• Jonas, A.; Staeck, S.; Kanngießer, B.; Stiel, H.; Mantouvalou, I.: Laboratory quick near edge x-ray absorption fine structure spectroscopy in the soft x-ray range with 100 Hz frame rate using CMOS technology. Review of Scientific Instruments 92 (2021), p. 023102/1-7

10.1063/5.0032628
Open Access Version (externer Anbieter)

Abstract:
In laboratory based x-ray absorption fine structure (XAFS) spectroscopy, the slow readout speed of conventional CCD cameras can prolong the measuring times by multiple orders of magnitude. Using pulsed sources, e.g., laser-based x-ray sources, the pulse repetition rate often exceeds the frame rate of the CCD camera. We report the use of a scientific CMOS (sCMOS) camera for XAFS spectroscopy with a laser-produced plasma source facilitating measurements at 100 Hz. With this technological improvement, a new class of experiments becomes possible, starting from the time consuming analysis of samples with small absorption to pump-probe investigations. Furthermore, laboratory quick soft x-ray absorption fine structure (QXAFS) measurements with 10 ms time resolution are rendered feasible. We present the characterization of the sCMOS camera concerning noise characteristics and a comparison to conventional CCD camera performance. The feasibility of time resolved QXAFS measurements is shown by analyzing the statistical uncertainty of single shot spectra. Finally, XAFS spectroscopy on a complex sandwich structure with minute amounts of NiO exemplifies the additional merits of fast detectors.