliceosome exerts its controlling function
    To sustain life, processes in biological cells have to be strictly controlled both in time and in space. By using the MX-Beamline of synchrotron radiation source BESSY II research workers at the Max Planck Institute for Biophysical Chemistry in Göttingen and the Free University of Berlin have elucidated a previously unknown mechanism that regulates one of the essential processes accompanying gene expression in higher organisms. In humans, errors in this control mechanism can lead to blindness. This discovery has been published in the renowned scientific journal Science (23th may 2013).
  • Posterpreis auf Internationaler Teilchenbeschleunigerkonferenz an Julia Vogt
    Nachricht
    21.05.2013
    Posterpreis auf Internationaler Teilchenbeschleunigerkonferenz an Julia Vogt
    Vom 12. bis 17. Mai tagte in Shanghai, China, die 4. Internationale Konferenz für Teilchenbeschleuniger (International Particle Accelerator Conference, IPAC13). Rund 1.200 Teilnehmerinnen und Teilnehmern aus aller Welt hatten sich versammelt, um sich über Fortschritte bei Lichtquellen und Teilchenbeschleunigern auszutauschen. Besonderes Gewicht legten die Organisatoren auf die Postersession, auf der Nachwuchswissenschaftler ihre Arbeiten vorstellen konnten. Dabei erhielt die HZB-Doktorandin Julia Vogt aus dem Institut SRF Wissenschaft und Technologie (G-ISRF) einen Preis für das beste Poster. Insgesamt hatte die Jury über 110 eingereichte Poster begutachtet und zwei davon ausgezeichnet.
  • RUB physicists let magnetic dipoles interact on the nanoscale for the first time
    News
    16.05.2013
    RUB physicists let magnetic dipoles interact on the nanoscale for the first time
    “Of great technical interest for future hard disk drives”

    Physicists at the Ruhr-Universität Bochum (RUB) have found out how tiny islands of magnetic material align themselves when sorted on a regular lattice - by measurements at BESSY II. Contrary to expectations, the north and south poles of the magnetic islands did not arrange themselves in a zigzag pattern, but in chains. “The understanding of the driving interactions is of great technological interest for future hard disk drives, which are composed of small magnetic islands”, says Prof. Dr. Hartmut Zabel of the Chair of Experimental Physics / Solid State Physics at the RUB. Together with Dr. Akin Ünal, Dr. Sergio Valencia and Dr. Florian Kronast from the Helmholtz-Zentrum in Berlin, Bochum’s researchers report in the journal “Physical Review Letters”.

     

    Read the full text in the press release of RUB:

     

  • Snap shots of one of life's central processes
    News
    15.05.2013
    Snap shots of one of life's central processes
    Human Frontier Science Program provides funding of 900,000 US Dollars in support of international collaboration on photosynthesis.
  • Ultrafast Spin Manipulation at THz frequencies
    News
    01.04.2013
    Ultrafast Spin Manipulation at THz frequencies
    The demands for ever increasing speed of information storage and data processing have triggered an intense search for finding the ultimately fast ways to manipulate spins in a magnetic medium. In this context, the use of femtosecond light pulses – the fastest man-made event - with photon energies ranging from X-rays (as used for instance at the HZB femto-slicing facility) to THz spectral range proved to be an indispensable tool in ultrafast spin and magnetization dynamics studies.
  • Real time observation of chemical reaction at catalyst
    News
    15.03.2013
    Real time observation of chemical reaction at catalyst
    Scientists at the U.S. Department of Energy's (DOE) SLAC National Accelerator Laboratory used LCLS, together with computerized simulations, to reveal surprising details of a short-lived early state in a chemical reaction occurring at the surface of a catalyst sample. The study offers important clues about how catalysts work and launches a new era in probing surface chemistry as it happens.

  • Kathrin Lange erhält Wilhelm-Ostwald-Nachwuchspreis 2012
    Nachricht
    09.03.2013
    Kathrin Lange erhält Wilhelm-Ostwald-Nachwuchspreis 2012
    Dr. Kathrin Maria Lange erhält für ihre am HZB angefertigte Dissertation den Wilhelm-Ostwald-Nachwuchspreis 2012. Der mit 2500,- Euro dotierte Preis wird von der Wilhelm-Ostwald-Gesellschaft zu Großbothen e.V., der Deutschen Bunsen-Gesellschaft für Physikalische Chemie und der Gesellschaft Deutscher Chemiker verliehen. Die Preisverleihung findet am 9. März in Großbothen bei Leipzig statt, dem Arbeitsort des Nobelpreisträgers für Chemie 1909, Wilhelm Ostwald.
  • Proteinstrukturen besser erforschen
    Nachricht
    27.02.2013
    Proteinstrukturen besser erforschen
    Feierlich eingeweiht: Der neue Pilatus-Detektor für die Kristallographie ist nun einsatzbereit
  • Titanium dioxide nanoreactor
    News
    21.02.2013
    Titanium dioxide nanoreactor
    Tiny particles of titanium dioxide are found as key ingredients in wall paints, sunscreens, and toothpaste; they act as reflectors of light or as abrasives. However with decreasing particle size and a corresponding change in their surface-to-volume ratio, their properties change so that crystalline titanium dioxide nanoparticles acquire catalytic ability: Activated by the UV component in sunlight, they break down toxins or catalyze other relevant reactions.
  • Organic Electronics - How to make contact between carbon compounds and metals
    News
    18.02.2013
    Organic Electronics - How to make contact between carbon compounds and metals
    Organic electronics has already hit the market in smart-phone displays and holds great promise for future applications like flexible electroluminescent foils (a potential replacement for conventional light bulbs) or solar cells that convert sunlight to electricity. A reoccurring problem in this technology is to establish good electrical contact between the active organic layer and metal electrodes. Organic molecules are frequently used also for this purpose. Until now, however, it was practically impossible to accurately predict which molecules performed well on the job. They basically had to be identified by trial-and-error. Now, an international team of scientists around Dr. Georg Heimel and Prof. Norbert Koch from the HZB and the Humboldt University Berlin has unraveled the mystery of what these molecules have in common. Their discovery enables more focused improvements to contact layers between metal electrodes and active materials in organic electronic devices.
  • News
    28.01.2013
    Demagnetization by rapid spin transport

