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ABSTRACT. Carbon dots (CDs) exhibit outstanding physiochemical properties which render 

them excellent materials for various applications, often occurring in an aqueous environment, such 

as energy harvesting and fluorescence bioimaging. Here we characterized the electronic structures 

of carbon dots and water molecules in aqueous dispersions using in situ X-ray absorption 

spectroscopy. Three types of carbon dots with different core structures (amorphous vs. graphitic) 

and compositions (undoped vs. nitrogen-doped) were investigated. Depending on the CD core 

structure, different ionic currents generated upon X-ray irradiation of the CD dispersions at the 

carbon K-edge were detected, which are interpreted in terms of different charge transfer to the 

surrounding solvent molecules. The hydrogen bonding networks of water molecules upon 

interaction with the different CDs were also probed at the oxygen K-edge. Both core graphitization 

and nitrogen doping were found to endow the CDs with enhanced electron transfer and hydrogen 

bonding capabilities with the surrounding water molecules. 
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Artificial photosynthesis represents a promising approach towards clean and sustainable energy 

production.1,2 Significant progress has been made in the development of novel photocatalytic 

materials over the last few decades. An essential feature influencing the activity of a 

photocatalytic material is the nature of the solid-liquid interface where transfer of the 

photogenerated charges occurs to drive the targeted chemical reactions. The electronic and 

chemical properties of this interface also govern the selectivity, rate, and overpotential of redox 

reactions on the photocatalyst surface.3 However, the lack of identification of surface active sites 

at the atomic level limits the possibility to rationally improve performance of currently available 

photocatalysts. 

Carbon dots (CDs) produced from “bottom-up” synthesis are of low-cost, (photo)chemically 

stable and have recently shown great potential as photoabsorbers in artificial photosynthesis.4 In 

addition, their abundant surface active centers are favorable for high-selectivity catalytic 

reactions which can be effectively tuned by adjusting elemental compositions and surface 

functionalities.4–6 We have recently reported a facile method to prepare scalable graphitic CDs, 

with (g-N-CD) and without (g-CD) core nitrogen doping as light harvester for photocatalytic 

hydrogen evolution reaction.7 A significant improvement of the photocatalytic performance has 

been realized using g-N-CD due to enhanced light absorption compared to amorphous CDs (a-

CD) and higher extraction of photogenerated charges compared to the undoped g-CD.7 However, 

the direct spectroscopic characterization of the CD-water interface has not yet been reported. 

Identifying active sites leading to efficient charge transfer at the CDs surface is fundamental to 

facilitate the design of more effective CDs photosensitizers. 

To this aim, X-ray absorption spectroscopy (XAS) is a method of interest that probes unoccupied 

electronic states of investigated materials, since the absorption of photons results in the 
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excitation of a core electron to an unoccupied state in the vicinity of the Fermi level following 

the dipole selection rules. XAS is an element-specific spectroscopic method, because the binding 

energies of core electrons vary significantly among atomic species.8 XAS has been successfully 

applied ex situ on CDs powder to provide detailed information on the local chemical and 

electronic structures of the excited atoms.9 On the other hand, in situ characterization in water 

would be necessary to assess the influence of the surrounding aqueous environment on the 

electronic structure of CDs. Studying the electronic structure of liquid environment and aqueous 

dispersion of nanomaterials under in situ condition using soft X-ray spectroscopies has attracted 

substantial attention in recent years.10–12 However, a major experimental challenge is the 

apparent contradiction between the generally high vapor pressure of the liquid, especially water, 

and the vacuum requirement imposed by the short mean free path of photons in the soft X-ray 

range at ambient conditions. Over the years, various innovative flow cell technologies13–16 using 

membranes to isolate the liquid phase from the vacuum have been devised to enable XAS 

measurement of liquid samples and nanoparticle dispersions. 

Experimentally, the true X-ray absorption cross-section of liquid samples can be measured in the 

transmission mode by detecting the incoming and transmitted light through the liquid sample.14 

On the other hand, core holes are created in the X-ray absorption process and excited electrons 

would subsequently decay through multiple possible channels such as fluorescence and Auger 

decay, which enables the detection of fluorescence yield (FY) and electron yield (EY) to record 

the X-ray absorption (XA) spectra. The FY mode XAS measurements always suffers from low 

emission probabilities (< 1%) compared to the EY detection for light elements such as carbon, 

nitrogen and oxygen. However, the short inelastic mean-free path of emitted photoelectrons (< 

10 nm) hinders their penetration through the conventional Si3N4 (or SiC) membranes of the 



