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Abstract. We develop a band-fluctuations model which describes the
absorption coefficient in the fundamental absorption region for direct and
indirect electronic transitions in disordered semiconductor materials. The model
accurately describes both the Urbach tail and absorption edge regions observed
in such materials near the mobility edge in a single equation with only three
fitting parameters. An asymptotic analysis leads to the universally observed
exponential tail below the bandgap energy and to the absorption edge model at
zero Kelvin above it, for either direct or indirect electronic transitions. The latter
feature allows the discrimination between the absorption edge and absorption
tails, thus yielding more accurate bandgap values when fitting optical absorption
data. We examine the general character of the model using a dimensionless Joint
Density of States formalism with a quantitative analysis of a large amount of
optical absorption data. Both heavily doped p-type GaAs and nano-crystalline
Ga1−xMnxN, as examples for direct bandgap materials, as well as amorphous
Si:Hx, SiC:Hx and SiNx, are modeled successfully with this approach. We
contrast our model with previously reported empirical models, showing in our
case a suitable absorption coefficient shape capable of describing various distinct
materials while also maintaining the universality of the exponential absorption
tail and absorption edge.
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1. Introduction

Knowledge of the optical bandgap and Urbach
energy of crystalline and amorphous semiconductors
is essential when designing materials and devices.
For instance, the impact of localized tail states on
the performance of optoelectronic devices based on
amorphous and/or polycrystalline semiconductors is
well established [1–8]. In the vicinity of the absorption
edge, electronic transitions between the conduction
and valence extended states are responsible for the
main optical absorption phenomena in semiconductors,
the so-called fundamental band-to-band absorption.
This can be characterized using optical data, which
contains information on the electronic density of
states (DOS) in the bands as well as on the band
tail density of states and also within the optical
bandgap. To this end, light absorption measurements
are one of the most commonly used approaches to
estimate the optical bandgap. This is typically
done by fitting the fundamental absorption region
of the absorption coefficient α(λ) with a suitable
model. This is a relatively simple and straightforward
procedure, however, conventional models used to
describe the fundamental absorption region do not
consider localized tail states and are in most cases
limited to a narrow spectral region. Thus, the retrieved
bandgap values are often sensitive to the chosen fitting
region and can be unreliable.

Depending on the band structure of a material,
there are three models to describe the fundamental
absorption: for crystalline direct materials (α ∼√

~ω − Eg) and for crystalline indirect materials and
amorphous materials (α ∼ (~ω − Eg)2). Although the
functional dependence on photon energy is the same for
indirect and amorphous cases, these are two distinct
models by definition [9]. These conventional models
are developed for isotropic media in the effective
mass approximation at zero Kelvin [9–12]. They do
not consider electronic transitions between disorder-
induced tail states and extended states. Typically,
tail state absorption overlaps with the fundamental
absorption, making it difficult to establish a region
where the aforementioned models can be used. In
amorphous semiconductors the latter effect is more
pronounced due to an increased density of disorder-
induced tail states.

Exponential absorption tails are typically ana-
lyzed using the empirical Urbach rule (α ∼ eβ~ω) [13].

This model is independent from the fundamental ab-
sorption and does not contain information on the op-
tical bandgap nor is it analytically connected to other
physical parameters of the fundamental absorption. In
this matter, we have recently proven the effectiveness
of introducing band-fluctuations when describing the
fundamental absorption of amorphous hydrogenated
silicon carbide [1], nano-crystalline methylammonium
lead iodide [2] and formamidinium cesium lead mixed-
halide [3] perovskite semiconductors near the absorp-
tion band edge. Here, we develop the fundamental ab-
sorption model in detail, resulting in a merge of the Ur-
bach and absorption edge regions in a single equation
described as a consequence of band-fluctuations. An
asymptotic analysis leads to an exponential behaviour
equivalent to the Urbach rule for photon energies well
below the bandgap (~ω � Eg), and to the conventional
band-to-band extended states absorption models above
the absorption edge. This model can therefore be used
to distinguish the band-to-band absorption edge from
the absorption due to localized-to-extended electronic
transitions (absorption tails).

We use this framework to first show that
thermally induced band-fluctuations and structural
induced band-fluctuations can be treated equivalently.
We introduce band-fluctuations in the light-induced
electronic transition rate through an averaging of
the joint density of states. Then, we expose
the general character of the developed fundamental
absorption model via a dimensionless joint density
of states formalism [14, 15], exhibiting the universal
nature of the shape of the fundamental absorption
which is material independent under the effective
mass approximation and contrasting the model with
previously developed ones attempting to describe the
absorption edge covering the exponential absorption
tails. Finally, absorption coefficient data for various
direct crystalline and amorphous semiconductors are
used to demonstrate the applicability of the developed
model. Here we perform the analysis with optical data
from crystalline GaAs, nano-crystalline Ga1-xMnxN,
and amorphous Si:Hx, SiNx and SiC:Hx.

