• Li, G.; Yu, J.; Yu, W.; Yang, L.; Zhang, X.; Liu, X.; Liu, H.; Zhou, W.: Phosphorus-Doped Iron Nitride Nanoparticles Encapsulated by Nitrogen-Doped Carbon Nanosheets on Iron Foam In Situ Derived from Saccharomycetes Cerevisiae for Electrocatalytic Overall Water Splitting. Small 16 (2020), p. 2001980/1-11

10.1002/smll.202001980

Abstract:
It is vitally essential to propose a novel, economical, and safe preparation method to design highly efficient electrocatalysts. Herein, phosphorus-doped iron nitride nanoparticles encapsulated by nitrogen-doped carbon nanosheets are grown directly on the iron foam substrate (P-Fe3N@NC NSs/IF) by in situ deriving from Saccharomycetes cerevisiae (S. cerevisiae), where anion elements of C, N, and P all from S. cerevisiae replace the hazardous CH4, NH3, and H3P. The diffusion pattern of N, P in S. cerevisiae and contact form between metal and S. cerevisiae observably affect the composition and phase of the product during high-temperature calcination. The obtained P-Fe3N@NC NSs/IF demonstrates superior electrocatalytic performance for the hydrogen evolution reaction and oxygen evolution reaction, also satisfying durability. Theoretical calculation confirms that Fe sites of P-Fe3N serve as the active center, and N sites and P doping regulate the hydrogen binding strength to enhance catalytic ability. Additionally, the two-electrode electrolyzer assembled by P-Fe3N@NC NSs/IF as both anode and cathode electrodes needs only 1.61 V to reach 10 mA cm−2 for overall water splitting with a superb stability. The S. cerevisiae-based process presents a feasible approach for synthesis of nitrides, carbides, phosphides, and electrocatalytic applications.