 5 

liquid cells and restricts the EY detection mainly on solid sample measurement. Recently, we 

have proposed an alternative detection scheme for XAS measurements to determine the total ion 

yield (TIY), in which the current induced by ionic species generated upon X-ray irradiation was 

detected.15,17 TIY-XAS measurements have been demonstrated to be bulk-sensitive and are 

currently in development to characterize pure solvent and ions.15,17–19  

In this work, the electronic structure of three CDs samples (a‐CD, g‐CD and g‐N-CD) was 

characterized by XAS measured in total electron yield (TEY) on dry CDs in vacuum as well as 

transmission and TIY on CDs dispersed in water at the carbon K-edge. (Figure 1). The 

comparison between TEY, transmission and TIY measurements provides new insights into the 

carbon sites involved in charge transfer at the CDs-water interface. Furthermore, the hydrogen 

bonding environment of water molecules can be probed by transmission-XAS at the oxygen K-

edge as previously demonstrated in pure water,20,21 aqueous solutions22,23 and colloidal 

dispersions24,25. The O K-edge XA spectra of the CDs dispersions at various concentrations were 

compared to characterize the hydrogen bonding network around CDs. By correlating the 

spectroscopic results to the photocatalytic performance of these CDs which have been previously 

studied,7 we propose that in situ XAS could be used to investigate charge transfer properties of 

photocatalytic materials directly in solution. 
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Figure 1. Schematic illustration of different XAS detection schemes: (a) TEY detection on solid 

materials in vacuum; (b) pure transmission and (c) TIY detection in aqueous CDs dispersion. 

 

The XA spectra of the three CDs samples at the C K-edge are first compared (Figure 2). The 

TEY-XA spectra of solid samples and the transmission-XA spectra of liquid samples show 

similar electronic signatures. There are two sharp peaks (285.2 eV and 288.5 eV) with additional 

features of lower intensities in between. The pre-edge region of the TEY mode XA spectra were 

deconvoluted as shown in Figure 2 to better estimate the energy of the various features observed. 

An inverse tangent background was used to take into account the photoionization potential at the 

carbon K-edge (Table S1 and Figure S1).  
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Figure 2. TEY-XA spectra (black) on dry CDs in vacuum, TIY- (red) and transmission-XA 

spectra (blue) in aqueous CDs dispersions at the C K-edge of (a) a-CD, (b) g-CD and (c) g-N-

CD. The deconvoluted peaks of the TEY-XA spectra are also plotted. Different Gaussian peaks 

(dash), the resulting fit (green dash dot) and the background (dot) are shown below the 

experimental spectra. The spectra are normalized for clarity. 

 

The feature at 285.2 eV can be unequivocally assigned to the excitation of core electrons into 

π*C=C orbitals.9 The intensity of this feature is used to estimate the percentage of the C=C 

contribution in a-CD is lower than that of the other two graphitic CDs samples. The content of 

the samples in sp2 carbon is associated with their degree of graphitization, and as such confirms 

that the g-CD and g-N-CD are more graphitic than the a-CD,26 which is in line with the 

respective Raman spectra of these samples.7  

A significant change of the C=C peak intensity is observed in the TIY-XA spectra compared to 

TEY- and transmission-XA spectra. On TIY-XA spectrum of a-CD, a very weak C=C signal, 

which might be obscured by the tail of the nearby C−O feature, is detected (Figure 2a). However, 

unlike a‐CD, the C=C feature is clearly distinguishable on TIY-XA spectra of graphitized 
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samples (Figure 2b,c). We interpret the different signature of a-CD as a result of the nature of the 

detected signal in TIY-XAS and the different core structure of a-CD compared to the graphitic 

samples.  

Since the energy needed to excite carbon atoms (> 284 eV) is below the energy required to excite 

oxygen in water molecules (> 534 eV), the selective X-ray excitation of CDs is possible and the 

solvent is not directly ionized during in situ XAS measurements at the carbon K edge. When the 

carbon atoms in dispersed CDs are excited by the incident X-ray, an efficient charge separation 

in the CDs and a charge transfer to water molecules is required to induce an ionic current that 

can be detected between the two electrodes of the flow cell. For TEY-XAS, the principle is 

similar except that the photoelectrons are emitted in vacuum and not in liquid. The TEY-XAS of 

a-CD is close to the transmission-XAS as observed in Figure 2, showing that the photoemission 

yield of the a-CD is comparable to the graphitic CDs. The reduced TIY signal at 285 eV while 

π*C=C states are available in a-CD, as determined by in situ transmission XAS, must therefore 

come from a low charge transfer efficiency of photoelectrons at the CD-water interface. 