2. Theoretical background

In this section, we briefly review the electronic Joint
Density of States (JDOS) concept for direct and
indirect materials, which is the prerequisite for our
band-fluctuations calculation and dimensionless JDOS
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concept.
The absorption coefficient of a semiconductor is

proportional to the energy density rate ~ωRcv, with
~ω the photon energy and Rcv the electronic transition
rate [11,12],

Rcv = R
∑
kc,kv

|Mcv|2

× δ(Ec − Ev − ~ω ± EΩ)δkc,kv+q±kΩ
. (1)

Here, R = 2π/~
(
Ee/2ωme

)2
, with me the electron

mass, e the elementary charge and E the electric field
of the incoming radiation. Ec and Ev are energies
in the conduction and valence energy bands of the
initial and final states taking part in the absorption
process, respectively. |Mcv|2 is the electronic transition
matrix element and is different for indirect and direct
electronic transitions. kc and kv are the conduction
and valence electron wave vectors, respectively. kΩ and
EΩ are the phonon wave vector and phonon energy,
respectively. q is the photon wave vector component
(ω/c). For practical effects q and EΩ can be neglected.
The terms δ(Ec−Ev−~ω±EΩ) and δkc,kv+q±kΩ

ensure
the energy and wave vector conservation, respectively.

Note that Eq. (1) represents actually two
equations, one for direct and another for indirect
electronic transitions. In the first case no inelastic
processes are taken into account and thus the most
probable absorption events are those that keep kc =
kv, whereas for indirect electronic transitions the
transition in k-space is phonon assisted and thus
kc = kv ± kΩ. In the amorphous case, on the other
hand, the k-conservation is relaxed allowing all possible
transitions [9]. This can be understood in terms of the
frozen phonon approach [16].

Typically, in order to develop an analytic model
for the fundamental absorption, the energy bands
are treated in the effective mass approximation, i.e.

Ev = −~2k2
v

2m∗
h

and Ec = Eg +
~2k2

c

2m∗
e

, with m∗h and

m∗e being the effective hole and electron masses,
respectively, assumed isotropic. This approximation
allows a description of the absorption coefficient in
Eq. (1) only within a spectral region near the optical
bandgap.

For direct transitions only, Rcv can be written in
terms of the JDOS Dcv, as shown in Eq. (2). Dcv

is given by Eq. (3) and is the result of calculating
the density of states of the energy bands difference
Ecv = Ec − Ev for kc = kv [11, 12].

Rcv = R
∫
|Mcv|2Dcv(Ecv)δ(Ecv − ~ω)dEcv. (2)

Dcv(Ecv) =

√
2µ∗3/2

π2~3

×

{
(Ecv − Eg)

1/2
, Ecv ≥ Eg

0 , Ecv < Eg

. (3)

Here, µ∗ is the effective reduced mass, µ∗−1 = m∗−1
e +

m∗−1
h . By assuming that |Mcv|2 varies slowly with

the energy, the absorption coefficient under these
conditions (dα) can then be written as shown in Eq.
(4), with n the refractive index and c the speed of
light [11,12].

dα(~ω) =
π~
ε0nc

(
e

me

)2 |Mcv|2

~ω
Dcv(~ω) (4)

On the other hand, for indirect electronic
transitions all energetically possible transitions, for
a given photon energy ~ω, between initial (v) and
final (c) states must be considered in Rcv. Thus,
Rcv is written in terms of both the valence (Dv) and
conduction (Dc) DOSs as shown in Eq. (5). This
expression is the same for amorphous materials [9,10].

Rcv = R
∫∫
|Mcv|2Dc(Ec)Dv(Ev)

× δ(Ec − Ev − ~ω)dEvdEc (5)

The conduction and valence DOSs, in the effective
mass approximation, are given by Eqs. (6) and (7),
respectively.

Dc(Ec) =

√
2m
∗3/2
e

π2~3

{
(Ec − Eg)

1/2
, Ec ≥ Eg

0 , Ec < Eg

(6)

Dv(Ev) =

√
2m
∗3/2
h

π2~3

{
0 , Ev > 0

(−Ev)
1/2

, Ev ≤ 0
(7)

Again, by assuming that |Mcv|2 varies slowly with
energy, the integral in Eq. (5) has a known solution
[12]. It is possible to define a JDOS Jcv, in order to
write Rcv and the absorption coefficient in a simplified
form, such as

Rcv = R
∫
|Mcv|2 Jcv(Ecv)δ(Ecv − ~ω)dEcv, (8)

with

Jcv(Ecv) =

∫
Dc(Ev + Ecv)Dv(Ev)dEv

=
2(m∗em

∗
h)3/2

π4~6

{
π
8 (Ecv − Eg)

2
, Ecv ≥ Eg

0 , Ecv < Eg

(9)
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The absorption coefficient for indirect transitions
(iα) under the above mentioned assumptions is then
given by

iα(~ω) =
π~
ε0nc

(
e

me

)2 |Mcv|2

~ω
Jcv(~ω). (10)

Note that Eqs. (4) and (10) are very similar,
and the direct or indirect character of the electronic
transitions depends on the JDOS.

