HZB Newsroom

Search results for: Keyword: quantum materials

  • Science Highlight
    Topological materials for information technology offer lossless transmission of signals
    New experiments with magnetically doped topological insulators at BESSY II have revealed possible ways of lossless signal transmission that involve a surprising self-organisation phenomenon. In the future, it might be possible to develop materials that display this phenomenon at room temperature and can be used as processing units in a quantum computer, for example. The study has been published in the renowned journal Nature. [...]
  • <p>The Russian-German Laboratory operating its own beamline at BESSY II.</p>
    New instrument at BESSY II commences user operation
    A new instrument became available to the users of BESSY II on Oct. 28, 2019. The new beamline and apparatus for spin- and angular-resolved photoemission in the Russian-German Laboratory at BESSY II have successfully completed their test phase. They facilitate precise measurements of the electron band structure and spin of different material classes such as topological insulators and magnetic sandwich structures, as well as novel perovskite-based solar-cell materials. A photoelectron microscope has also been developed which is particularly important for nanoscopic structures.


  • Interview
    Joint research group for quantum computing and simulation
    Freie Universität Berlin and Helmholtz-Zentrum Berlin (HZB) are now strengthening their cooperation in the field of quantum computing with a new research group. Quantum materials exhibit very interesting properties, which researchers want to use to make data processing significantly faster and more efficient than is currently possible. They can study these materials excellently at synchrotron radiation sources such as BESSY II. It has proven especially promising to predict the material properties in quantum simulations before running the experiments. Taking this approach allows such experiments to be conducted more targetedly. [...]
  • <p>The nano-antennae werde produced in an electron microscope by direct electron-beam writing.</p>
    Science Highlight
    Save time using maths: analytical tool designs corkscrew-shaped nano-antennae
    For the first time, an HZB team has derived analytically how corkscrew-shaped nano-antennas interact with light. The mathematical tool can be used to calculate the geometry that a nano-antenna must have for specific applications in sensor technology or information technology. [...]
  • <p>View into the experimental hall of BESSY II at HZB, Berlin.</p>
    Physicists develop "time machine" for materials research

    Researchers from Martin Luther University Halle-Wittenberg (MLU), Freie Universität Berlin and Technische Universität München will develop fast electronics for data acquisition at BESSY II. It will make it possible to record the signal of all X-ray flashes generated during the experiment. This will enable researchers to evaluate the data more extensively - even retrospectively. The Federal Ministry of Education and Research (BMBF) is funding the project with two million euros. [...]

