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Abstract

Electronic coherences in molecules are ultrafast charge oscillations on the Molecular Frame (MF)

and their direct observation and separation from electronic population dynamics is challenging.

Here we present a valence shell Lab Frame (LF) scattering method suited to probing electronic

coherences in isolated systems. MF electronic coherences lead to LF electronic anisotropies ob-

servable by ultrafast angle-resolved scattering. Moment analysis of the LF anisotropy completely

separates electronic coherences from population dynamics, demonstrated in excited state NH3 us-

ing ultrafast time-energy-angle-resolved photoelectron spectroscopy. This general approach applies

equally to attosecond/femtosecond electronic coherences in isolated systems.
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I. INTRODUCTION

Electronic coherences in molecular systems underlie their structural and dynamical prop-

erties. In attosecond science, coherences prepared by ultrashort laser pulses create electronic

wavepackets [1–4]. On longer time scales, atomic motions modify these coherences, leading

to dephasing and electronic population dynamics [3, 5, 6]. Nuclear motion also induces and

alters electronic coherences and populations via non-adiabatic couplings [7–11]. In poly-

atomics, electronic population dynamics at conical intersections [12] can be probed using

techniques such as Time-Resolved Photoelectron Spectroscopy [13–17]. A key challenge is

the direct observation of electronic coherences and their separation from electronic popula-

tion dynamics [6, 7, 18–20], requiring observables such as the nonlinear X-ray spectroscopies

theoretically proposed for observing electronic coherences induced by passage through a con-

ical intersection [7–9]. Here we propose and demonstrate a general wavepacket approach,

based on angular momentum correlations in isolated systems, which completely separates

electronic population dynamics from electronic coherences. We emphasize two points: (i)

Molecular Frame (MF) electronic coherences are manifested as Lab Frame (LF) anisotropies

(electronic probability distributions) of the ensemble; (ii) angular momentum correlations

permit the complete separation of coherences from population dynamics. LF electronic

anisotropies are characterized by their moments, such as orientation and alignment: their

time dependence directly tracks MF electronic coherences.

In Fig. 1(a), we depict the coherent preparation of a molecular electronic (rovibronic)

wavepacket by a resonant ultrashort pump pulse. Wavepacket dynamics are observed by

projection onto a final (e.g. ionic) state using an ultrashort probe pulse (not shown). In-

terference between degenerate probe transitions from pairs of coherent eigenstates leads

to quantum beats with periods determined by the level spacings involved: the sum of all

such beats comprises the wavepacket signal. Consider two electronic states |n〉 and |n′〉

with energy gap ∆Eelec, each with vibrational and rotational (J , MF projection K) states.

Typically, ‘dark’ states (not shown) non-adiabatically couple to |n〉 and/or |n′〉, leading to

electronic population dynamics. LF anisotropy induced by MF electronic wavepacket dy-

namics is understood in terms of the wavepacket’s angular momentum composition. Of the

different angular momentum coherences in Fig.1(a), we emphasize those (∆J = 2) which

generate higher moments of the LF anisotropy. These, we show, allow complete separation
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FIG. 1. (a) Two electronically excited states |n〉 and |n′〉 with bandgap ∆Eelec are shown, each

having their associated vibrational and rotational states. The dashed line indicates a resonant

ultrashort laser pulse. For details, see the text. (b) A depiction of the pump-probe TRPADs scheme

used in the experiment. The pump bandwidth (red) coherently prepared the two electronic states

which arise from the doubly degenerate B̃1E′′ state of NH3. (c) A calculation of the evolving MF

electronic probability distribution for coherences initiated by pumping from the (J0,K0) = (1, 1)

ground rotational state (see SM for details). The time evolution shown is for one of the dominant

frequency components observed in the experiment (23 cm−1 Fig. 5(c)). This coherence, shown at

time delays ∆t = 0, 0.65 and 1.05 ps, corresponds to the upper red arrow in (a).

of the electronic population dynamics from coherences. Dipole selection rules always lead

to the coherent preparation of ∆J = 2 pairs in each of the excited electronic states - the

P and R spectroscopic branches [21]. We classify these coherences as to whether they are

within a single electronic state (be it |n〉 or |n′〉), called intrastate coherences (blue arrows),

or are between electronic states, called interstate coherences (red arrows). The intrastate

angular momentum coherences are well known and form the basis of rotational coherence

spectroscopy [22], evolving on rotational time scales (the inverse of ∆Erot). These track the

rotational dynamics within each electronic state. The interstate electronic coherences evolve

on time scales largely governed by the electronic gap, ∆Eelec. For typical valence electronic

states, ∆Eelec is much larger than ∆Erot. The way in which these different MF angular mo-

mentum coherences are manifested and separated in the ensemble-averaged LF electronic

anisotropy is our first key point. Regardless of their origin, MF electronic coherences re-
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sult in a LF electronic anisotropy evolving on time scales determined by the MF dynamics.