2.1. Band-fluctuations

Band-fluctuations arise from disorder-induced local
variations of the band edges, thermally-induced
potential fluctuations or lattice vibrations, and any
other deviations from the perfect periodicity of the
lattice [17,18]. In order to introduce band-fluctuations
into the optical absorption process, let us first
define Qcv as a general JDOS in the effective mass
approximation,

Qcv(Ecv;Eg) = Q0

{
(Ecv − Eg)

r
, Ecv ≥ Eg

0 , Ecv < Eg

. (11)

Here, for r = 1/2: Qcv = Dcv and for r = 2: Qcv = Jcv.
Q0 collects the corresponding coefficients either for
direct or indirect electronic transitions. Note that Eg

is written explicitly in the argument of Qcv in order
to emphasize the band-fluctuations and the explicit
dependency of Qcv on Eg. For this, we consider Qcv

as a local JDOS, with a local bandgap named z which
fluctuates around Eg with a distribution Ŵ (z−Eg) of
potential fluctuations [18,19],

〈Qcv〉(Ecv;Eg) :=

∫
Qcv(Ecv; z)Ŵ (z − Eg)dz. (12)

By performing the variable change ε−Eg = Ecv−
z, and for an even Ŵ , Eq. (12) leads to

〈Qcv〉(Ecv;Eg) =

∫
Qcv(ε;Eg)Ŵ (ε− Ecv)dε, (13)

because the two arguments of Qcv appear as a
difference.

In the latter equation ε is the fluctuating variable.
This equation can be interpreted as the average effect
of thermal fluctuations on the necessary energy to
excite an electron from a valence state to a conduction
state. On the time scale of an optical absorption
event, displacements due to a thermal distribution
of phonons can be considered frozen. Thus this
formalism is consistent with the interpretation of

the optical absorption fluctuations as resulting from
thermal and/or structural fluctuations of the bandgap
energy.

We use Eq. (13) to determine the average
electronic transition rate 〈Rcv〉 for direct and indirect
electronic transitions by replacing the corresponding
JDOS with its average counterpart in Rcv, i.e.
Dcv(Ecv) → 〈Dcv〉(Ecv) ≡ 〈Qcv〉(Ecv;Eg) in Eq. (2)
and Jcv(Ecv) → 〈Jcv〉(Ecv) ≡ 〈Qcv〉(Ecv;Eg) in Eq.

(8). When assuming |Mcv|2 as nearly constant versus
the photon energy [12], the latter substitution leads to
Eqs. (14) and (15) for direct and indirect electronic
transitions, respectively.

〈Rcv〉 = R
∫
|Mcv|2Dcv(ε)Ŵ (ε− ~ω)dε (14)

〈Rcv〉 = R
∫∫
|Mcv|2Dc(Ev + ε)Dv(Ev)

× Ŵ (ε− ~ω)dEvdε (15)

Note that the integration variable ε is a dummy
variable, and therefore Eq. (14) is equivalent to Eq.
(2) whilst Eq. (15) is equivalent to Eq. (5), with the
exception of the weight function. Furthermore, in the
fluctuationless limit, the weight function converges into
a Dirac delta function Ŵ (ε− ~ω)→ δ(ε− ~ω) to fully
recover Eqs. (2) and (5).

In both direct and indirect cases, the electronic
transition rate Rcv experiences the same variation in
the energy conservation term δ(Ec − Ev − ~ω) →
Ŵ (Ec−Ev−~ω) when introducing band-fluctuations.
This variation represents the fluctuations of the energy
that are necessary for an optical absorption event to
take place.

In principle, the selection of the weight function
should aim at describing the underlying statistics
behind the fluctuations, which can be either thermal
and/or structural. Here, instead of following previous
authors who used a Gaussian distribution [17–19], we
choose a different distribution which also yields a Dirac
delta in the fluctuationless limit.

Consider first the representation of the Dirac delta
δ(ε) as the derivative of the step function Θ(ε)

δ(ε) =
∂

∂ε
Θ(ε) = − ∂

∂ε
(1−Θ(ε)) .

