• Bernien, M.; Naggert, H.; Arruda, L.M.; Kipgen, L.; Nickel, F.; Miguel, J.; Hermanns, C.F.; Krüger, A.; Krüger, D.; Schierle, E.; Weschke, E.; Tuczek, F.; Kuch, W.: Highly Efficient Thermal and Light-Induced Spin-State Switching of an Fe(II) Complex in Direct Contact with a Solid Surface. ACS Nano 9 (2015), p. 8960-8966

10.1021/acsnano.5b02840

Abstract:
Spin crossover (SCO) complexes possess a bistable spin state that reacts sensitively to changes in temperature or excitation with light. These effects have been well investigated in solids and solutions, while technological applications require the immobilization and contacting of the molecules at surfaces, which often results in the suppression of the SCO. We report on the thermal and light-induced SCO of [Fe(bpz)2phen] molecules in direct contact with a highly oriented pyrolytic graphite surface. We are able to switch on the magnetic moment of the molecules by illumination with green light at T = 6 K, and off by increasing the temperature to 65 K. The light-induced switching process is highly efficient leading to a complete spin conversion from the low-spin to the high-spin state within a submonolayer of molecules. [Fe(bpz)2phen] complexes immobilized on weakly interacting graphite substrates are thus promising candidates to realize the vision of an optically controlled molecular logic unit for spintronic devices.