Our second key point is that any ultrafast angle-resolved LF scattering measurement, be

it electron or X-ray scattering or angle-resolved photoemission, is a selective probe of this

evolving LF electronic anisotropy and, thus, the electronic coherences. Here we demonstrate

that Time-Resolved Photoelectron Angular Distributions (TRPADs) completely separates

electronic population dynamics from electronic coherences and, to a high degree, further

separates rotational from electronic coherences. At conical intersections, electronic level

spacings ∆Eelec become comparable to vibrational level spacings. Since the latter are gener-

ally larger than ∆Erot, time scales alone will separate rotational from electronic coherences,

suggesting that our method will be well suited to probing electronic coherences at conical

intersections.

To illustrate, we excited electronic population dynamics and coherences in the NH3 B̃
1E ′′-

state, probed by time-delayed single photon ionization. Here, electronic population dynam-

ics are due to non-adiabatic coupling to the dissociative Ã1A′′2 state, whereas the electronic

coherences are due to non-adiabatic rotational (Coriolis) and vibrational (Jahn-Teller) in-

teractions. The electronic Coriolis dynamics provides the physically intuitive picture of the

MF electronic wavepacket ‘not keeping up’ with MF rotation (see Fig.1(c)). However, in

NH3 the electronic bandgap ∆Eelec is unusually small, since it is due to the electronic Cori-

olis effect: the two electronic states |n〉 and |n′〉 have a ∆Eelec which is on the same order

as ∆Erot. This is the most challenging test of our method because, although population

dynamics are completely separable via angular momentum correlations (vide infra), the ro-

tational and electronic coherences are not separable here by time scale alone, as would be the

case for most valence state electronic wavepackets. Nevertheless, we demonstrate complete

separation of populations from coherences with good separation of rotational (intrastate)

from electronic (interstate) coherences.

In Section II, below, we describe how the LF charge distribution is sensitive to MF

electronic dynamics. This leads to the definition of new time dependent quantities - the

Electronic Angular Distribution Moments (EADMs) - which transduce MF electronic coher-

ences into the LF. In Section III, we describe the separation of electronic coherences from

population dynamics facilitated by measurement of the EADMs. This section is further

divided into three subsections. Section A describes the experimental method of Time Re-

solved Photoelectron Angular Distributions (TRPADs) used here. Section B describes the
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theoretical model used to calculate the EADMs in the B̃1E ′′ state of NH3. This section also

describes in detail the well known spectroscopy of the B̃1E ′′-state. Section III C presents

the experimental results, and discusses their interpretation based on the general concepts

presented in Section I. This section also briefly describes the photoionization formalism de-

veloped in [23], which can be used to to describe the measurable quantities in terms of

EADMs. Finally, Section IV summarizes our main results in the context of attosecond

measurements in isolated molecules, and suggests future direction based on our findings.

II. THE LABORATORY FRAME CHARGE DISTRIBUTION

In the MF, an electronic coherence generates a time-dependent electronic charge distri-

bution having MF spherical multipole moments γKS with time-dependent expectation values.

Here K = 0, 1, 2... are, respectively, the monopole, dipole, quadrupole etc. moments of the

MF charge distribution, with spherical components S ranging from −K to K. The time

dependence of the LF multipoles, ΓKQ , obtains from a simple rotation into the LF [24],

ΓKQ =
∑
S

DK∗
QS(Ω)γKS . (1)

The DK∗
QS(Ω) are the Wigner rotation matrix elements with Euler angles Ω = φ, θ, χ. For

an ensemble, the time dependent expectation value of ΓKQ is constructed from the density

matrix, here in a basis of separable vibrational-electronic (vibronic) and rotational states,

|n〉 and |JnKnMn〉, respectively. Jn is the angular momentum in vibronic state |n〉, with

projections Kn and Mn onto MF and LF quantization axes, respectively. While n is a general

vibronic state label, we restrict its use here to electronic states, as in Fig. 1(a). In this basis,

〈ΓKQ 〉(t) =
∑
n

∑
S

(−1)(K+S)AKQ−S(n, n; t)〈n|γKS |n〉

+
∑
n6=n′

∑
S

(−1)(K+S)AKQ−S(n, n′; t)〈n′|γKS |n〉.
(2)