The step function 1 − Θ(ε) can be expressed in terms
of a sigmoidal function through the limit

1−Θ(ε) = lim
1/β→0

1

1 + eβε
. (16)

Thus, taking the derivative of the argument of the limit
in Eq. (16) we obtain
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δ(ε) = lim
1/β→0

βeβε

(1 + eβε)
2 . (17)

Therefore, we define the weight function Ŵ (ε) as

Ŵ (ε) =
βeβε

(1 + eβε)
2 . (18)

This Ŵ (ε) distribution fulfills the normalization
condition and has a full width at half maximum
(FWHM) equal to 4β−1ArcCosh

(√
2
)
. Also, note that

Ŵ (ε) is equal to minus the derivative of the Fermi
distribution (− ∂

∂εf(ε)), with β the Urbach slope, the
inverse of the Urbach energy, EU = 1/β. Thus,
with our choice of weight function we come to an
expression similar to the Kubo-Greenwood formula for
the electrical conductivity of metals [20], in which
stimulated relaxation processes are taken into account
for an ensemble of electrons at a finite temperature.
In the present case the temperature is fictitious and
is a measure of the width of the weight function Ŵ
describing the fluctuations, and the Fermi level is
replaced by a pseudo Fermi level located in the valence
band edge [21,22].

Eq. (18) allows writing the integral in Eq. (13)
in terms of the Fermi integral Fj and thus of the Poly-
Logarithm function Lij+1, whose solutions are included
in most numerical and data analysis software tools
nowadays, see Eq. (19). Here Γ(j + 1) is the Gamma
function of j + 1.

Fj(x) =
1

Γ(j + 1)

∫ ∞
0

tj

exp(t− x) + 1
dt

= −Lij+1 (− exp(x)) . (19)

The averaged JDOS can then be written for direct
electronic transitions as

〈Dcv〉(Ecv) = −D0
1

2

√
π

β
Li1/2

(
−eβ(Ecv−Eg)

)
, (20)

with the following asymptotic behaviour

〈Dcv〉(Ecv) ≈ D0

{
(Ecv − Eg)

1/2
, Ecv � Eg

1
2

√
π
β eβ(Ecv−Eg) , Ecv � Eg

.

The averaged JDOS for indirect electronic transi-
tions is given by

〈Jcv〉(Ecv) = −J0
1

4

π

β2
Li2

(
−eβ(Ecv−Eg)

)
, (21)

with the following asymptotic behaviour

〈Jcv〉(Ecv) ≈ J0
π

8

{
(Ecv − Eg)

2
+ π/β2 , Ecv � Eg

2
β2 eβ(Ecv−Eg) , Ecv � Eg

.

Here D0 =
√

2µ∗3/2

π2~3 and J0 =
2(m∗

em
∗
h)3/2

π4~6 . Note
how both the exponential shape of the Urbach tail and
the square root (parabolic) shape of the absorption
edge for direct (indirect) electronic transitions are
recovered.

2.2. Alternative models

Attempts to model the fundamental absorption and/or
JDOS near the band edge considering tail states have
been made previously. Some approaches aim to merge
the universally observed exponential tail smoothly
with the absorption edge [14, 15, 23–25]. Others are
focused on developing a theory yielding Urbach tails
[18, 19,26–29].

Here, for comparison purposes, we focus on the
empirical models by Ullrich [23, 24] and O’Leary [14,
15] for crystalline direct bandgap and for amorphous
semiconductors, respectively. These models rely on
attaching Urbach tail states to extended states under
a condition of continuity in the derivative.

In the direct case the JDOS is given by

D̃cv(Ecv) = D0

{
(Ecv − Eg)

1/2
, Ecv ≥ EcvT

1√
2β

eβ(Ecv−EcvT
) , Ecv < EcvT

,

(22)
with

EcvT = Eg +
1

2β
. (23)

Here the EcvT
energy value denotes the point at

which the transition from the square root shape to the
exponential shape of the curve takes place and is a
consequence of the first derivative continuity condition
[23,24].

Figure 1 depicts the normalized JDOS for direct
transitions calculated using the band-fluctuations
approach 〈Dcv〉 and Ullrich’s empirical model D̃cv. In
the band-fluctuations case, we observe how the number
of states above the bandgap is reduced and the shape
of the JDOS changes by increasing the Urbach energy,
whilst tail states increase.

In the indirect (disordered) case, tail states are
attached to the valence density of states (Dv) only,
arguing that the conduction band tail states are
considerably narrower than the valence band tail
states, and thus can be neglected for instance in the
particular case of a-Si:H [14,15,30],
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Figure 1. Normalized JDOS curves for direct electronic
transitions according to the band-fluctuations model, Eq. (20)
〈Dcv〉 (a) and according to the empirical model by Ullrich, Eq.
(22) D̃cv (b). Note how the band-fluctuations not only generate
tail states below the bandgap in 〈Dcv〉 but reduce the number
of states above it.