    The fact that an ultrashort laser pulse is capable of demagnetizing a ferromagnetic layer in a jiffy has been well-known since approximately 1996. What we don't yet understand, however, is how exactly this demagnetization works. Now, physicist Dr. Andrea Eschenlohr and her colleagues at the Helmholtz Centre Berlin and Uppsala University in Sweden have shown that it turns out not to be the light pulse itself that prompts demagnetization.

  • Mit neuem Detektor kleinsten Biomarkern auf der Spur
    Nachricht
    21.12.2012
    Mit neuem Detektor kleinsten Biomarkern auf der Spur
    PTB installiert vakuumkompatiblen ortsempfindlichen Röntgendetektor am Elektronenspeicherring BESSY II. Forscher können damit die Größe kontrastarmer Nanoobjekte bestimmen.

  • Graphene on Nickel: Electrons behave like light
    News
    21.12.2012
    Graphene on Nickel: Electrons behave like light
    Dr. Andrei Varykhalov and his colleagues in the group of Prof. Dr. Oliver Rader investigated at BESSY II the electronic properties of nickel coated with graphene and achieved an astonishing result. They could show that the conduction electrons of the graphene behave rather as light than as particles. Physicists had originally expected such behavior only for freestanding graphene layers which show a perfect honeycomb structure and not for graphene on nickel which disturbs the perfect hexagonal symmetry. Their results are supported by calculations of two theoretical groups using novel concepts. Their report was published in the open access journal, Phys. Rev. X, the new top journal of the Physical Review.
  • MX-Posterprize to Bartosz Sekula, Lodz
    News
    18.12.2012
    MX-Posterprize to Bartosz Sekula, Lodz
    The prize for the best poster in the field of macromolecular crystallography was awarded to
    Bartosz Sekula from the University of Lodz (Poland). The poster committee unanimously selected the poster titled "Complexes of equine serum albumin with ligands" as this year's best poster in MX.
  • Three-day exchange at User Meeting
    News
    17.12.2012
    Three-day exchange at User Meeting
    From December 12 to 14, more than 400 users of HZB's BER II and BESSY II large-scale equipment met up to discuss the current state of technology and exchange their views on pressing scientific issues. Two of the highlights were Science Day on December 13 and Neutron Day on December 14, both held at the Bunsensaal in Berlin-Adlershof. Both days, the focus was on instrumentation. Participants were able to learn about new technologies and advances in large-scale equipment instrumentation. Science Day featured the many scientific achievements that have been made thanks to BESSY II and BER II.
  • Nachricht
    05.12.2012
    Forscher zeigen mit Berechnungen, dass kompakte Laser-Plasma-Beschleuniger möglich sind

    Ultrakurze Pulse aus kohärentem Röntgenlicht sind ein fantastisches Mittel, um Einsichten in atomare oder molekulare Reaktionen zu gewinnen. In Freien-Elektronen-Lasern können solche Pulse im Femtosekundenbereich (10 -15 sek) erzeugt werden. Doch bislang sind dafür enorme Beschleuniger nötig, die nur an wenigen Großforschungseinrichtungen der Welt zur Verfügung stehen.  An einer kompakteren Alternative arbeitet Dr. Atoosa Meseck vom HZB-Institut für Beschleunigerphysik mit Kollegen aus dem HZB und anderen Forschungseinrichtungen. Nun haben sie einen Bauplan für eine kompakte Quelle für kohärente kurzwellige Strahlung entworfen und berechnet. Dieses Ergebnis veröffentlichten sie in der Fachzeitschrift "Physical Review".

  • From sunlight to hydrogen
    News
    24.09.2012
    From sunlight to hydrogen
    Scientists at the Helmholtz Zentrum Berlin successfully test new hybrid material for use in photoelectrochemical hydrogen production
  • Neues Labor von Helmholtz-Zentrum Berlin und Freier Universität Berlin eröffnet
    Nachricht
    17.08.2012
    Neues Labor von Helmholtz-Zentrum Berlin und Freier Universität Berlin eröffnet
    Flüssigkeiten und Materialien in Lösung mit modernsten Methoden durchdringen
  • Nachricht
    05.06.2012
    HZB an Helmholtz-Plattform für Detektortechnologien und Detektorsysteme beteiligt

    Die Helmholtz-Gemeinschaft initiiert eine Plattform, um Detektortechnologien und Detektorsysteme weiter zu entwickeln. Ziel der Plattform –  die als Portfoliothema gefördert wird – ist es, Technologien zum Aufbau neuartiger Detektoren für Photonen, Neutronen sowie geladene Teilchen weiter zu entwickeln, die Datenübertragung und -auswertung zu optimieren und exemplarische Detektorprototypen zu entwerfen und zu bauen. Ein weiteres wichtiges Ziel ist die Vernetzung der Detektorlabore. Kleine Zentren können so an kostspieligen technologischen Entwicklungen teilhaben. Das HZB ist an der Plattform beteiligt und entwickelt Systeme für die Detektion von Neutronen, Photonen sowie intelligente, programmierbare Hardware für die Datenerfassung.