Note that we have deliberately broken this sum into two, one in which the electronic index

is preserved (n = n′) and one is which it is different (n 6= n′). As discussed in detail below,

this separation facilitates the distinction of rotational coherences (n = n′) from electronic

coherences (n 6= n′).The time dependence of the LF anisotropy is entirely contained in the

quantities AKQS(n, n; t) and AKQS(n, n′; t). These were previously defined in the formalism for

molecular photoionization developed by Stolow and Underwood [23] as follows,
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AKQS(n, n′; t) =
∑

JnKnMn

∑
J ′
n′K

′
n′M

′
n′

√
(2Jn + 1)(2J ′n′ + 1)(−1)K+Jn+J ′

n′−(Mn+Kn)

×

 Jn J ′n′ K

Mn −M ′
n′ −Q

 Jn J ′n′ K

−Kn K ′n′ S

 ρωn,ω′n′ (n, n
′)(t).

(3)

Here ρωn,ω′n′ (t)(n, n
′) is the time dependent density matrix, and the index ωn collectively

represents the angular momentum quantum numbers in the electronic state n. The terms in

large parentheses represent Wigner 3j symbols which combine each pair of angular momenta

Jn, J ′n′ in the wavepacket resulting in the total angular momentum K = |Jn − J ′n′|, |Jn −

Jn′ + 1|, ..., |Jn + Jn′ − 1|, |Jn + Jn′|. Q and S are the LF and MF projections, respectively,

of K and in each case range from −K to K.

The sum in Eq. 2 first is over states preserving the electronic index (whether n or n′),

reflecting the intrastate coherences (blue arrows) in Fig.1(a). The second sum is over states

with differing electronic indices, reflecting the interstate coherences (red arrows). The in-

trastate coherences AKQS(n, n; t) are the well known Axis Distribution Moments (ADMs) for

each electronic state |n〉 or |n′〉 [23, 25], as studied in rotational coherence spectroscopy.

The rotational evolution of the molecular axis distribution in each electronic state can be

expressed in the LF via the ADMs through P (Ω, t) =
∑

KQS A
K
QS(n, n; t)DK∗

QS(Ω) [23, 25].

Thus, the first sum in Eq. 2 describes the LF anisotropy moments which evolve as does

the MF axis distribution: these intrastate coherences result in a MF charge distribution

which appears stationary in the rotating frame. ADMs in isolated molecules were previ-

ously studied by time-resolved photoionization using both perturbative [26–35] and strong

laser fields [35–37]. In the second sum, the interstate coherences AKQS(n, n′; t) have an en-

tirely different, hitherto unexplored physical meaning not interpretable as a distribution of

MF axes. These are the dynamic, MF electronic contributions to 〈ΓKQ (t)〉 which evolve in

the rotating frame (MF): they are the MF electronic coherences with frequecies determined

by ∆Eelec. What is their relationship to the LF electronic anisotropy? The ensemble av-

eraged multipoles 〈ΓKQ 〉(t) quantify the LF electronic alignment (even K) and orientation

(odd K). Thus, the first sum in Eq. 2 is the LF electronic anisotropy due to MF axis align-

ment/orientation and evolves on rotational timescales according to ∆Erot. The second sum

is the LF electronic anisotropy due to electronic coherences between states n and n′ and

evolves on electronic timescales according to ∆Eelec. To distinguish their interpretation, we
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term the AKQS(n, n′; t) as Electronic Angular Distribution Moments (EADMs): these encode

MF electronic coherences into the LF electronic anisotropy, our first key point. Finally,

we note that the K = 0 ADMs/EADMs map directly to the reduced electronic density

matrix ρ(n, n′)(t). From Eq. (2) we see that these only affect the isotropic LF electronic

moment 〈Γ0
0〉(t), and thus cannot contribute to the corresponding LF electronic anisotropy.

Therefore, the electronic populations ρ(n, n)(t) are excluded from the LF anisotropy, and

relegated to the isotropic monopole moment. The LF electronic anisotropy therefore results

only from electronic coherences between angular momentum states with Jn 6= J ′n′ .

It is worth noting that what may be interpreted as population transfer in one basis

set, may appear as coherences in another [38, 39]. Nonetheless, the ADMs and EADMs

described here may still be computed using Eq. 3, since J is always a conserved quantity

for an isolated system. This feature also ensures that the physical interpretation of these

quantities holds regardless of basis set choice: this ensures that the ADMs and EADMs

may be used generally to interpret the results of an experiment in an isolated system. The

particular choice of basis set in any given case is usually motivated by the particular set of

states onto which the wavepacket is projected [38–40]. In the next section, we discuss the

separation of electronic coherences from population dynamics in the adiabatic basis, since

this is the basis of interest when discussing passage through a conical intersection.