D̃v(Ev) =

√
2m
∗3/2
h

π2~3

{
1√
2βv

eβv(EvT
−Ev) , Ev > EvT

(−Ev)
1/2

, Ev ≤ EvT

(24)
with

EvT
= − 1

2βv
. (25)

Here, also the EvT energy value denotes the
merging point between the exponential tail and the
square root shape of the valence DOS. The JDOS can
then be calculated by solving the integral

J̃cv(~ω) =

∫
Dc(Ev + ~ω)D̃v(Ev)dEv. (26)

The previous approach can be extended beyond
a-Si:H to other amorphous semiconductors by consid-
ering the fact that conduction and valence tail states
contribute equally to the absorption tail and thus are
indistinguishable after the convolution denoted by the
integral in Eq. (26). The solution of this integral will
be shown in the next section.
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2  
 J
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Figure 2. Normalized JDOS curves for indirect electronic
transitions according to the band-fluctuations model, Eq. (21)
〈Jcv〉 (a) and according to the empirical model by O’Leary, Eq.
(26) J̃cv (b). The curves are plotted in the square root scale
for visualization reasons only, exhibiting the Tauc and Urbach
regions merged.

Figure 2 depicts the normalized JDOS for indirect
transitions calculated using the band-fluctuations
approach 〈Jcv〉 and the empirical model by O’Leary
J̃cv. Since in this case the JDOS exhibits a parabolic
behaviour, the curves are shown in the square root
(or Tauc [10]) scale. Both are very similar and the
differences will stand out in the dimensionless JDOS
framework described in the next section.

3. Dimensionless JDOS formalism

The main achievements of a band-fluctuation model
are twofold: (1) the ability to perform a single fit
of both tail and extended states with just three
parameters, the bandgap Eg, Urbach slope β and
prefactor α0, thus extending the fit from the absorption
edge region to the tail region, including their overlap
[1–3]. This overlap is smooth and follows from a

potential fluctuation distribution defined by Ŵ (ε). (2)
the capability of discriminating the absorption edge
of extended-to-extended states transitions from tail
states absorption [1–3]. This feature was demonstrated
previously for the case of a-SiC:H [1], in which
the decrease of the bandgap calculated with the
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Tauc model was attributed to a variation of the
Urbach slope, which overlapped considerably with
the fundamental absorption edge (or extended states
edge). In fact, the bandgap calculated with the band-
fluctuations model exhibited a behaviour that was
independent of the Urbach energy [1].

A dimensionless JDOS formalism establishes a
framework in which experimental results, even from
different materials, can be re-scaled onto a single
universal curve for comparison purposes [14,15].

In this section we proceed by rewriting the
aforementioned models in a dimensionless formalism
of a universal shape in the absorption spectrum, which
can be traced back to the corresponding JDOS. Such
universal shapes are not new. In fact, in the effective
mass approximation a square-root (parabolic) shape
for the absorption edge is expected, and therefore a
similar behaviour between distinct direct (indirect)
bandgap materials is also expected. Similar arguments
hold for the universality of the exponential tails. As
mentioned previously, the general consensus is that
Urbach tails are caused by lattice static disorder as
well as thermal effects [31,32].

By defining

Dcv(z) = −
√
π

2
Li1/2 (−ez) , (27)

and

D̃cv(z) =

{
1√
2
e(z− 1

2 ) , z < 1
2√

z , z ≥ 1
2

, (28)

we can write the Dcv in terms of the dimensionless
JDOS Dcv or D̃cv for band-fluctuations or Ullrich’s
empirical model, respectively,

Dcv(Ecv) = D0
1√
β
Dcv [β(Ecv − Eg)] . (29)

Likewise, by defining

Jcv(z) = −π
4

Li2 (−ez) , (30)

and after integrating Eq. (26)

J̃cv(z) =z2Ξ
[
z−1/2
z

]
+ 1√

2
e(z− 1

2 )Y
[
z − 1

2

]
, z ≥ 1

2

1√
2
e(z− 1

2 )Y [0] , z < 1
2

,

(31)

with
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Figure 3. Dimensionless JDOS, Eqs. (27) and (28) for direct
(a) and Eqs. (30) and (31) for indirect (and amorphous) (b)
electronic transitions. Dashed and dotted lines correspond to
the asymptotic limits. Note that the expressions z1/2 and z2

are only valid for z ≥ 0.