  • Monumental effort to save the threatened Viking treasures of Oseberg
    News
    05.06.2012
    Monumental effort to save the threatened Viking treasures of Oseberg
    Norwegian conservators are conducting tests at HZB to halt the degradation of one of the most important cultural assets from the Viking Age
  • Photochemical Turbo Power for Solar Cells
    News
    29.02.2012
    Photochemical Turbo Power for Solar Cells
    How organic molecules make yellow light from red.
  • Under cover of graphene
    News
    10.02.2012
    Under cover of graphene
    Researchers at Helmholtz-Zentrum Berlin have developed a method to conserve electronic surface states using graphene.
  • Breakthrough in X-Ray Nanospectroscopy
    News
    07.12.2011
    Breakthrough in X-Ray Nanospectroscopy
    HZB researchers achieve X-ray spectroscopy at nanoscale spatial resolution
  • Tiny, Tailored Magnets - CeNIDE Researchers Publish in “Nature Communications”
    News
    11.11.2011
    Tiny, Tailored Magnets - CeNIDE Researchers Publish in “Nature Communications”
    Nanomagnets are used in many places nowadays, from medicine to data storage. Sometimes they have to be strong and and sometimes they have to be weak. Researchers from the Center for Nanointegration (CeNIDE) at University of Duisburg-Essen (UDE) have found out just how to produce these tiny magnets with highly specific properties, and have published their results.
  • Shedding Light on Luminescence - Scientists at HZB reveal the structure of a designer protein
    News
    01.11.2011
    Shedding Light on Luminescence - Scientists at HZB reveal the structure of a designer protein
    Fluorescent proteins are important investigative tools in the biosciences: Coupled to other proteins, they help us to study the processes of life inside cells and organisms at the molecular level. Fluorescent proteins are made to light up at specific target sites or to become dark again where necessary. In other words, they are switched on and off like light bulbs. Now, for the first time, at Helmholtz-Zentrum Berlin (HZB) scientists have studied the structural characteristics involved in fluorescence on one single protein crystal when switched on and when switched off. Their results are published in Nature Biotechnology (doi:10.1038/nbt.1952).
  • BESSY II besitzt magnetische Anziehungskraft
    Nachricht
    24.10.2011
    BESSY II besitzt magnetische Anziehungskraft
    Ehrenvorsitzender des weltgrößten Automobilherstellers besucht das HZB
  • The large-scale project EMIL (Energy Materials In-situ Laboratory Berlin) will create new opportunities for researching energy materials by the beginning of 2015
    News
    19.10.2011
    The large-scale project EMIL (Energy Materials In-situ Laboratory Berlin) will create new opportunities for researching energy materials by the beginning of 2015
    Helmholtz Zentrum Berlin and the Max Planck Society are going to build a new, dedicated X-ray beamline together at the synchrotron source BESSY II, which will be used for analysing materials for renewable energy generation. The new large-scale project has been dubbed EMIL (a common name in Berlin, but which also stands for Energy Materials In-situ Laboratory Berlin) and includes, among other things, the major project already announced under the name of SISSY (Solar Energy Materials In-Situ Spectroscopy at the Synchrotron). The assessment of EMIL in September 2011, by an external committee of experts engaged by the scientific advisory board, went very well and the experts endorsed the EMIL project "enthusiastically". The supervisory board of HZB will give the go-ahead for construction of EMIL in two months.
  • Ein Sensor für Wasserstoffbrückenbindungen
    Nachricht
    27.09.2011
    Ein Sensor für Wasserstoffbrückenbindungen
    Wissenschafter des Helmholtz-Zentrum Berlin (HZB) haben einen Sensor für die Wasserstoffbrückenbindungen in flüssigem Wasser gefunden. In Röntgenspektren fanden sie einen Peak, der empfindlich auf das Brechen von Wasserstoffbrücken reagiert. Sie publizieren die Ergebnisse in der online-Ausgabe der Zeitschrift Angewandte Chemie (DOI: 10.1002/anie.201104161).
  • Oxygen: Bond breaking in a jumpy way
    News
    19.09.2011
    Oxygen: Bond breaking in a jumpy way
    HZB is involved in researching quantum beating, which expands our knowledge on the creation and destruction of chemical bonds.
  • Erster Nachweis für Viren in der Erdgeschichte: Paget-Krankheit bei Dinosaurieren entdeckt
    Nachricht
    13.09.2011
    Erster Nachweis für Viren in der Erdgeschichte: Paget-Krankheit bei Dinosaurieren entdeckt
    Den Paläontologen Florian Witzmann und Oliver Hampe vom Museum für Naturkunde Berlin gelang in Kooperation mit Wissenschaftlern der Charité und des Helmholtz-Zentrums Berlin für Materialien und Energie eine aufsehenerregende Entdeckung: An einem 150 Millionen Jahre alten Wirbel des Dysalotosaurus lettowvorbecki konnten sie den bisher ältesten Nachweis von Viren erbringen. Der Pflanzen fressende Dinosaurier aus Tendaguru/Tansania hatte zu Lebzeiten eine Paget genannte Knochenkrankheit, die durch masernähnliche Viren ausgelöst wird und bislang nur von Menschen und Primaten bekannt ist. Die Wissenschaftler berichten darüber in der jüngsten Ausgabe der Zeitschrift Current Biology.
  • Der Traum von der Zusammenarbeit wird wahr - Berliner Wissenschaftler mit ERC Starting Grant ausgezeichnet
    Nachricht
    08.09.2011
    Der Traum von der Zusammenarbeit wird wahr - Berliner Wissenschaftler mit ERC Starting Grant ausgezeichnet
    Der Physiker Prof. Dr. Emad Flear Aziz, Wissenschaftler am Helmholtz-Zentrum Berlin (HZB) und an der Freien Universität Berlin, wird mit einem „ERC Starting Grant“ des Europäischen Forschungsrates ausgezeichnet. Dieser umfasst eine Förderung von 1,5 Millionen Euro. Der Nachwuchswissenschaftler kann damit in den kommenden fünf Jahren die Untersuchung von funktionalen Materialien voranbringen. Aziz‘ Forschungsthema lautet „Structure and Dynamics of Porphyrin-Based Materials in Solution vs. Interfaces”. Ihm ist es gelungen, den ersten ERC Starting Grant für das HZB einzuwerben. Über den ERC-Grant hinaus fördert die Helmholtz-Gemeinschaft Aziz´ Forschung mit weiteren 250.000 Euro.
  • Nachricht
    15.08.2011
    2. Joint Berlin MX Day