We further emphasize that the above conclusions are independent of the intensity of the

pump (preparation) laser pulse. The method (e.g. strong or weak laser pulses, electron

pulses) used to excite the wavepacket is irrelevant. It was previously shown that strong-field

probes are sensitive to interstate and intrastate coherences [3, 5, 41–43], making such exper-

iments suitable for analysis using the general ADM and EADM formalism developed here.

Below we specifically discuss the case of one-photon ionization of the excited wavepacket,

as is typically the case for the well established pump-probe TRPES technique used here. .

III. SEPARATION OF ELECTRONIC COHERENCES AND POPULATION DY-

NAMICS

Our second key point follows directly from above: any observable selective of the electronic

anisotropy or, in other words, selective of EADMs with K > 0, will separate electronic

coherences from population dynamics. We experimentally demonstrate here that the highest
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moment of a LF scattering anisotropy does exactly this for electronic-nuclear wavepackets in

NH3, in this case using ultrafast energy-angle-resolved TRPADs as the scattering technique.

Since this fact derives from the conservation of angular momentum, it can be generalized to

any angle-resolved ultrafast scattering experiment. In sections B and C below, we describe

the relevant experimental and theoretical methods used to achieve and interpret our results.

A. Experimental Method

Fig 1(b) depicts the sequence of events in the experiment. A 160.9 nm, 77 fs pump pulse

resonantly excited NH3 into two closely spaced electronic states arising from the degenerate

B̃1E ′′ state. The optical setup and Velocity Map Imaging (VMI) spectrometer used in this

experiment were previously described in detail [44]. Briefly, 3.25 mJ of a 7.5 mJ, 35 fs,

800 nm laser pulse was used to generate pump and probe pulses for the experiment. 2.5 mJ

was used to generate a 160.9 nm, approximately 77 fs pump pulse by four-wave mixing with

the third harmonic of 800 nm in argon gas [45, 46]. This is combined on a dichroic high-

reflector with a 20µJ, 400 nm, 40 fs probe pulse generated by second harmonic generation

in a BBO crystal. The pulses were spatio-temporally overlapped and focused by a spherical

reflective mirror into a VMI spectrometer, where they intersected a 1 kHz pulsed molecular

beam generated by expansion of 2.1% NH3 seeded in Helium through an Even-Lavie valve,

and skimmed through a 1 mm diameter skimmer. The stagnation pressure of the NH3-He

mixture was set at 20 psi. This condition was determined by time-of-flight mass spectrometry

at several stagnation pressures and pulsed valve timings in order to yield conditions which

minimized the contribution of clusters. These experiments were performed under conditions

in which the contribution of clusters was negligible.

The 160.9 nm pump pulse resonantly excited NH3 to the planar B1E ′′ electronic state.

The time delayed 400 nm probe pulse then photoionized the excited state molecule and the

kinetic energy spectrum and angular distribution of the ejected electron were measured as a

function of time delay using the VMI spectrometer. Data was collected between -0.3 and 5

ps with a step size of 0.04 ps. The data presented here result from an average over 20 such

delay scans.

Fig. 2 (a) shows the time-resolved photoelectron spectrum (TRPES) for NH3 evolving in

the B1E ′′ state. We label the vibrational states of B1E ′′ as (v1v2v3v4), v1 representing the
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FIG. 2. Experimental TRPES spectrum for NH3 pumped at 160.9nm and probed at 400nm. The

color scale represents the photoelectron yield in arbitrary units. The vertical solid line marks the

expected photoelectron energy for ionization into the (0300) X2A′′2 cationic state.

number of quanta in the symmetric stretch mode, v2 in the symmetric umbrella mode, v3 in

the asymmetric stretch mode and v4 in the asymmetric bend mode. The 62,150 cm−1 pump

pulse excites the (0300) umbrella mode state. The peak of the photoelectron spectrum at

0.26 eV is consistent with ionization into the (0300) X2A′′2 ground ionic state, as expected

since the B1E ′′ state is a member of the Rydberg series converging to this state [47]. The

expected photoelectron energy for ionization into this state is marked by the vertical, black

solid line in the figure. This is as expected for direct photoionization provided the pumped
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and ionic states have parallel potential energy surfaces, implying an essentially diagonal

Franck-Condon matrix. This strongly indicates that resonant autoionization is negligible in

our experiment.