Ξ(z) =

∫ z

0

√
x
√

1− xdx

=
π

8
+

√
z − z2

4
(2z − 1)

+

√
z − 1

4

sinh−1(
√
z − 1)√

1− z
(32)

and

Y(z) =

∫ ∞
z

√
xe−xdx

=
√
ze−z +

√
π

2
erfc(
√
z) (33)

we can write the Jcv in terms of the dimensionless
JDOS Jcv or J̃cv for band-fluctuations, or the
empirical model by O’Leary, respectively,

Jcv(Ecv) = J0
1

β2
Jcv [β(Ecv − Eg)] . (34)

Equations (29) and (34) establish a direct
relation between the absorption coefficient and the
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corresponding dimensionless JDOS when z = β(~ω −
Eg). The absorption coefficient can then be written as

dα(~ω) =
α0

~ω
1√
β
Dcv(β(~ω − Eg))

for direct transitions, and

iα(~ω) =
α0

~ω
1

β2
Jcv(β(~ω − Eg))

for indirect transitions. Here the coefficient α0 collects
the corresponding constants in a single coefficient
either for direct or indirect electronic transitions.

Fig. 3 depicts the dimensionless JDOSs Dcv, D̃cv,
Jcv and J̃cv. Additionally, the asymptotic limits are
also shown as colored dashed lines. Note that in both
direct and indirect cases, Urbach tails have the same
slope in logarithmic scale and are independent of the
model. Dashed black lines depict the fluctuationless
limit in this figure.

4. Comparison with experiments

In this section we use the previously developed
and described models to analyse the absorption
coefficient of distinct materials. We apply the models
to two groups of materials: (1) crystalline direct
semiconductors exhibiting considerable Urbach tails
induced by doping and nano-crystalline structure and
(2) disordered semiconductors in which the Urbach tail
and mobility edge are modified by hydrogen dilution
during the deposition process, thermally induced
hydrogen outdiffusion and/or structural relaxation.

For the case of direct semiconductors, we use the
absorption coefficient measured for heavily p-doped
c-GaAs as shown by Casey et al. [33] and of nc-
Ga1−xMnxN provided by Leite and Da Silva [34]. For
the amorphous case we took the absorption coefficient
data of a-Si:Hx for different hydrogen dilution contents,
extracted from Viturro et al. [35]. We also test the
model on the absorption coefficient of a-SiNx grown
in our labs by PECVD [36]. Finally, we present fits
for the absorption coefficient of a-SiC:Hx for different
hydrogen dilution conditions and after annealing at
different temperatures. Further details on the latter
samples, such as preparation and optical measurements
can be found in Guerra et al. [1].

4.1. Direct semiconductors

Doping a crystalline semiconductor induces disorder in
the host matrix. Disorder-induced localized states will
become evident in the Urbach tail of the absorption
coefficient below the bandgap. In particular, heavily
doped crystals exhibit considerable tail states, mainly
caused by band-fluctuations due to charged impurities
randomly distributed in the solid [37]. This is the
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Figure 4. Absorption coefficient of heavily p-doped c-GaAs for
different doping concentrations measured at room temperature
[33] and the corresponding fits using the models by Ullrich and
band-fluctuations, Eqs. (22) and (20), dashed and solid curves,
respectively (a). Dimensionless JDOS according to the model by
Ullrich [23,24] (D̃cv) described by Eq. (28) (b), and according to
the band-fluctuations [2, 3] model (Dcv) described by Eq. (27)
(c). The model curve is denoted by a solid purple line. The
straight arrow indicates the presence of excitonic states in the
high purity sample which were not considered in the model.

case for heavily doped GaAs [33]. Figure 4 depicts
fits using Eq. (4) for the absorption coefficient of p-
doped c-GaAs for different doping conditions. The
fits are performed for the band-fluctuations model and
the empirical model by Ullrich, Eqs. (20) and (22),
respectively. The corresponding dimensionless JDOSs,
using both previously described models for crystalline
direct semiconductors Dcv and D̃cv are also shown in
this figure. The fits achieved with both equations are
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Figure 5. Absorption coefficient of nc-Ga1−xMnxN for different
stochiometries measured at room temperature [34] and the
corresponding fits using the models by Ullrich and band-
fluctuations, Eqs. (22) and (20), dashed and solid curves,
respectively (a). Dimensionless JDOS according to the model by
Ullrich [23,24] (D̃cv) described by Eq. (28) (b), and according to
the band-fluctuations model [2, 3] (Dcv) described by Eq. (27)
(c). The model curve is denoted by a solid purple line. Note the
poor agreement between experiment and D̃cv .

good. However, note how in the experimental data the
increase of the Urbach tails is followed by a decrease
of absorption above the bandgap when increasing the
doping content. This behaviour is similar to the one
described by Dcv in Eq. (20) and is also depicted in
Fig. 1. On the contrary, the empirical model by Ullrich
D̃cv in Eq. (22) does not reproduce this behaviour.