    Die in Berlin auf dem Gebiet der Strukturbiologie forschenden Wissenschaftler betreiben seit einem Jahr gemeinsam das Joint Berlin MX Laboratory. Am 17. August findet der zweite gemeinsame Workshop statt. Gastgeber ist diesmal das Max-Delbrück-Centrum in Berlin-Buch. Wer noch teilnehmen möchte, kann sich gern noch anmelden - per email an Prof. Dr. Udo Heinemann: heinemann@mdc-berlin.de

  • Nachricht
    28.06.2011
    Erfolgsgeschichte mit Fortsetzung - 10 Jahre Deutsch-Russisches Labor

    Eine Erfolgsgeschichte feiert Geburtstag: Das Russisch-Deutsche Labor an der Speicherringanlage BESSY II des Helmholtz-Zentrums Berlin in Adlershof wird zehn Jahre alt. Die Einrichtung, in der Wissenschaftler zum fundamentalen Verständnis der Struktur von Materie forschen, ist eine in dieser Form einzigartige Kooperation zwischen deutschen und russischen Wissenschaftlern.

  • Flüssigkeiten im Synchrotron: Mit weicher Röntgenstrahlung der Funktion von Materialien auf der Spur
    Nachricht
    25.05.2011
    Flüssigkeiten im Synchrotron: Mit weicher Röntgenstrahlung der Funktion von Materialien auf der Spur
    Der Karl-Scheel-Preis 2011 der Physikalischen Gesellschaft zu Berlin geht an Prof. Dr. Emad Flear Azizvon der Freien Universität Berlin und dem Helmholtz-Zentrum Berlin für Materialien und Energie
  • Fossile Eidechse aus der Grube Messel widerlegt Theorie über Ursprung der Schlangen
    Nachricht
    19.05.2011
    Fossile Eidechse aus der Grube Messel widerlegt Theorie über Ursprung der Schlangen
    Helmholtz-Zentrum Berlin an der Untersuchung des fossilen „Missing Link“ beteiligt
  • Forschern gelingt es, Partikel beim Sintern dreidimensional sichtbar zu machen
    Nachricht
    06.05.2011
    Forschern gelingt es, Partikel beim Sintern dreidimensional sichtbar zu machen
    Sintern ist ein Verfahren, um aus metallischen oder keramischen Pulvern Werkstoffe oder komplexe Bauteile herzustellen. Bei Temperaturen unterhalb des Schmelzpunktes entsteht aus einem Ausgangspulver ein Festkörper höherer Dichte. Mithilfe der hochauflösenden Synchrotron-Computer-Tomografie konnten HZB-Wissenschaftlern in einem gemeinsamen Forschungsprojekt den Prozess weiter aufklären und erstmals die Bewegung der Partikel in 3D darstellen.
  • Kampf gegen Antibiotika-Resistenzen - Wissenschaftler enttarnen Resistenzprotein
    Nachricht
    02.05.2011
    Kampf gegen Antibiotika-Resistenzen - Wissenschaftler enttarnen Resistenzprotein
    Wissenschaftler des Helmholtz-Zentrum Berlin haben mit der Synchrotronstrahlungsquelle BESSY II an der Strukturaufklärung eines Proteins mitgewirkt, das für Antibiotikaresistenzen verantwortlich ist: Mit ihrer Unterstützung ist es Forschern der Universität Greifswald gelungen, die Struktur des Proteins Monooxygenase TetX zu entschlüsseln, das Bakterien eine Resistenz gegen Tetracyclin-Antibiotika vermittelt. Damit wurde erstmals ein Schlüssel zum Verständnis eines Resistenzmechanismus gefunden, noch bevor die klinische Anwendung eines Antibiotikums wirkungslos wird. Ein entsprechender Artikel wurde jetzt in der wissenschaftlichen Fachzeitschrift FEBS Letters veröffentlicht.
  • Wichtiger Schritt Richtung BERLinPro: Erster Elektronenstrahl aus SRF Quellinjektor
    Nachricht
    28.04.2011
    Wichtiger Schritt Richtung BERLinPro: Erster Elektronenstrahl aus SRF Quellinjektor
    Am 21. April 2011 hat das HZB mit einer supraleitenden Elektronenquelle (SRF Gun) die ersten Photoelektronen erzeugt und beschleunigt. Dies ist ein Meilenstein für das Projekt BERLinPro, und es ist zugleich weltweit das erste Mal, dass mit einem supraleitenden Hochfrequenz-Photoinjektor aus einer supraleitenden Photokathode ein Elektronenstrahl erzeugt worden ist.
  • Nutzerexperiment bei BESSY-II: Ein schneller Schalter für Magnetnadeln
    Nachricht
    14.04.2011
    Nutzerexperiment bei BESSY-II: Ein schneller Schalter für Magnetnadeln
    Wissenschaftler aus aller Welt kommen ans HZB, um die beiden Großgeräte – die Synchrotronstrahlungsquelle in Adlershof und den Forschungsreaktor in Wannsee – für ihre Untersuchungen zu nutzen. Doch bevor es mit den Messungen losgehen kann, müssen die Forscher Anträge einreichen, die ein international besetztes Gremium begutachtet. Dieser Aufwand wird betrieben, um für die aussichtsreichsten wissenschaftlichen Ideen Messzeit zur Verfügung zu stellen. Nicht selten führen sie zu herausragenden Publikationen. Ein aktuelles Beispiel ist ein Nutzerexperiment, das am Speicherring BESSY II von dem Team von Dr. Hermann Stoll vom Max-Planck-Institut für Intelligente Systeme (ehemals Max-Planck-Institut für Metallforschung) zusammen mit Kollegen aus Gent und Regensburg durchgeführt wurde.
  • Ultra-Fast Magnetic Reversal Observed
    News
    12.04.2011
    Ultra-Fast Magnetic Reversal Observed
    A newly discovered magnetic phenomenon could accelerate data storage by several orders of magnitude.
  • Von 1 auf 500… - 500ste Protein-Struktur an BESSY II entschlüsselt
    Nachricht
    24.03.2011
    Von 1 auf 500… - 500ste Protein-Struktur an BESSY II entschlüsselt
    Haare, Haut, Blutkreislauf und Nervensystem – alles wird von winzigen biologischen Bausteinen gesteuert. Wer nach diesen kleinsten Bausteinen des Lebens forscht, landet automatisch bei ihnen: den Proteinen. Um diese Grundbausteine des Lebens und die Vorgänge, die sie bewirken, besser zu verstehen, archivieren Wissenschaftler in aller Welt ihre Erkenntnisse über Proteine in einer gemeinsamen Datenbank. Die HZB-Forschungsgruppe Makromolekulare Kristallografie (MX) stellt Nutzern am BESSY II die Technik zur Verfügung, mit der sie Protein-Strukturen entschlüsseln können. Vor kurzem wurde die bereits 500ste Struktur an diesen MX-Strahlrohren des HZB von Wissenschaftlern der Bayer Healthcare Pharmaceuticals Berlin entschlüsselt.
  • Terahertz flashes enable accurate X-ray measurements
    News
    02.02.2011
    Terahertz flashes enable accurate X-ray measurements
    Joint press release of European XFEL GmbH, Helmholtz-Zentrum Berlin and Deutsches Elektronen-Synchrotron DESY, a Research Centre of the Helmholtz Association
  • Exzellenz bei der Lichtbeugung
    Nachricht
    05.01.2011
    Exzellenz bei der Lichtbeugung
    HZB richtet Technologiezentrum für hocheffiziente optische Präzisionsgitter ein
  • New microscope reveals ultrastructure of cells
    News
    18.11.2010
    New microscope reveals ultrastructure of cells
    HZB researchers can take images of small cellular components in their natural environment – while the cell remains intact
  • Nachricht
    12.10.2010
    Grünes Licht für BERLinPro