  • <p>The new german russian undulator beamline at BESSY II</p>
    German Russian collaboration further strengthened at HZB
    HZB physicist Jaime Sánchez-Barriga establishes a "Helmholtz-RSF Joint Research Group". Over the next three years he will receive additional funding from the Helmholtz Association and the Russian Science Foundation (RSF) to investigate magnetic quantum materials for future information technologies with partners from the Lomonosov State University in Moscow. In particular, the funding should also enable the exchange and training of young scientists. [...]
  • <p>When illuminated by the synchrotron light, nickel emits x-rays itself due to the decay of valence electrons. The number of emitted photons reduces when increasing the temperature from room temperature (left) to 900&deg;C (right).</p>
    Science Highlight
    Utrafast magnetism: electron-phonon interactions examined at BESSY II
    How fast can a magnet switch its orientation and what are the microscopic mechanisms at play ? These questions are of first importance for the development of data storage and computer chips. Now, an HZB team at BESSY II has for the first time been able to experimentally assess the principal microscopic process of ultra-fast magnetism. The methodology developed for this purpose can also be used to investigate interactions between spins and lattice oscillations in graphene, superconductors or other (quantum) materials. [...]
  • <p>The illustration is alluding to the laser experiment in the background and shows the structure of TGCN.</p>
    Science Highlight
    Organic electronics: a new semiconductor in the carbon-nitride family
    Teams from Humboldt-Universität and the Helmholtz-Zentrum Berlin have explored a new material in the carbon-nitride family. Triazine-based graphitic carbon nitride (TGCN) is a semiconductor that should be highly suitable for applications in optoelectronics. Its structure is two-dimensional and reminiscent of graphene. Unlike graphene, however, the conductivity in the direction perpendicular to its 2D planes is 65 times higher than along the planes themselves. [...]
  • <p>Experiments at the femtoslicing facility of BESSY II revealed the ultrafast angular momentum flow from Gd and Fe spins to the lattice via orbital moment during demagnetization of GdFe alloy.</p>
    Science Highlight
    Laser-driven Spin Dynamics in Ferrimagnets: How does the Angular Momentum flow?
    When exposed to intense laser pulses, the magnetization of a material can be manipulated very fast. Fundamentally, magnetization is connected to the angular momentum of the electrons in the material. A team of researchers led by scientists from the Max Born Institute for Nonlinear Optics and Short Pulse Spectroscopy (MBI) has now been able to follow the flow of angular momentum during ultrafast optical demagnetization in a ferrimagnetic iron-gadolinium alloy at the femtoslicing facility of BESSY II. Their results are helpful to understand the fundamental processes and their speed limits. The study is published in Physical Review Letters. [...]
  • <p>The model refers to a cubic crystal structure (pyrochlore lattice). Not only were magnetic interactions between the nearest neighbours included, but also with the next nearest neighbours (see drawing).</p>
    Science Highlight
    New insights into magnetic quantum effects in solids
    Using a new computational method, an international collaboration has succeeded for the first time in systematically investigating magnetic quantum effects in the well-known 3D pyrochlore Heisenberg model. The surprising finding: physical quantum phases are formed only for small spin values. [...]
  • <p>The data show that In the case of the two-layer graphene, a flat part of bandstructure only 200 milli-electron volts below the Fermi energy.</p>
    Science Highlight
    Graphene on the way to superconductivity
    Scientists at HZB have found evidence that double layers of graphene have a property that may let them conduct current completely without resistance. They probed the bandstructure at BESSY II with extremely high resolution ARPES and could identify a flat area at a surprising location. [...]
  • <p>Shown are the magnetic fluxlines inside a superconducting sample of lead in two different directions. The scale bar is 5 mm. </p>
    Science Highlight
    Neutrons scan magnetic fields inside samples