Nano-crystalline semiconductors also exhibit wide
Urbach tails which can be traced back to residual stress
after the growth process and/or to different grain sizes.
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Figure 6. Optical bandgap and Urbach energy values retrieved
from the absorption coefficient data of c-GaAs [33] versus Si
doping concentration (a)(b), and nc-Ga1-xMnxN [34] versus
stoichiometry (c)(d). The values were obtained using the
traditional fundamental absorption model Eq. (3), band-
fluctuations model Eq. (20) and Ullrich’s model Eq. (22). HP
stands for high purity.

Morever, there is a relation that has been observed
in some compounds between the stoichiometry of
the compound and the width of tail states [38, 39].
Typically, an increase of strained bonds due to a
variation in the stoichiometry is followed by an increase
of the Urbach energy. Here we fit the absorption
coefficient data of nc-Ga1−xMnxN obtained from Leite
et al. [34]. Fits using Eqs. (20) and (22) are depicted
in Fig. 5, along with the corresponding data in the
dimensionless JDOS frame. Fits using both models are
good. Nevertheless, note how the sharper transition
from the extended states region to the tails states
region when using Eq. (22) results in a poorer fit
in contrast to the band-fluctuations model. This
effect becomes more evident in the dimensionless JDOS
framework.

The differences between model and experimental
data when using the model by Ullrich, i.e. Eq. (22),
especially in the overlap of the extended and localized
tail states, can be traced back to the arbitrary and/or
non-physical merging condition between Urbach tail
states and extended states. The continuity of the first
derivative seems not to be a suitable condition to model
this region. Fig. 6 summarizes the recovered Urbach
energy and optical bandgap from the fits shown in Figs.
4 and 5. Additionally, the bandgap values calculated
using the fluctuationless JDOS of Eq. (3) are presented
for comparison purposes.

On the one hand, for GaAs the retrieved bandgap
values match very well between models with an
Eg ≈ 1.41 eV for the high purity case. This
value in particular is very close to that reported
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by Ullrich et al. [40] at room temperature from
photo-luminescence measurements. The behaviour
of the bandgap versus the silicon doping follows a
similar trend with increasing doping concentration
after fitting the band-fluctuations model Eq. (20) and
Ullrich’s model Eq. (22), in contrast to the values
retrieved using the fluctuationless model Eq. (3),
which considers only extended-to-extended band-band
transitions. The increase of the Urbach energy in
this case is associated to band-fluctuations due to the
increase of charged impurities [37], whilst the decrease
of the bandgap at high doping concentrations is
associated to a bandgap narrowing due to many-body
effects which become important at shorter carrier-to-
carrier distances [37], see Fig. 6 (a) and (b).

On the other hand, for nc-Ga1-xMnxN the
bandgap values obtained after fitting Eqs. (20) and
(22) are consistent for x = 0 (Eg ≈ 3.35 eV).
However, in this case the bandgap retrieved using
the fluctuationless fundamental absorption model of
Eq. (3) shows inconsistent values above 3.4 eV for
all compositions. Moreover, the dependence of the
bandgap versus the composition x seems to follow
inversely the EU behaviour, see Fig. 6 (c) and (d).
This is mainly due to the fact that Eq. (3) does not
consider tail states and thus the apparent shrinking
of Eg is actually due to the increasing overlap of the
Urbach tail on the fundamental absorption edge with
the composition [1].

4.2. Amorphous semiconductors

In amorphous semiconductors, absorption from tail
states to extended states overlaps considerably with
the band-to-band absorption edge. Also, similar to
the crystalline case, tail states are sensitive to doping,
temperature and disorder. The latter in particular
can be modified through thermal annealing treatments,
thus affecting the Urbach slope directly. In order to
evaluate the models developed in previous paragraphs,
in this section we test them for three distinct cases: (1)
the modification of the fundamental absorption due to
variation of hydrogen dilution conditions during the
deposition process of a-Si:H, (2) bandgap engineering
by means of stochiometry manipulation in a-SiNx and
(3) the effect of hydrogen dilution and post deposition
thermal annealing treatments on the Urbach tail and
absorption edge of a-SiC:Hx.

Fig. 7 depicts the absorption coefficient of a-
Si:H grown with different hydrogen dilutions during
the deposition process. The data were extracted from
Vitturo et al. [35]. Fits using Eq. (10) for band-
fluctuations and the empirical model by O’Leary, Eqs.
(21) and (26), respectively, are also shown in this
figure. Both models exhibit a good correspondence
between experimental data and theoretical curves.
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Figure 7. Absorption coefficient of a-Si:H for different hydrogen
dilution conditions, measured at room temperature [35] and the
corresponding fits using Eqs. (21) and (26), solid and dashed
curves, respectively (a). Dimensionless JDOS according to the
model by O’Leary [15] (J̃cv) described by Eq. (31) (b), and
according to the band-fluctuations [1] model (Jcv) described by
Eq. (30) (c). The model curve is denoted by a solid green line.