B. Theoretical Model

Here we describe the model used to calculate the time dependent ADMs and EADMs

constituting the LF electronic charge distribution. The doubly degenerate B̃1E ′′ electronic

state of NH3 was studied in detail using a variety of frequency domain spectroscopies [47–

50]. The one-photon absorption spectrum exhibits a series of bands assigned to sequentially

increasing quanta of the umbrella mode. These result from a change in geometry from the

pyramidal C3v ground state to the planar D3h equilibrium geometry of the degenerate B̃1E ′′.

The Jahn-Teller theorem necessitates a distortion of this geometry via the asymmetric vi-

brational modes. This results in a series of umbrella mode - asymmetric stretch combination

lines also being observed in the absorption spectrum. However, in this experiment the non-

degenerate vibrational state excited by the pump pulse - (0300) - is not Jahn-Teller active

(i.e. no asymmetric mode excitation). In (0300), the degenerate electronic components are

split by coupling of the rotational and electronic angular momenta as a result of the Cori-

olis effect, L-uncoupling and the Jahn-Teller distortion of the state [49, 51]. The rotational

states excited by the pump pulse are described by the following Hamiltonian which accounts

for these effects [49, 51]

H =Tv +BJΛ(JΛ + 1) + (C −B)K2
Λ −DJΛ

J2
Λ(JΛ + 1)2 −DJΛKΛ

JΛ(JΛ + 1)K2
Λ −DKΛ

K4
Λ

− 2CζKΛΛ + q/2
(
L2

+J
2
− − L2

−J
2
+

)
.

(4)

Here, Tv is the term energy for a particular vibronic state and B and C are the symmetric

top rotational constants in that state. Λ = ±1 label the degenerate electronic components

(corresponding to our electronic indices n and n′ above) of the B̃1E ′′ state, with JΛ and

KΛ being the corresponding total angular momentum (neglecting spin) and its projection

onto the body axis of highest symmetry (the C3 axis for NH3). DJΛ
, DJΛKΛ

and DKΛ
are

coefficients that quantify centrifugal distortion in a particular JΛ,KΛ state. The first line in

the above equation, containing only these parameters and operators, constitutes the standard
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Hamiltonian for a symmetric top including centrifugal distortion. In the next line, ζ is the

Coriolis coupling constant, containing matrix elements of the electronic angular momentum

operator coupling the degenerate electronic states, to nearby states of appropriate symmetry.

Specifically, the Λ = +1 component interacts strongly with the nearby C̃ ′1A′1 state, resulting

in splitting of the Λ = ±1 components. This is exactly analogous to Λ doubling in Π states

of diatomic molecules [21]. The parameter q similarly contains matrix elements coupling

these electronic states, as well a nuclear mass dependent term that is a result of Jahn-Teller

distortion in the electronic state [51]. The operators J± and L∓ are raising and lowering

operators of the total projection angular momentum K, and electronic states Λ, respectively.

The q containing term mixes Λ = ±1 states, with Kλ separation |K1 − K−1 = 2|. In the

separable rotational-electronic basis |JΛKΛMΛ〉|Λ〉, the Hamiltonian matrix is,

HJΛKΛΛ,JΛ′K
′
Λ′Λ
′ = δJΛJ

′
Λ′ ,KΛK

′
Λ′ ,ΛΛ′E0

+ δΛ′Λ±2,K′
Λ′KΛ±2

q

2

√
(JΛ(JΛ + 1)−KΛ(KΛ + 1))(JΛ(JΛ + 1)−K ′Λ′(K ′Λ′ ± 1)),

E0 = Tv +BJΛ(JΛ + 1) + (C −B)K2
Λ

−DJΛ
J2

Λ(JΛ + 1)2 −DJΛKΛ
JΛ(JΛ + 1)K2

Λ −DKΛ
K4

Λ − 2CζKΛΛ.

(5)

The Hamiltonian couples zeroth order states with ∆KΛ,Λ′ = ∆Λ = 2, as a result of the loss

of three-fold rotational symmetry. The parameters in this Hamiltonian that provide spec-

troscopically accurate rotational energies for the (0300) state were determined by Ashfold et

al. [49], and are given here in Table I. The eigenstates of this Hamiltonian can be expressed

as,

ψJMγ = v
(JMγ)
KΛ,Λ

|JΛKΛMΛΛ〉+ v
(JMγ)
KΛ±2±2,Λ±2|JΛ±2KΛ±2 ± 2MΛ± 2〉, (6)

where eigenstates are labeled by γ in order of increasing energy. The v
(JMγ)
KΛ,Λ

are coefficients

of the eigenvector γ of the Hamiltonian matrix (Eq. 5) for a particular J,M state. Fig. 3

shows the resulting rotational level structure.