    Helmholtz-Zentrum Berlin entwickelt neuartige Beschleunigertechnologie

  • LiXEdrom: Innovative measuring chamber for X-ray study of liquid jets
    News
    10.09.2010
    LiXEdrom: Innovative measuring chamber for X-ray study of liquid jets
    Until now, the only way to study liquids by soft X-ray emission spectroscopy (XES) has been through a membrane window. Now, researchers of Helmholtz-Zentrum Berlin have carried out an XES study of a free micro-liquid jet on the synchrotron.
  • Ein schneller Blick auf komplexe Ordnung
    Nachricht
    02.09.2010
    Ein schneller Blick auf komplexe Ordnung
    Grundlagenforschung zu magnetischen Ordnungsphänomenen in Festkörpern ist eine der Hauptforschungsrichtungen am HZB, bei denen die Kombination von Neutronen- und Röntgenstreuung eine herausragende Rolle spielt. Materialien mit komplexen magnetischen Strukturen wie z.B. antiferromagnetische Halbleiter lassen sich mit solchen Methoden untersuchen. Hier ordnen sich unterhalb einer bestimmten Temperatur die magnetischen Momente in atomaren Schichten mit alternierender Magnetisierungsrichtung an. Dies führt zu magnetischen Beugungsreflexen, die auch mit Neutronen beobachtet werden können. Röntgenstreuung als komplementäre Methode kann zusätzlich eine hohe Ortsauflösung und, in Kombination mit ultrakurzen Röntgenpulsen, eine sehr hohe Zeitauflösung erreichen. Dies ermöglicht nun die Untersuchung der bisher nicht zugänglichen magnetischen Dynamik solcher komplexer Strukturen.
  • Help from the Dark Side
    News
    09.08.2010
    Help from the Dark Side
    Using “dark channel” fluorescence, scientists can explain how biochemical substances carry out their function
  • First the orbit, then the spin
    News
    27.05.2010
    First the orbit, then the spin
    Novel storage materials of the future will be made out of magnetic films. Researchers at HZB are the first to find out just how fast magnetic particles can be controlled.
  • Katalase und Methämoglobin: so ähnlich und doch verschieden
    Nachricht
    15.04.2010
    Katalase und Methämoglobin: so ähnlich und doch verschieden
    Wichtige physiologische Prozesse beim Fettabbau und Sauerstofftransport aufgeklärt
  • Nachricht
    23.02.2010
    Teilchenbeschleuniger und Neutronenquellen im Dienst der Materialforschung