    With a newly developed neutron tomography technique, an HZB team has been able to map for the first time magnetic field lines inside materials at the BER II research reactor. Tensorial neutron tomography promises new insights into superconductors, battery electrodes, and other energy-related materials. [...]
  • <p>Sketch of the stripe order: The charge stripes, which are superconducting, are shown in blue. Reprinted with modifications from Physical Review Letters.</p>
    Science Highlight
    User research at BER II: New insights into high-temperature superconductors
    After 30 years of research, there are still many unsolved puzzles about high-temperature superconductors - among them is the magnetic “stripe order” found in some cuprate superconductors. A Danish research team has taken a closer look at these stripes, using high-resolution neutron scattering at the spectrometers FLEXX (HZB) and ThALES (ILL, Grenoble). Their results, now published in Physical Review Letters, challenge the common understanding of stripe order, and may contribute to unveil the true nature  of high-temperature superconductivity. [...]
  • <p>This optical zone melting furnace is producing large single crystals. </p>
    New at Campus Wannsee: CoreLab Quantum Materials
    Helmholtz-Zentrum Berlin has expanded its series of CoreLabs for energy materials research. In addition to the five established CoreLabs, it has now set up a CoreLab for Quantum Materials. A research team from the HZB Institute for Quantum Phenomena in New Materials is responsible for the CoreLab and its modern equipment. The CoreLab is also open to experimenters from other research institutes.  [...]
  • <p>X-PEEM images show the orientation of magnetic domains in the permalloy film overlaid on the superconducting dot (dashed square) before (left image) and after the write process (right image). In this sample the domains (arrows, right image) are reorientied in a monopole pattern. </p>
    Science Highlight
    Future Information Technologies: New combinations of materials for producing magnetic monopoles
    An international collaboration at BESSY II has discovered a new method to inscribe exotic magnetic patterns such as magnetic monopoles into thin ferromagnetic films. Such unconventional orientation of magnetic domains might open a new path for the design of energy efficient data storage. The new materials system consists of regular arrays of superconducting YBaCuO-dots covered with an extremely thin permalloy film. A shortly applied external magnetic field leads to the creation of supercurrents within the superconducting dots. These currents produce a complex magnetic field pattern, which is inscribed into the permalloy film above. The results are published in Advanced Science. [...]
  • <p><strong>Frostige Wissenschaften:</strong> Experimente mit fl&uuml;ssigem Stickstoff</p>
    Eine lange Nacht geballtes Wissen tanken
    Führungen an der Neutronenquelle, Experimente zur Energie für Groß und Klein, Licht-Show und vieles mehr [...]
  • <p>Crystal structures of HgBa<sub>2</sub>CuO<sub>4</sub>+ and YBa<sub>2</sub>Cu<sub>3</sub>O<sub>6</sub>+</p>
    Science Highlight
    Universality of charge order in cuprate superconductors
    Charge order has been established in another class of cuprate superconductors, highlighting the importance of the phenomenon as a general property of these high-Tc materials. [...]
  • <p>Aus dem Technikum</p>
    Hochfeldmagnet sucht Neutronenleiter
    Am Freitag, den 12. Dezember 2014 fand der Umzug des Hochfeldmagneten an seinen endgültigen Aufstellungsort in der Neutronenleiterhalle statt. Eine Spezialfirma für Maschinentransporte bugsierte den über 25 Tonnen schweren Stahlkoloss aus dem HFM-Technikum heraus und setzte ihn in Bewegung. [...]
  • <p>Outstanding researchers took part in the &ldquo;New Trends in Topological Insulators 2014&rdquo; - workshop.</p>
    Leading scientists on topological insulators met in Berlin
    From July 7-10, 150 researchers met in Berlin to discuss recent findings in the field of topological insulators. [...]
  • <p><span><span>Despite the onset of winter, the High-Field Magnet arrived in Berlin without difficulty. The magnet will be connected to the cooling facility, power supply, and the neutron guide over the next months. Photo: </span><span>HZB/Phil Dera</span></span></p>
    High-Field Magnet crossed the finish line at Helmholtz-Zentrum Berlin