Furthermore, no considerable deviation is observed in
the dimensionless JDOS frame. The same behaviour
is observed for the case of a-SiNx and a-SiC:Hx, see
Figures 8 and 9, respectively. Despite the variation of
the Urbach slope, a shift of Eg to higher energies is
observed following the mobility edges widening due to
increasing nitrogen (hydrogen) [1, 8, 31] incorporation.

Fig. 10 summarizes the recovered Urbach energy
and optical bandgap calculated from the fits shown
in Figures 8 and 9 for amorphous SiNx and SiC:Hx,
respectively. Here only the results corresponding
to the SiC:Hx samples grown in an argon/hydrogen
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Figure 8. Absorption coefficient of a-SiNx grown with
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measured at room temperature, and the corresponding fits using
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Dimensionless JDOS according to the model by O’Leary [15]
(J̃cv) described by Eq. (31) (b), and according to the band-
fluctuations [1] model (Jcv) described by Eq. (30) (c). The
model curve is denoted by a solid green line.

atmosphere with a 15 sccm hydrogen flux are shown
for different annealing temperatures. Bandgap values
calculated using the fluctuationless JDOS in Eq. (9)
are also presented for comparison purposes. The
retrieved bandgap values match very well between
models for the case of SiNx and with the same trend
versus the nitrogen incorporation.

On the contrary, bandgap values retrieved with
the three different models in the case of a-SiC:Hx

are different and follow different trends when plotted
versus the annealing temperature. The bandgap
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Figure 9. Absorption coefficient of a-SiC:Hx grown under
different hydrogen flows during the deposition process, measured
at room temperature [1]. Fits using the band-fluctuations model
Eq. (21) and model by O’Leary Eq. (26) are shown, solid and
dashed curves, respectively (a). Dimensionless JDOS according
to the model by O’Leary [15] (J̃cv ) described by Eq. (31) (b),
and according to the band-fluctuations model (Jcv) described
by Eq. (30) (c). The model curve is denoted by a solid green
line.

calculated with the band-fluctuations model increases
with the annealing temperature, while that calculated
with the models by O’Leary and Tauc seems to
be correlated to the Urbach energy. The expected
behaviour with the annealing is a shrinking of the
mean lattice constant and thus an enhancing of the
bandgap independently of thermally-induced hydrogen
out-diffusion or even for non hydrogenated samples [1].
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Figure 10. Optical bandgap and Urbach energy retrieved from
the absorption coefficient data of a-SiNx grown with different
NH3/SiH4 ratios (a)(b), and of a-SiC:Hx grown with a 15
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annealing temperatures (c)(d). The values were obtained using
the Tauc model Eq. (9), band-fluctuations model Eq. (21) and
model by O’Leary Eq. (26).

5. Conclusions

We have developed analytic expressions based on
a band-fluctuations model, which are capable of
describing the absorption coefficient in the Urbach
tail and absorption edge regions of disordered
semiconductors with three fitting parameters only.
These expressions were developed for the cases of both
direct and indirect electronic transitions. We tested
these models on absorption data from various materials
exhibiting considerable Urbach tails, for instance
for direct materials with heavy doping (GaAs),
nano crystalline structure and distinct stochiometries
(Ga1−xMnxN). We also tested the model for indirect
electronic transitions on amorphous semiconductors,
where Urbach tails and mobility edges are modified due
to changing hydrogen content in the film, annealing
temperature (a-Si:H and a-SiC:H) or stochiometry (a-
SiNx). We find that our band-fluctuations model
provides a suitable description of the overlap between
the Urbach and absorption edge regions without
introducing new additional states.

An asymptotic analysis of our developed model
leads to the universally observed exponential absorp-
tion tail for direct and indirect electronic transitions
[9]. Moreover, the universality of the effective mass ap-
proximation is also recovered when performing the di-
mensionless JDOS analysis. For photon energies above
the bandgap energy, our model reproduces the α(~ω)
behaviour that follows from the effective mass approx-
imation, i.e. parabolic bands lead to a square root
shape of the electronic density of states. Using the

mentioned examples, we could demonstrate that our
models are of great utility to the experimentalist. For
instance, by using these models, the band-to-band ab-
sorption edge can be distinguished from absorption due
to localized-to-extended electronic transitions (tails),
and the fitting region for obtaining the optical bandgap
can be extended [1–3], yielding a more reliable calcu-
lation of the bandgap. Furthermore, the generalized
framework can be used to test different distribution
functions to describe band-fluctuations, provided they
can be cast into an expression describing the energetic
distribution of states.
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