    Mehr als 700 Wissenschaftler treffen sich in Berlin zur SNI 2010

  • Wie Kreisel auf atomarer Ebene miteinander wechselwirken
    Nachricht
    30.12.2009
    Wie Kreisel auf atomarer Ebene miteinander wechselwirken
    Die Wechselwirkungen zwischen Elektronen und dem Atomgerüst in einem Festkörper sind die Grundlage von Materialeigenschaften, die eine zunehmend wichtige technologische Rolle spielen. Dazu gehört zum Beispiel das schnelle Schalten magnetischer Medien, wie es etwa für die Speicherung von Daten auf Computerfestplatten erforderlich ist.  Diesen Vorgang untersuchen und optimieren Wissenschaftler derzeit im Labor anhand der ultraschnellen Demagnetisierung von ferromagnetischen Schichtsystemen. Um solche Materialsysteme weiter optimieren zu können, müssen Wissenschaftler die Wechselwirkung zwischen Elektronen und Atomgitter detailliert verstehen. Forscher die am Helmholtz-Zentrum Berlin (HZB) und der Universität Hamburg tätig sind, haben nun einen wichtigen Teilprozess der Wechselwirkung der Elektronen mit den so genannten Phononen, den Quasiteilchen der atomaren Gitterschwingung, aufgeklärt. Dabei konnten sie zeigen, wie und vor allem mit welcher Effizienz Elektronen eine ihrer fundamentalsten Eigenschaften, den so genannten Drehimpuls, mit den Phononen austauschen können. Ihre Ergebnisse hat das Team um Professor Alexander Föhlisch, Leiter des HZB-Instituts für „Methoden und Instrumentierung der Synchrotronstrahlung“, und Professor Wilfried Wurth von der Universität Hamburg jetzt in der Fachzeitschrift „Physical Review Letters“ publiziert. Den Nachweis und die Quantifizierung dieses Effekts führten das Team an einem klassischen Modellsystem durch, dessen physikalische Eigenschaften sehr genau bekannt sind: Silizium. An der Synchrotronstrahlungsquelle BESSY II des HZB bestrahlten sie Siliziumkristalle mit Röntgenstrahlung und maßen dann hochpräzise die Energie der an der Probe gestreuten Lichtteilchen, der Photonen. Die Analyse der Ergebnisse dieser auch als resonante inelastische Röntgenstreuung bezeichneten Methode erlaubte es nun, die Wahrscheinlichkeit eines sogenannten Drehimpulstransfers zwischen Phonon und Elektron genau zu bestimmen. Der Effekt ist klein - in Silizium etwa 50 Mal kleiner als die bekannte dominierende klassische Elektronen-Phononen Wechselwirkung, bei der kein Drehimpuls übertragen werden kann –, weil die Phononen nur in seltenen ausgewählten Situationen zu einem Drehimpulsübertrag in der Lage sind. Die zur genauen Vermessung notwendige Sensitivität erreichten die Wissenschaftler durch die Kopplung der „Hamburg Inelastic X-ray scattering station“ (HIXSS) mit der hochbrillanten Synchrotronstrahlung des Speicherrings BESSY II. „Das Resultat unserer Messung ist ein wichtiger Baustein auf dem Weg zu einem besseren Verständnis der komplizierten Kopplungen zwischen Atomgitter und den drei wichtigen Eigenschaften der Elektronen – dem Spin, dem Bahndrehimpuls und der Ladung“, sagt Alexander Föhlisch: „Technologisch bedeutsame Materialeigenschaften wie schnelle Magnetisierungsprozesse können wir somit besser erklären.“ Um diese Untersuchungen zukünftig in idealer Weise am Helmholtz-Zentrum Berlin zu ermöglichen, befindet sich der neue RICXS Messplatz am Speicherring BESSY II im Aufbau. Zukünftig wird dort resonante inelastische Röntgenstreuung hoher Energie und Impulsauflösung bei höchster Transmission durchgeführt werden. Mehr dazu in der Originalveroeffentlichung: M. Beye, F. Hennies, M. Deppe, E. Suljoti, M. Nagasono, W. Wurth, A. Foehlisch, Dynamics of Electron-Phonon Scattering: Crystal- and Angular-Momentum Transfer Probed by Resonant Inelastic X-Ray Scattering, Phys. Rev. Lett. 103 (2009), 237401.
  • News
    29.11.2009
    Spinons – Confined like Quarks

    Phenomenon known from Particle Theory observed for the first time in Condensed Matter

    The concept of confinement is one of the central ideas in modern physics. The most famous example is that of quarks which bind together to form protons and neutrons. Now Prof. Bella Lake from Helmholtz-Zentrum Berlin (HZB) together with an international team of scientists report for the first time an experimental realization and a proof of confinement phenomenon observed in a condensed matter system.

  • Outstanding Results on Research in Synchrotron Radiation rewarded
    News
    16.11.2009
    Outstanding Results on Research in Synchrotron Radiation rewarded
    At the “First Joint BER II and BESSY II Users´ Meeting” on November 12th / 13th the “Freundeskreis Helmholtz-Zentrum Berlin e. V.” bestowed the “Ernst-Eckhard-Koch-Prize" and the „Innovation-Award on Synchrotron Radiation“ for 2009.
  • Nachricht
    10.11.2009
    MAXYMUS - Neue Einsichten mit Röntgenblitzen

    Das derzeit modernste Rasterröntgenmikroskop wird vom Stuttgarter Max-Planck-Institut für Metallforschung am Helmholtz-Zentrum Berlin eingeweiht; Experten treffen sich zum Workshop über Röntgenmikroskopie Stuttgart/Berlin: Am 10. und 11. November weiht das Stuttgarter Max-Planck-Institut für Metallforschung (MPI-MF) im Rahmen des internationalen Workshops „New Frontiers in Soft X-Ray Microscopy“ feierlich sein neues Rasterröntgenmikroskop MAXYMUS an der Berliner Synchrotronstrahlungsquelle BESSY II ein. Unter der Schirmherrschaft von Professor Dr. Anke Rita Kaysser-Pyzalla, Wissenschaftliche Geschäftsführerin am Helmholtz-Zentrum Berlin (HZB), Professor Dr. Gisela Schütz, Direktorin der Abteilung „Moderne magnetische Materialien“ am MPI-MF und Dr. Brigitte Baretzky, Projektleiterin am MPI-MF treffen sich zahlreiche hochrangige Experten aus aller Welt, um über die neuesten Entwicklungen auf dem Gebiet der Röntgenmikroskopie zu diskutieren.