The sensitivity of XAS to short-range ordering in the material (a few atoms),8 makes the C=C 

signature of a-CD clearly visible in transmission XAS, as for graphitic samples. However, while 

the C=C bonds in g-CD and g-N-CD are mostly found in ordered graphitic planes as 

demonstrated by XRD and HRTEM,7,27 sp2-hybridized carbon atoms are mainly observed in 

small islands isolated into an amorphous carbon matrix in the core of the a-CD.27 As a result, the 

efficient electron transport properties of graphitic materials are not observed for a-CD. Electron 

scattering in the amorphous core may slightly reduce their kinetic energy and eventually quench 

the emission of photoelectron in water. As such, the above results suggest that graphitic CDs 

possess better charge transfer to the water molecules than the amorphous CDs. This observation 
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is in agreement with their more efficient electron transfer to molecular catalysts in aqueous 

homogenous dispersion previously reported for photocatalytic H2 evolution.7,27  

The features in the range between 286 and 288 eV can be assigned to the π*C–C–O transitions in 

oxygen-containing groups,9,28 whose intensities showed significant changes in the in situ TIY- 

XA spectra compared with the TEY-XA spectra obtained in the solid state. The shoulder at 535.5 

eV for the O 1s → π*C–OH of the carboxyl groups9 observed for CDs samples in the TEY-XA 

spectra at O K-edge (Figure S2) suggesting that the C–O features mainly originates from 

carboxyl groups. The sharp peak at 288.5 eV is assigned to the C 1s → π*C=O transitions of the 

carboxyl groups,9,26 which is also supported by infrared spectroscopy7 and the TEY-XA spectra 

at O K-edge (Figure S2).  

The shift and broadening of the peak at 288.5 eV observed in g-N-CD (Figure 2c) is attributed to 

the additional contribution of C-N bonds (288.1 eV) close to the C=O feature (288.5 eV). In 

agreement, a predominant pyridinic contribution was detected at 399.7 eV in the nitrogen K-edge 

XA spectrum (Figure S3).9 Another contribution in the N K-edge spectra centered at 401.7 eV 

may correspond to the quaternary N incorporated in six-fold aromatic cycles, including 

pyrimidine. These results confirmed the successful nitrogen incorporation in the core of g-N-CD. 

Nitrogen doping has a great influence on the electronic structure of carbon nanomaterials. 

Previous reports have confirmed that a localized density of states appears in the occupied region 

near the Fermi level of the carbon atoms adjacent to pyridinic nitrogen atoms, and thus suggests 

that carbon nanostructures containing pyridinic N possess Lewis basicity,29–31 which is beneficial 

for the photoreduction of water to hydrogen.32  
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The oxygen K-edge spectra of three different CDs dispersions were subsequently compared to 

pure water using transmission mode XAS (Figure 3a), which is directly sensitive to the oxygen 

X-ray cross-section. Typical water XA spectra consist of a pre-edge at 534.7 eV, a main edge 

around 537 eV and a post-edge at 540 eV.20 The overall X-ray absorption is higher for CDs 

dispersions than pure water but also differs with the samples. The intensity of the pre-edge 

feature of a-CD is as high as that of g-N-CD, whereas the intensities of the main- and post-edges 

of a-CD are stronger. For g-CD, these three features are weaker than those of the other two CDs 

samples. The C=O feature of CDs around 532 eV can be slightly visible on transmission-XA 

spectra, while the other bands observed on TEY-XAS (Figure S2) are overlapped by the water 

signals. The contribution from C=O bonds from CDs appears enhanced on TIY-XA spectra 

compared to transmission measurements at similar concentration (Figure S2). Together with their 

clear contribution on TIY-XAS at the carbon K edge, this indicates that surface carboxyl groups 

act as a channel for electrons transfer between CDs and the surrounding water molecules. 
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Figure 3. Transmission mode XA spectra at O K-edge from (a) water and different CDs 

dispersions (8 wt%) and (b) a-CD, (c) g-CD, (d) g-N-CD at different concentrations. The spectra 

are normalized to their integrated area. The pre/main-edge ratios for each spectrum are plotted 

below XA spectra. 

 



 12 

The differences shown in the O K-edge XA spectra between aqueous CDs dispersions and pure 

water can be interpreted in terms of modification of the hydrogen bonding network of water 

molecules surrounding CDs. As investigated in previous XAS studies of bulk water,33,34 the pre-

edge feature originates from unsaturated or dangling hydrogen bonds observed in liquid phase. 

The main edge is also related to the population of molecules with unsaturated hydrogen bonds, 

while the post-edge region is associated with the fully saturated hydrogen bonding network. In 

bulk ice, the pre- and main-edges are weaker compared to liquid water since all hydrogen atoms 

in ice participate in hydrogen bonds, while the post-edge is stronger than that of water. The 

interfacial water layers around nanoparticles dispersed in an aqueous environment forms a 

partially saturated hydrogen bonding network, which can be considered as the mixture of liquid 

water and ice. 

