HZB Newsroom

Sear results - Keyword: solar fuels

  • News
    18.11.2021
    Germany on the road to net zero: a new Web Atlas shows the options
    Which technical and nature-based options as well as political decisions can support Germany in being CO2-neutral? These questions are answered by the new web atlas of the Climate Service Center Germany (GERICS) at the Helmholtz-Zentrum Hereon. The new tool is aimed at politicians, experts and the public. The HZB has also contributed to the web atlas.

  • <p>Olga Kasian has accepted a professorship at the Friedrich-Alexander-Universit&auml;t Erlangen-N&uuml;rnberg (FAU).</p>
    News
    13.10.2021
    Friedrich-Alexander Universität Erlangen-Nürnberg appoints Olga Kasian
    Dr. Olga Kasian is investigating why catalysts for hydrogen production by water electrolysis are limited in efficiency. The chemist has now accepted a professorship at the Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU). The W2 professorship is entitled "Materials for Electrochemical Energy Conversion" and is located at the Faculty of Engineering.

  • Science Highlight
    09.08.2021
    Green hydrogen: Why do certain catalysts improve in operation?
    Crystalline cobalt arsenide is a catalyst that generates oxygen during electrolytic water splitting in the production of hydrogen. The material is considered to be a model system for an important group of catalysts whose performance increases under certain conditions in the course of electrolysis. Now a HZB-team headed by Marcel Risch has observed at BESSY II how two simultaneous mechanisms are responsible for this. The catalytic activity of the individual catalysis centres decreases in the course of electrolysis, but at the same time the morphology of the catalyst layer also changes. Under favourable conditions, considerably more catalysis centres come into contact with the electrolyte as a result, so that the overall performance of the catalyst increases.

  • <p>In polar regions and at high altitudes the conversion of solar radiation into hydrogen could certainly be worthwhile.</p> <p></p>
    Science Highlight
    02.07.2021
    Solar hydrogen for Antarctica - study shows advantages of thermally coupled approach
    A team from the Helmholtz-Zentrum Berlin, Ulm University, and Heidelberg University has now investigated how hydrogen can be produced at the South Pole using sunlight, and which method is the most promising. Their conclusion: in extremely cold regions, it can be considerably more efficient to attach the PV modules directly to the electrolyser, i.e. to thermally couple them. This is because the waste heat from the PV modules increases the efficiency of electrolysis in this environment. The results of this study, which has now been published in Energy & Environmental Science, are also relevant for other cold regions on Earth, such as Alaska, Canada, and high mountain regions, for example. In these places, solar hydrogen could replace fossil fuels such as oil and petrol.

  • <p>The launch event for the opening of the CatLab took place on 21 June.</p> <p>f.l.t.r.: Prof. Dr. Bernd Rech (HZB), Dr. Stefan Kaufmann (BMBF), Prof. Dr. Robert Schl&ouml;gl (MPG)</p>
    News
    21.06.2021
    CatLab - Starting signal for a new generation of catalysts
    The Helmholtz-Zentrum Berlin (HZB) and the Max Planck Society (MPG) are launching CatLab, their new joint catalysis research centre in Berlin. The inauguration ceremony took place on June 21st in the presence of Dr. Stefan Kaufmann, the Innovation Officer for Green Hydrogen at the Federal Ministry of Education and Research (BMBF) and Member of the federal Bundestag. High-ranking representatives from science, government, and industry took part.
  • <p>The illustration shows two quantum dots "communicating" with each other by exchanging light.</p>
    Science Highlight
    03.06.2021
    How quantum dots can "talk" to each other

    A group at HZB has worked out theoretically how the communication between two quantum dots can be influenced with light.  The team led by Annika Bande also shows ways to control the transfer of information or energy from one quantum dot to another. To this end, the researchers calculated the electronic structure of two nanocrystals, which act as quantum dots. With the results, the movement of electrons in quantum dots can be simulated in real time.

  • <p>Renske van der Veen has a lot of experience with ultrafast x-ray measurements.</p>
    News
    02.06.2021
    Renske van der Veen heads new department "Atomic Dynamics in Light-Energy Conversion"
    From June 2021, Dr. Renske van der Veen is setting up a new research group at HZB. The chemist is an expert in time-resolved X-ray spectroscopy and electron microscopy and studies catalytic processes that enable the conversion of solar energy into chemical energy.

  • <p>The HZB team was able to determine the photoconductivity in the thin layers of rust using time-resolved microwave measurements; here is a picture of the measurement setup.</p>
    Science Highlight
    19.04.2021
    Green hydrogen: "Rust" as a photoanode and its limits
    Metal oxides such as rust are intriguing photoelectrode materials for the production of green hydrogen with sunlight. They are cheap and abundant, but in spite of decades of research, progress has been limited. A team at HZB, together with partners from Ben Gurion University and the Technion, Israel, has now analysed the optoelectronic properties of rust (haematite) and other metal oxides in unprecedented detail. Their results show that the maximum achievable efficiency of haematite electrodes is significantly lower than previously assumed. The study demonstrates ways to assess new photoelectrode materials more realistically.

  • <p></p> <p>A new instrument at BESSY II can be used to study molybdenum-sulfide thin films that are of interest as catalysts for solar hydrogen production. A light pulse triggers a phase transition from the semiconducting to the metallic phase and thus enhances the catalytic activity.</p> <p></p>
    Science Highlight
    05.03.2021
    Instrument at BESSY II shows how light activates MoS2 layers to become catalysts
    Thin films of molybdenum and sulfur belong to a class of materials that can be considered for use as photocatalysts. Inexpensive catalysts such as these are needed to produce hydrogen as a fuel using solar energy. However, they are still not very efficient as catalysts. A new instrument at the Helmholtz-Berlin Zentrum’s BESSY II now shows how a light pulse alters the surface properties of the thin film and activates the material as a catalyst.

  • <p>TEM-Image of a &alpha;-SnWO<sub>4 </sub>film (pink) coated with 20 nm NiO<sub>x </sub>(green). At the interface of &alpha;-SnWO<sub>4</sub> and NiO<sub>x</sub> an additional interfacial layer can be observed.</p>
    Science Highlight
    26.01.2021
    Solar hydrogen: Photoanodes made of α-SnWO4 promise high efficiencies
    Photoanodes made of metal oxides are considered to be a viable solution for the production of hydrogen with sunlight. α-SnWO4 has optimal electronic properties for photoelectrochemical water splitting with sunlight, but corrodes easily. Protective layers of nickel oxide prevent corrosion, but reduce the photovoltage and limit the efficiency. Now a team at HZB has investigated at BESSY II what happens at the interface between the photoanode and the protective layer. Combined with theoretical methods, the measurement data reveal the presence of an oxide layer that impairs the efficiency of the photoanode.


  • <p>Part of the IRIS research labs will be equipped for research on catalysts. Photo</p>
    News
    25.01.2021
    HZB and Humboldt University agree to set up a catalysis laboratory
    Helmholtz-Zentrum Berlin (HZB) and Humboldt-Universität zu Berlin (HU) have signed a cooperation agreement with the aim of establishing a joint research laboratory for catalysis in the IRIS research building of HU in Adlershof. The IRIS research building offers optimal conditions for the research and development of complex material systems.