Ries, Markus: Nonlinear Momentum Compaction and Coherent Synchrotron Radiation at the Metrology Light Source. , 2014
Humbolt-Universität zu Berlin

Short pulses of synchrotron radiation are becoming an increasingly demanded tool in various fields of science. The generation of short synchrotron radiation pulses can be accomplished by different accelerator-based approaches such as free electron lasers, energy recovery linacs or electron storage rings. Linear accelerator driven free electron lasers are capable of generating intense pulses in the femtosecond regime at moderate repetition rates. In comparison, electron storage rings generate pulses of lower intensity with the advantage of large repetition rates. However, electron storage rings rely on radiation emitted by the same bunch(es) every turn, which are present in an equilibrium state. Thus making the electron storage ring a yet unchallenged source of short synchrotron radiation pulses in terms of stability and reproducibility. In addition, storage rings are capable to serve a large number of users simultaneously. In general, it is possible to distinguish the user community of short pulses at electron storage rings. The first user group is interested in time-resolution applying incoherent synchrotron radiation up to the X-ray regime. The second user group makes use of coherent synchrotron radiation emitted by short bunches at wavelengths large compared to the bunch dimensions, which commonly applies up to the THz-regime. Both user groups are interested in the high average power and stability available at electron storage rings. However, there is a current limitation for stable short bunch operation of electron storage rings, which is due to an instability driven by the emission of coherent synchrotron radiation. The subject of this thesis is the operation of an electron storage ring at a low momentum compaction to generate short electron bunches as a source for coherent synchrotron radiation. For this purpose the Metrology Light Source is ideally suited, as it is the first light source designed with the ability to adjust the three leading orders of the momentum compaction factor by quadrupole, sextupole and octupole magnets. Therefore, new opportunities to shape the longitudinal phase space arise. Focus will be put on beam dynamics dominated by nonlinear momentum compaction, in particular the generation of a new bucket type – “α-buckets” – and possible applications. Relation of analytical theory, numerical simulations and experimental data will be presented and discussed. In addition, the current limitation due to the bursting instability at the Metrology Light Source bunches will be investigated. The majority of measurements were conducted at the Metrology Light Source complemented by measurements at the BESSY II storage ring.