  • More than 300 Scientists at SRF 2009 in Berlin
    News
    02.10.2009
    More than 300 Scientists at SRF 2009 in Berlin
    International Conference on RF-Superconductivity and Accelerator Physics was a great success! 
  • Orbital 2009 - internationaler Workshop am HZB
    Nachricht
    01.10.2009
    Orbital 2009 - internationaler Workshop am HZB
    Am 7. und 8. Oktober 2009 findet am Helmholtz-Zentrum Berlin am Standort Adlershof der Workshop "Orbital 2009" mit 95 Teilnehmern aus aller Welt statt.
  • Zweifacher Erfolg für das HZB bei der SAS-Konferenz
    Nachricht
    30.09.2009
    Zweifacher Erfolg für das HZB bei der SAS-Konferenz

    SAS-Konferenz im Jahr 2015 in Berlin!  

    Die internationale Konferenz „Small Angle Scattering“ (SAS) wird im Jahr 2015 in Berlin stattfinden. Das entschied sich während der SAS2009, die vom 13. bis 18. September in Oxford stattfand.   Bei der SAS-Konferenzreihe steht die Forschung zu zerstörungsfreien Strukturcharakterisierungs-Methode der Kleinwinkelstreuung („Small Angle Scattering“) im Vordergrund, mit denen sich komplexe Materialsysteme untersuchen lassen . Die SAS-Konferenz ist eine ideale Plattform, Röntgen- wie auch Neutronenanwendungen in verschiedenen Forschungsdisziplinen zu verknüpfen. Die Ausrichtung der SAS2015 eröffnet somit gute Möglichkeiten sowohl den Wissenschaftsstandort Berlin weiter in den Mittelpunkt der internationalen Wissenschaftsgemeinde zu rücken als auch die Forschungsinfrastruktur des HZB und seiner Förderung der komplementären Anwendung von Photonen und Neutronen.   Das HZB bewarb sich in Kooperation mit dem Stranski-Institut der Technischen Universität Berlin und dem Max-Planck-Institut für Kolloid- und Grenzflächenforschung für die Ausrichtung der SAS2015 und überzeugte mit seinem Konzept. Von 260 Wählern hatten etwa 70% für Sydney als Austragungsort im Jahr 2012 in Kombination mit Berlin als Ort für die SAS2015 gestimmt. Zur Wahl für die Ausrichtung der SAS-Konferenzen, die in der Regel alle 3 Jahre tagt, standen Sydney, Knoxville und Berlin.   Federführend bei der Vorbereitung und Durchführung der erfolgreichen Bewerbung waren Professor Dr. Peter Fratzl (Max-Planck-Institut für Kolloid- und Grenzflächenforschung) als Vortragender, Professor Dr. M. Gradzielski (TU Berlin), Dr. Stephan Roth (DESY), Dr. Daniel Clemens (HZB), Dr. Armin Hoell (HZB) sowie die Kommunikationsabteilung des HZB.    

  • Kristallisationspunkt für Nachwuchswissenschaftler
    Nachricht
    18.08.2009
    Kristallisationspunkt für Nachwuchswissenschaftler
    Workshop zur synchrotron-basierten biologischen Strukturforschung am HZB in Adlershof
  • New Chapter in the Research with Synchrotron Radiation
    News
    31.07.2009
    New Chapter in the Research with Synchrotron Radiation
    Junior scientist from Berlin extents the range of application of X-ray methods and receives prestigious award.

    Dr. Emad Aziz Bekhit from the Helmholtz-Zentrum Berlin für Materialien und Energie (HZB) is this year's recipient of the renowned Dale Sayers Award–an award presented every three years by the International X-ray Absorption Society (IXAS), hon-ouring successful junior scientists.
    The award will be presented in Camerino (Italy) on July 31, 2009 during the largest conference on research with X-rays worldwide. The award is
  • HZB organisiert erfolgreich ersten Internationalen ASAXS-Workshop
    Nachricht
    19.05.2009
    HZB organisiert erfolgreich ersten Internationalen ASAXS-Workshop
    HZB organisiert erfolgreich ersten Internationalen ASAXS-Workshop
  • BEST - Eigene Strahllinie für studentische Nachwuchsforscher bei BESSY II eingeweiht
    Nachricht
    15.05.2009
    BEST - Eigene Strahllinie für studentische Nachwuchsforscher bei BESSY II eingeweiht
    Die  BEST-Experimentierplätze wurden ins Leben gerufen, um Studierende und junge Wissenschaftler in das Experimentieren mit Synchrotronstrahlung einzuführen und weiter zu qualifizieren; aber auch Master- und Doktorarbeiten sind vorgesehen. Prof. Dr. Recardo Manzke (HU), der am Aufbau der Beamline maßgeblich beteiligt war, informierte in über Hintergründe und Besonderheiten von BEST. Weltweit einmalig entsprechen Betreuung und Ausstattung dem neuesten technischen Standard und sind speziell auf die Bedürfnisse der Nachwuchswissenschaftler abgestimmt. BEST besteht aus einem hochauflösenden 5-Meter-Monochromator und zwei leistungsstarken Experimentierstationen. Die verwendeten Spektrometer entsprechen höchsten Anforderungen und ermöglichen so eine international konkurrenzfähige Forschung.
  • Nachricht
    31.03.2009
    Ultrakurze Schnappschüsse von Atombewegungen

