Würth, C.; Manley, P.; Voigt, R.; Ahiboz, D.; Becker, C.; Resch-Genger, U.: Metasurface enhanced sensitized photon upconversion: towards highly efficient low power upconversion applications and nano-scale E-field sensors. Nano Letters 20 (2020), p. 6682–6689
10.1021/acs.nanolett.0c02548

Abstract:
Large scale nanoimprinted metasurfaces based on silicon photonic crystal slabs were produced and coated with a NaYF4:Yb3+/Er3+ upconversion nanoparticle (UCNP) layer. UCNPs on these metasurfaces yield a more than 500-fold enhanced upconversion emission compared to UCNPs on planar surfaces. It is also demonstrated how the optical response of the UCNPs can be used to estimate the local field energy in the coating layer. Optical simulations using the finite element method validate the experimental results and the calculated spatial three-dimensional field energy distribution helps to understand the emission enhancement mechanism of the UCNPs closely attached to the metasurface. In addition, we analyzed the spectral shifts of the resonances for uncoated and coated metasurfaces and metasurfaces submerged in water to enable a prediction of the optimum layer thicknesses for different excitation wavelengths paving the way to applications such as electromagnetic field sensors or bioassays.