To compare the influence on the hydrogen bonding network of water molecules from the CDs 

samples, the pre/main-edge ratios were calculated from the fitted oxygen XA spectra (see Table 

S2 and Figure S4). The pre/main-edge ratio of pure water spectra remains constant as 19%. The 

pre/main-edge ratios at 8 wt% concentration of a-CD, g-N-CD and g-CD were decreased by 

37%, 28% and 22%, respectively, compared to the same ratio in pure water (Figure 3a), which 

confirms the contributions of both bulk water and the interfacial water around CDs in the oxygen 

K-edge spectra. The distinctive results of the pre/main-edge ratio represent the different 

hydrogen bonding networks around CDs, which can be influenced by the concentration, the 

nanoparticles size and the surface chemistry of the CDs. 

To confirm the strong impact of these three CDs on the water structure, the evolution of oxygen 

K-edge XA spectra at various concentrations was probed (Figure 3b-d). The absorption in the 

pre-, main- and post-edge regions enhances upon increasing the a-CD concentrations from 2 to 8 
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wt% (Figure 3b). The larger spectral change shown in the a-CD dispersion can be partially 

attributed to its larger sizes (6.8 ± 2.3 nm)27 compared to the other CDs samples (3.1 − 3.6 nm).7 

The hydrogen bonding networks induced by nanodiamonds of similar size as a-CD have been 

previously determined to extended over several solvation shells.24 Due to this arrangement, more 

bulk water molecules are involved in the formation of hydrogen bonds with the CDs, leading to 

the increased absorption of the pre-edge feature. This strong interaction between the a-CD and 

water molecules can also be confirmed by the pronounced C-O features shown in the in situ XA 

spectra at carbon K-edge (Figure 2a).  

For g-CD, XA spectra exhibit a prominent increase at the main- and post-edges with increasing 

concentration, while the pre-edge feature is only slightly changed (Figure 3c). The quenching of 

the pre-edge feature may result from the small size of g-CD (3.6 ± 1.0 nm)7, resulting in a higher 

amount of interfacial water, poorly contributing to the pre-edge. It should be noted that the g-CD 

samples were synthesized using the same precursor as a-CD, but at a higher calcination 

temperature to induce graphitization. The amorphous structures generally possess larger sizes 

with a non-uniform distribution than well-graphitized samples. For g-N-CD, the presence of 

nitrogen doping facilitates the emission of electrons and thus induces strong polarization of the 

CDs surface. Because the water molecule has a strong dipole moment, the surface polarization 

orients water molecules with oxygen sites pointing toward the CDs surface, leaving two 

hydrogen atoms available for the dual hydrogen bond motif. As such, our results suggest that a 

more structured long-range change of water organization (resembling amorphous ice) is formed 

around CDs with nitrogen doping. The changes of the hydrogen bonding network of the water 

molecules around the CDs induced by hydration may also be important for the effective charge 

transfer shown in g-N-CD as compared to g-CDs. From these spectroscopic studies, it appears 
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that Lewis basic carbon sites and structured interfacial water layer are generated by the 

graphitization and nitrogen doping of the CDs core. Together with the enhanced light absorption 

and the facilitated electrons transfer, g-N-CD exhibits superiority to enhance photocatalytic 

hydrogen evolution by acting as conductive channels, efficiently separating the photogenerated 

charge carriers.  

In summary, we have demonstrated direct spectroscopic evidence of the impact of carbon core 

structure on the charge transfer and hydration properties of CDs dispersed in water. In particular, 

we evidenced that efficient charge transfer to water occurs upon excitation of C=C bonds from 

CDs with graphitized core but not from CDs with amorphous core. To this aim, we performed in 

situ XAS measurements at the C K-edge by detecting the ionic current in aqueous CDs 

dispersion generated upon X-ray irradiation. Distinctive electronic structures of CDs originated 

from their unique structural properties and chemical functionalities were confirmed by 

comparing XAS measured with ionic yield to transmission and electron yield detections. 

Furthermore, changes of water hydrogen bonding network around CDs, probed at the O K-edge, 

were also found to depend on the CDs core structure. Ionic yield detection of XAS is a promising 

new method to probe photoactive sites on dispersed nanoparticles with element- and site-

selectivities that may facilitate the design of new photosensitizers and photocatalysts. 

Supporting Information.  

Experimental sections; O K-edge TEY-XA spectra of three CDs samples, and O K-edge TIY-XA 

spectra of a-CD, g-N-CD and water; N K-edge TEY-XA spectrum of g-N-CD; fitting details and 

deconvolutions of the C K-edge TEY-XA spectra and O K-edge transmission mode XA spectra 

of CDs samples (PDF) 
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