    Helmholtz-Zentrum Berlin und Uni Potsdam starten erste gemeinsame Forschergruppe unter der Leitung von Professor Bargheer

    Berlin/Potsdam, 31. März 2009̶ Zum Start des Sommersemesters richtet das Helmholtz-Zentrum Berlin (HZB) die erste gemeinsame Forschergruppe mit der Universität Potsdam ein. Die Leitung der Gruppe übernimmt der Physiker Professor Dr. Matias Bargheer, der am 1. April 2009 zum W3-Professor für „Ultraschnelle Dynamik kondensierter Materie“ an der Universität Potsdam (UP) ernannt wird. Diese Berufung der UP in Kooperation mit dem HZB und dem Max-Planck-Institut für Kolloid- und Grenzflächenforschung steht für die enge Verbindung von Universität und außeruniversitären Forschungseinrichtungen im Rahmen des neuen Potsdamer Forschungsnetzwerks  „pearls“. Die Finanzierung der Gruppe durch das HZB, zu der ein Doktorand und zwei Postdocs gehören, ist auf fünf Jahre angelegt. Im Sinne der Verbundidee von „pearls“ (s.u.)  werden sich die Postdocs der Gruppe an der Betreuung externer Nutzer an den Beamlines von Bessy II beteiligen.

  • Emad Flear Aziz Bekhit erhält den Ernst-Eckhard-Koch-Preis
    Nachricht
    04.12.2008
    Emad Flear Aziz Bekhit erhält den Ernst-Eckhard-Koch-Preis
    Für seine Doktorarbeit an der Freien Universität Berlin hat Emad Flear Aziz Bekhit heute den Ernst-Eckhard-Koch-Preis erhalten. Emad Aziz hat eine Experimentierkammer gebaut, mit denen er wässrige Proben im Ultrahochvakuum spektroskopisch untersuchen kann. Die Kammer hat den Namen LIQUIDROME und ist schon nach kurzer Zeit zu einem beliebten Werkzeug in der BESSY II Methodensammlung geworden.
  • Nachricht
    04.09.2008
    Spot an – vor 10 Jahren ging die Synchrotronstrahlungsquelle BESSY II in Betrieb

    Am 4. September 1998 nahmen der damalige Forschungsminister Jürgen Rüttgers, Berlins Regierender Bürgermeister Eberhard Diepgen und die beiden Geschäftsführer der BESSY GmbH, Eberhard Jaeschke und Wolfgang Gudat, die zu dem Zeitpunkt modernste Synchrotronstrahlungsquelle der Welt in Betrieb. .„BESSY II sollte ein Kristallisationskern für den neuen Wissenschaftsstandort Berlin-Adlershof werden“, erinnert sich Hermann Schunck, damals Mitglied im Aufsichtsrat bei BESSY, an die Planungsphase. Eine Strategie, die Erfolg zeigte.

  • Science Highlight
    21.05.2008
    Towards imaging ultrafast evolution in a single shot

    Research carried out by BESSY scientists in collaboration with colleagues from SLAC and SOLEIL has been featured as Editors’ Choice in the Nov. 23 issue of the Science Magazine. In the Optics Letters article by W. F. Schlotter et al., multiplexed x-ray holograms generated simultaneously from many objects are presented. The feasibility of this approach implies that ultrafast pump-probe time sequences can be recorded with free electron x-ray lasers in this way.

  • Nachricht
    17.12.2007
    Qumran-Rollen vom Toten Meer an BESSY II untersucht

    Antike Schriftstücke vor dem Verfall zu bewahren oder sie zu restaurieren ist eine Kunst für sich. Um sie auszuüben, ist es von enormer Bedeutung herauszufinden, wie beispielsweise Pergament durch bestimmte Tinten über die Jahrhunderte zerstört wird; und wie dies zu vermeiden wäre. Für solche Untersuchungen ist Röntgenstrahlung ein hervorragendes Werkzeug. Um diese Forschungsarbeiten zu unterstützen, hat BESSY nun einen Röntgenmessplatz so ausgestattet, dass auch sehr empfindliche Objekte, wie antike Pergamentrollen oder Gemälde auf Leinwand oder Holz untersucht werden können, ohne dabei Schaden zu nehmen.

  • Nachricht
    14.11.2006
    Untersuchungen selbstorganisierter Nanostrukturen bei BESSY mit Carl-Ramsauer-Preis ausgezeichnet

    Der Physiker Dr. Andrei Varykhalov hat Quantenphänomene in seiner Dissertation studiert, seine Untersuchungen führte er am Berliner Elektronenspeicherring BESSY durch. Für seine Arbeit mit dem Titel Quanteneffekte in der elektronischen Struktur neuer selbstorganisierter Systeme mit reduzierter Dimensionalität wird er von der Physikalischen Gesellschaft zu Berlin mit dem Carl-Ramsauer-Preis ausgezeichnet.

  • Nachricht
    22.05.2006
    Bestnoten für das BESSY FEL Projekt

    Der Wissenschaftsrat hat in seiner heute vorgestellten Stellungnahme zu zwei Großgeräten der naturwissenschaftlichen Grundlagenforschung die Förderung des BESSY Freie Elektronen Lasers unter Auflagen empfohlen. Es gäbe derzeit keine Initiative, die sich in Bezug auf die technischen Rahmenbedingungen und der wissenschaftlichen Kompetenz des Teams mit dem BESSY Projekt vergleichen ließe, so die Gutachter weiter.