The wavepacket excited by the pump pulse can then be expressed as a coherent super-

position of these eigenstates,

Ψ(t) =
∑
JMγ

aJMγψJMγe
2πiEJMγ/t, (7)

where EJMγ are the eigenvalues of Eq. 5. The amplitude coefficient aJMγ is proportional to

the dipole transition amplitude into the eigenstate ψJMγ. This in turn is proportional to a

11



FIG. 3. Level structure of the B̃1E′′ state of NH3. On the left (black) are levels of the uncoupled

degenerate electronic state |Λ = ±1〉. For KΛ = 0 states, the Coriolis coupling vanishes and these

remain eigenstates. On the right, when KΛ > 0, the linear Coriolis interaction lifts the degeneracy,

yielding two electronic states labeled |Λ = +1〉 (moss green) and |Λ′ = −1〉 (steel blue), each with

their level structure. The quadratic Coriolis interaction, as well the Jahn-Teller effect further mixes

the states to give the eigenstates in eq. 6. The shift in energy due to this Jahn-Teller mixing is

small on the scale shown here, but increases with K.

Tv 62015.232 cm−1

B 8.9679 cm−1

C 5.2964 cm−1

DJ±1 -520e-6 cm−1

DJ±1K±1 1963e-6 cm−1

DK±1 -1801e-6 cm−1

ζ 0.8177 cm−1

q 0.5399 cm−1

TABLE I. Parameters for the effective Hamiltonian in Eq. 4
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superposition of rotational transition amplitudes between the ground and excited state,

aJMγ = v
(JMγ)
K−1,−1g(J ′′0 , K

′′
0 , JΛ, KΛ,MΛ, 1,−1) + v

(JMγ)
K1,1

g(J ′′0 , K
′′
0 , JΛ, KΛ,MΛ, 1, 1),

g(J ′′0 , K
′′
0 , JΛ, KΛ,MΛ, 1, q) =

√
2J ′′ + 1

2J + 1
〈J ′′0M0; 10|JΛMΛ〉〈J ′′0K ′′0 ; 1q|JΛKΛ〉.

(8)

The factors g(J ′′0 , K
′′
0 , JΛ, KΛ,MΛ, 1, q) are rotational transition amplitudes between the

ground, symmetric top state |J ′′0K ′′0M0〉 and the symmetric top basis state in the excited

electronic manifold |JΛKΛMΛ〉, via the spherical tensor dipole transition operator µ1
q. It is

additionally assumed that the electronic dipole matrix elements are related by the expres-

sion 〈1|µ1
1|0〉 = 〈−1|µ1

−1|0〉, where |0〉 is the ground state electronic wavefunction. These

matrix elements, along with a transition energy dependent perturbative weighting factor

constitute the overall proportionality constant, which is neglected here. The transition en-

ergy dependence here can be neglected due to the relatively small spacing between rotational

states. The Clebsch-Gordan coefficients 〈..; ..|..〉 in above expression enforce the conservation

of angular momentum by the selection rules ∆J0,Λ = 0,±1, ∆M0,Λ = 0 for the rotational

eigenstates, and ∆K0,Λ = ±1, ∆Λ = ∆K0,Λ for the symmetric top and electronic basis

states.

The ground state distribution of rotational states is simulated by a Boltzmann distri-

bution of symmetric top states, with rotational constants A = B = 9.44430 cm−1 and

C = 6.19600 cm−1. An additional weight is included which depends on the symmetry of the

nuclear spin wavefunction that must be grouped with the correct rotational wavefunction

such that the Pauli Exclusion Principle is obeyed. Rotational states with K0 = 3m, where

m is an integer, must be grouped with para spin states and those with K0 6= 3m with ortho

spin states. The 2 : 1 ratio of ortho to para spin states is used as a weight for the corre-

sponding rotational states. For K0 = 0, only A′2 or A′′2 symmetry representations in D3h

can be paired with ortho or para states such that Pauli exclusion is obeyed. The final state

(0300) has E ′ symmetry, rendering only transitions out of A′′2 states as dipole allowed. Since

only odd J states in the ground electronic state can generate A′′2 symmetry, this means that

transitions out of even J states with K = 0 are forbidden and therefore excluded here. A

complete description of these symmetry selection rules is provided in previous spectroscopic

studies [47].