    The High-Field Magnet (HFM) for diffracting neutrons entered the gates of the Helmholtz-Zentrum Berlin in Wannsee on 23 January 2014 at 9am, where the project team headed by Dr. Peter Smeibidl enthusiastically accepted delivery. The journey for the roughly 20-tonne scientific device began in the Italian city of Chivasso near Turin two days prior on 21 January. It traversed its 1200 kilometre route without incident, which led through Milan, the Gotthard Tunnel, Zürich, and Stuttgart to Berlin. [...]
  • <p>Stripe order of charge carriers in Bi<sub>2</sub>Sr<sub>2</sub>CaCu<sub>2</sub>O<sub>8+x</sub> [2]. The figure shows the structure with a period of approximately one nanometer (front) and the related diffraction pattern (back) obtained by a so-called Fourier transformation (Yazdani Lab, Princeton University).</p>
    Science Highlight
    Charge Order competes with superconductivity
    Today in Science Express: Charge carriers in cuprate high-Tc superconductors form nanostripes that suppress superconductivity, as shown by guest researchers from Princeton and Vancouver using synchrotron radiation at BESSY II [...]
  • News
    High field magnet for neutron scattering has made its way to Italy
    After five years of manufacture, the superconducting spool for the new high field magnet for neutron scattering finally took off from Atlanta, USA, inside the belly of an MD-11F Lufthansa cargo plane on October 9, 2013, at 3:00 am EST. The plane landed in the cargo area at Frankfurt Airport promptly at 6:21 pm that same day. Following German customs clearance, the magnet was subsequently transferred to Italy by truck where, on Friday, October 11, it arrived in Chivasso/Turin. [...]
  • HZB-Wissenschaftler Dr. Christian Schüßler-Langeheine
    Tiefer Röntgenblick zeigt: Supraleiter sind komplizierter als gedacht - Rätselhaft verschwindende Streifenstruktur
    Keramische Supraleiter sind komplizierter als gedacht. Das zeigt eine Untersuchung sogenannter Lanthan-Cuprate mit den Röntgenquellen BESSY II am Helmholtz-Zentrum Berlin (HZB) und DORIS III bei DESY in Hamburg. Die elektrischen Strukturen, die sich in dem Material ausbilden, können demnach in der Nähe der Oberfläche ganz anders sein als in der Tiefe. Dieses Wissen ist wichtig für das Verständnis der komplizierten Vorgänge in den widerstandsfreien Stromleitern und kann der Konstruktion neuer Supraleiter mit maßgeschneiderten Eigenschaften helfen. Allerdings bedeutet sie auch, dass eine Reihe von Untersuchungen unter Umständen ergänzt werden müssen, wie das internationale Team um HZB-Forscher Christian Schüßler-Langeheine im Fachjournal "Nature Communications" berichtet. [...]
  • Künsterische Darstellung der Aufspaltung eines Elektrons<br />
    Physiker beobachten, wie ein Elektron im Festkörper in neuartige Quasiteilchen zerfällt
    Physiker eines internationalen Forschungsteams haben erstmals beobachtet, wie sich ein Elektron in zwei voneinander getrennte Teile aufspaltet, die jeweils eine bestimmte Eigenschaft des Elektrons tragen: Das sogenannte «Spinon» trägt dann den Spin des Elektrons, also seine Eigenrotation. Diese lässt das Elektron zu einer winzigen Kompassnadel werden. Das «Orbiton» ist der Träger des orbitalen Moments – das ist die Bewegung um den Atomkern. Diese neu hergestellten Teilchen können das Material, in dem sie erzeugt wurden, nicht verlassen. Justine Schlappa vom Helmholtz-Zentrum Berlin hat diese Ergebnisse jetzt zusammen mit ihren Kollegen in der Fachzeitschrift Nature veröffentlicht (DOI: 10.1038/nature10974). Die Ergebnisse wurden an der Synchrotronquelle SLS des schweizerischen Paul Scherrer Instituts erzielt, wo Justine Schlappa zu Beginn des Projekts beschäftigt war. [...]
  • Abbildung der transversalen Ladungsverteilung auf einem<br />Leuchtschirm, der für die Messung in den Strahlengang des<br />Elektronenstrahls gefahren ist.
    Wichtiger Schritt Richtung BERLinPro: Erster Elektronenstrahl aus SRF Quellinjektor
    Am 21. April 2011 hat das HZB mit einer supraleitenden Elektronenquelle (SRF Gun) die ersten Photoelektronen erzeugt und beschleunigt. Dies ist ein Meilenstein für das Projekt BERLinPro, und es ist zugleich weltweit das erste Mal, dass mit einem supraleitenden Hochfrequenz-Photoinjektor aus einer supraleitenden Photokathode ein Elektronenstrahl erzeugt worden ist.
  • News
    New material provides a key to explaining superconductivity

