Abstract:
Die vorliegende Arbeit beschäftigt sich mit Ätzprozessen von alkalischen und insbesondere HF/HNO3-basierten Ätzmedien an Silicium (Si). Es wurden Ätzprozesse an kristallinen (c-Si) und besonders an amorph/kristallinen (a-Si:H/c-Si) Silicium-Strukturen mit Hilfe von in situ Photolumineszenz(PL)-Messungen untersucht. Diese ermöglichen eine Verfolgung der Veränderung der Grenzflächendefektdichte an der c-Si-Grenzfläche während der Ätzprozesse. Es wurde erstmals beobachtet, dass der über Ladungsträgerinjektion von Löchern in das Si ablaufende Ätzprozess in HNO3-reichen, HF/HNO3-basierten Ätzmedien eine temporäre Feldeffektpassivierung an der geätzten Grenzfläche verursacht, welche zu einer Verzögerung des eigentlichen Auflöseprozesses des Si führt. Die Anwendung dieser Ätzmedien erfolgte im Rahmen der Strukturierung von a-Si:H-Schichten auf c-Si zur Realisierung von interdigitierenden Kontaktstrukturen rückseitenkontaktierter a-Si:H/c-Si-Heterosolarzellen. Für diese Ätzprozesse konnte mit Hilfe von in situ PL-Messungen erstmalig eine in situ Prozesskontrolle etabliert werden. Der Ätzprozess kann exakt bei Erreichen der a-Si:H/c-Si-Grenzfläche gestoppt werden, wodurch die ätzbedingte Defektbildung an der resultierenden c-Si-Oberfläche minimiert wird. Als weiterer Themenschwerpunkt wurde eine Photolithographie-freie Nanostrukturierung von a-Si:H/c-Si-Strukturen durch metallkatalysiertes Ätzen (MAE) vorgestellt, wobei MAE erstmals auf a-Si:H angewandt wurde. Anhand von in situ PL-Messungen konnte ebenfalls eine, wenn auch geringere, Feldeffektpassivierung an der geätzten Grenzfläche im Zuge der Injektion von Löchern in das Si durch die katalytisch aktiven Ag Nanopartikel (AgNP) beobachtet werden. Mit den so steuerbaren MAE-Prozessen können a-Si:H-Schichten exakt bis zur a-Si:H/c-Si-Grenzfläche punktuell geöffnet werden. Auf diese Weise wurden p-Typ a-Si:H/c-Si-Heterosolarzellen mit einem punktförmigen Absorberkontakt erfolgreich realisiert.