To calculate the ADMs and EADMs (Eq. 3), we require the density matrix in the

|JΛKΛMΛΛ〉 basis. Writing AJMγ(t) = aJMγe
2πiEJMγ/t, the amplitude coefficients c

(Λ)
JΛKΛMΛ

(t)

13



in the |JKMλ〉 basis are calculated using the eigenvectors v
(JMγ)
KΛ,Λ

,

c
(Λ)
JΛKΛMΛ

(t) =
∑
γ

v
(JMγ)
K,Λ AJMγ(t). (9)

The density matrix is then straight-forwardly given by ρωΛ,ω
′
Λ′

(Λ,Λ′)(t) =

c
(Λ)
JΛKΛMΛ

(t)c
(Λ′)∗
J ′

Λ′K
′
Λ′M

′
Λ′

(t), where ωΛ refers collectively to the angular momentum quantum

numbers associated with the electronic state Λ. Wavepackets initialized from each initial

rotational state in the ground state manifold are propagated independently, and the ADMs

and EADMs calculated by replacing n with Λ in Eq. 3. Each of these are then ascribed a

thermal weight depending on the initial state, calculated as described above. The weighted

ADMs and EAMDs are then summed to provide the final, thermally averaged result pre-

sented in the next section. Note in addition that the selection rules out of the ground state

given above only allow the angular momentum coherences |JΛ − J ′Λ′| = 2, |KΛ −K ′Λ′| = 0

and |JΛ − J ′Λ′| = 2, |KΛ −K ′Λ′| = 2 to be excited. Therefore, the only ADMs that need to

be considered are A2
00(±1,±1; t) and A2

0±2(±1,∓1; t).

C. Results and Discussion

In our demonstration, the pump laser prepared only a single vibrational state (0300)

within each electronic state, producing a ro-electronic wavepacket having constant vibra-

tional quantum number. In Fig.1(a), this corresponds to the situation where both ∆Eelec

and the laser bandwidth are smaller than the vibrational level spacings. The two coherently

prepared electronic states |n〉 and |n′〉 in our wavepacket are the states |Λ〉, where Λ = ±1.

Our pump pulse prepared a ro-electronic wavepacket with both intrastate and interstate

coherences. The intrastate coherences (blue arrows) are quantified by the ADMs, the inter-

state electronic coherences (red arrows) by the EADMs. In Fig. 1(c), we show a calculated

MF electronic density, at three time delays, for the specific EADM coherence represented

by the upper red arrow in Fig. 1(a). Details of this calculation are provided in an appendix.

In NH3 B̃
1E ′′, due to the small electronic bandgap, the electronic dynamics are on times

scale similar but demonstrably not identical to that of rotation. We emphasize that this

demonstration in no way negates the generality of our approach. The highest moment of

the TRPAD will always separate electronic coherences from populations and, for the general

case of valence electronic wavepackets, further separate rotational from electronic coherences
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FIG. 4. (a) The experimental TRPAD for the observed photoelectron band from an evolving

wavepacket in the degenerate B̃1E′′ electronic state of NH3. The angle (degrees) on the x-axis is

the polar ejection angle θe, plotted as a function of time delay (y-axis). (b)-(c) The βLM parameters

extracted from fits to the data in (a) (see text).

based on time scales. It is interesting to compare with 2D electronic spectroscopies which

also separate coherences from populations [7, 18, 52, 53]: these are based on 2D probing

of MF coherences. Our method is a general LF pump-probe approach that applies to any

system for which total angular momentum is conserved.

In Fig. 4, the experimental time-, energy- and angle-resolved TRPAD shows large vari-

ations. In general, the TRPADs can be phenomenologically fit to a moment expansion,

S(t, ε, θe, φe) =
∑

LM βLM(t, ε)YLM(θe, φe), where t is the time delay, ε the kinetic energy

and θe, φe the polar and azimuthal photoelectron ejection angles. This sum truncates by

angular momentum conservation to L = 2Nphoton, twice the number of photons involved.

