Abstract:
The microscopic origin of ultrafast demagnetization, i.e. the quenching of the magnetization of a ferromagnetic metal on a sub-picosecond timescale after laser excitation, is still only incompletely understood, despite a large body of experimental and theoretical work performed since the discovery of the effect more than 15 years ago. Time- and element-resolved x-ray magnetic circular dichroism measurements can provide insight into the microscopic processes behind ultrafast demagnetization as well as its dependence on materials properties. Using the BESSY II Femtoslicing facility, a storage ring based source of 100 fs short soft x-ray pulses, ultrafast magnetization dynamics of ferromagnetic NiFe and GdTb alloys as well as a Au/Ni layered structure were investigated in laser pump – x-ray probe experiments. After laser excitation, the constituents of Ni50Fe50 and Ni80Fe20 exhibit distinctly different time constants of demagnetization, leading to decoupled dynamics, despite the strong exchange interaction that couples the Ni and Fe sublattices under equilibrium conditions. Furthermore, the time constants of demagnetization for Ni and Fe are different in Ni50Fe50 and Ni80Fe20, and also different from the values for the respective pure elements. These variations are explained by taking the magnetic moments of the Ni and Fe sublattices, which are changed from the pure element values due to alloying, as well as the strength of the intersublattice exchange interaction into account. GdTb exhibits demagnetization in two steps, typical for rare earths. The time constant of the second, slower magnetization decay was previously linked to the strength of spin-lattice coupling in pure Gd and Tb, with the stronger, direct spin-lattice coupling in Tb leading to a faster demagnetization. In GdTb, the demagnetization of Gd follows Tb on all timescales. This is due to the opening of an additional channel for the dissipation of spin angular momentum to the lattice, since Gd magnetic moments in the alloy are coupled via indirect exchange interaction to neighboring Tb magnetic moments, which are in turn strongly coupled to the lattice. Time-resolved measurements of the ultrafast demagnetization of a Ni layer buried under a Au cap layer, thick enough to absorb nearly all of the incident pump laser light, showed a somewhat slower but still sub-picosecond demagnetization of the buried Ni layer in Au/Ni compared to a Ni reference sample. Supported by simulations, I conclude that demagnetization can thus be induced by transport of hot electrons excited in the Au layer into the Ni layer, without the need for direct interaction between photons and spins.