    [Translate to Englisch:] Forscher des Helmholtz-Zentrum Berlin für Materialien und Energie (HZB) stellen in der aktuellen Ausgabe der Zeitschrift Nature Materials neue Ergebnisse vor, die einen alten Streit um die richtige Theorie lösen könnten. [...]

  • News
    More than 300 Scientists at SRF 2009 in Berlin
    International Conference on RF-Superconductivity and Accelerator Physics was a great success!  [...]
  • Nachricht
    Orbital 2009 - internationaler Workshop am HZB
    Am 7. und 8. Oktober 2009 findet am Helmholtz-Zentrum Berlin am Standort Adlershof der Workshop "Orbital 2009" mit 95 Teilnehmern aus aller Welt statt. [...]
  • Nachricht
    Supraleiter unter Druck gesetzt und damit Geheimnisse entlockt

    Wissenschaftler des Helmholtz-Zentrums Berlin für Materialien und Energie (HZB) gewinnen neue, überraschende Einblicke in das Phänomen der Supraleitung. In Kooperation mit mehreren internationalen Forschergruppen berichten sie dies in der aktuellen Ausgabe der Zeitschrift Nature Materials, die eine Online-Version als Highlight-Beitrag vorab veröffentlicht. [...]

  • <div class="bildlupe"></div>
<div class="InhaltSpalte Rechts"><a id="c237861" name="c237861"></a>
<p>Auf dem Bild schwebt der Dipolmagnet &uuml;ber einem gek&uuml;hlten Supraleiter, ein aus Yttrium- Barium-Kupferoxid (YBCO) bestehender keramischer Stoff.</p>
    Dreidimensionale Bildgebung- erstmalige Einblicke in Magnetfelder
    3D-Bilder werden nicht nur in der Medizin erzeugt, etwa mithilfe der Röntgen- oder Kernspinresonanztomographie. Auch Materialwissenschaftler blicken gern ins Innere eines Körpers. Forschern des Berliner Hahn-Meitner-Instituts (HMI) ist es nun in Kooperation mit der Technischen Fachhochschule Berlin (TFH) erstmals gelungen, Magnetfelder im Inneren von massiven, nicht transparenten Materialien dreidimensional darzustellen. Das berichten Nikolay Kardjilov und Kollegen in der aktuellen Ausgabe der Zeitschrift Nature Physics, die eine Online-Version als Highlight-Beitrag in dieser Woche vorab veröffentlicht. [...]
  • <p>Modell des Hochfeldmagneten im Ma&szlig;stab 1:5</p>
    Der weltweit stärkste Magnet für Neutronenexperimente wird in Berlin errichtet
    Der Kooperationsvertrag zwischen dem Hahn-Meitner-Institut Berlin (HMI) und dem National High Magnetic Field Laboratory (NHMFL) Tallahassee (Florida State University) zum Bau eines neuen Hochfeldmagneten ist unterzeichnet worden. Er wird der weltweit stärkste Magnet für Neutronenstreuexperimente. Von den Experimenten an dem Magneten erwarten Forscher neue Erkenntnisse zu Fragen aus der Physik, Chemie, Biologie und den Materialwissenschaften, unter anderem Beiträge zum Verständnis der Hochtemperatursupraleitung. [...]
  • <p>Anordnung der Natriumatome im Natriumkobaltoxid, wenn 80% der verf&uuml;gbaren Natriumpl&auml;tze besetzt sind. Die Farben Rot und Blau entsprechen den zwei m&ouml;glichen Positionen der Natriumatome.</p>
    Nanomuster bringen Strom unter Kontrolle: Natriumkobaltoxid als perfektes Material für Laptop-Batterien, als Kühlmittel oder Supraleiter
    Regelmäßige Muster aus Natriumatomen mit Strukturen im Nanometerbereich machen Natriumkobaltoxid zu einem perfekten Material für Laptop-Batterien, effiziente Kühlmittel oder Supraleiter – das berichten Wissenschaftler des Berliner Hahn-Meitner-Instituts, des CEA-Forschungszentrums in Saclay bei Paris und der Universität Liverpool in der neuesten Ausgabe des Wissenschaftsmagazins Nature. Dabei bestimmt die genaue Anordnung der Natriumatome die Eigenschaften des Materials, wobei das jeweilige Natriummuster sehr empfindlich von der Dichte an Natriumatomen abhängt. Diese ist mit chemischen Methoden leicht veränderbar, und man kann so aus einem anfangs metallischen Material einen Isolator und dann einen Supraleiter machen. Man bringt dazu das Material in eine elektrochemische Zelle und ändert die Spannung. [...]
  • Nachricht
    Bose-Einstein-Kondensat: Magnetfelder erzeugen ungewöhnlichen Materiezustand

    In einem Experiment am Hahn-Meitner-Institut in Berlin wurden zum ersten Mal die magnetischen Eigenschaften eines Kristalls für die Erzeugung eines Bose-Einstein-Kondensats genutzt. Dieser ungewöhnliche Materiezustand entstand, als der Kristall in ein starkes Magnetfeld von 14 Tesla gebracht wurde und konnte mit Hilfe von Neutronen aus dem Forschungsreaktor des Hahn-Meitner-Instituts nachgewiesen werden. Mit Magnetfeldern von bis zu 17 Tesla (mehr als das 200.000-fache des Erdmagnetfelds) bei Experimenten mit Neutronen stehen in Berlin weltweit einzigartige Forschungsmöglichkeiten zur Verfügung, die Voraussetzung für Erzeugung und Nachweis des Kondensats waren. [...]