For a collinearly polarized one-photon pump, one-photon probe (1 + 1′) process, the sum

truncates at L = 4, with M = 0. All experimental information on the excited state dynamics

is contained in the βLM(t, ε). Since in this particular case only a single photoelectron energy
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band is observed, we suppress in the following the dependence on kinetic energy. In Fig. 2

(b)-(c), we plot the fitted βLM(t): it can be seen that the largest variations were observed in

β40(t), Fig. 2(c). By comparison, β20(t) shows only small variations. β00(t), in Fig. 2(b), is

the evolving total ionization cross section (photoelectron yield, also shown in the SM) and

shows population dynamics due to the well known predissociation via the Ã1A′′2 state into

NH2+H [54, 55]. We note that β60(t) should vanish by angular momentum conservation

for (1 + 1′) processes, as shown here in Fig. 2(b): this confirms the systematic and statis-

tical accuracy of our fits. These βL0(t) contain distinctive contributions from the ADMs,

the EADMs and the electronic population dynamics. As detailed below, β40(t) completely

separates the electronic coherences from population dynamics.

We develop the relationship between the LF scattering anisotropies in Fig. 2 and the

MF angular momentum coherences in Fig. 1(a). The βLM(t) can be expressed in terms of

ADMs and EADMs as [23, 25]

βLM(t, ε) =
∑
PKQS

∑
n

CLM
PKQS(n, n; ε)AKQS(n, n; t)

+
∑
PKQS

∑
n6=n′

CLM
PKQS(n, n′; ε)AKQS(n, n′; t).

(10)

We separated this equation into two sums, the first reflecting intrastate rotational dy-

namics (ADMs), the second interstate electronic coherences (EADMs). The coefficients

CLM
PKQS(n, n′; ε) contain the energy-dependent photoionization dipole matrix elements, where

P = 0, 2 for one-photon ionization with linearly polarized light. These coefficients link co-

herences to observables, decomposing the βLM(t, ε) into ADMs and EADMs. Importantly,

angular momentum selection rules limit the allowed values of K, Q and S [23, 25, 56]. For lin-

early polarized one-photon excitation, only three possible ADMs/EADMs exist: A0
00(n, n′; t),

A2
00(n, n′; t) and A2

0±2(n, n′; t). Linear superpositions of these contribute to the observed

βLM(t, ε), with angular momentum constraints permitting some separation. The sum of the

ionizing photon angular momentum P plus the ADM/EADM angular momentum K must

be partitioned between the angular momentum L of the ejected photoelectron and that re-

maining in the ion. The electronic population dynamics always contribute to β00(t, ε), may

contribute to β20(t, ε), but never to β40(t, ε). Crucially, this permits a complete separation of

electronic population dynamics from coherences: β40(t, ε) is sensitive only to coherences [27]

between states of differing total angular momentum, Jn. For a (1 + 1′) TRPAD experi-
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FIG. 5. Fourier power spectra of the time dependent data from Fig. 2(c) and their comparison with

theory. (a) |β20(ν)|2 from β20(t); (b) |A2
00(1, 1; ν)|2 from the calculated A2

00(1, 1; t); (c) |β40(ν)|2

from β40(t); and (d) |A2
02(1,−1; ν)|2 from the calculated A2

02(1,−1; t). As discussed in the SM,

the counterpart of (b), |A2
00(−1,−1; ν)|2, tracking the rotational dynamics in the electronic state

Λ = −1, is not shown since it is identical to (b). Similarly, the counterpart of (d), |A2
0−2(−1, 1; ν)|2,

contains no new frequency components and is not shown.

ment, L = 4 results from K = 2 and P = 2, restricting the sum over KQS in Eq. 10 to

only terms with K = 2. Therefore, K = 0 functions A0
00(n, n′; t), containing the electronic

population dynamics for n = n′, cannot possibly contribute. Hence, β40(t, ε) is selectively

sensitive to intrastate and interstate angular momentum coherences, but never to the pop-

ulation dynamics. In Fig. 3, we show Fourier power spectra of β20(t) and β40(t) from Fig.2.

|β20(ν)|2 shows peaks assignable to symmetric top rotational coherences [22] with separa-
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tion 4B, B being the rotational constant. |β40(ν)|2, however, contains new frequencies.

Since |β40(ν)|2 is sensitive only to rotational or electronic angular momentum coherences,

the new frequencies in |β40(ν)|2 must therefore be electronic coherences. To confirm this,

we computed the ADM A2
00(1, 1; t) and EADM A2

02(1,−1; t) (see SM for details). The good

agreement between calculated and observed frequencies confirms that β20(t) predominantly

tracks rotational dynamics, whereas β40(t) predominantly tracks electronic coherences. The

TRPAD in Fig. 4(a), dominated by β40(t), is a direct experimental map of the time varying

LF electronic density. The latter in turn reflects the electronic coherences, the MF charge

oscillations resulting from non-adiabatic Coriolis dynamics (Fig. 1 (c)).

The strong separation of ADMs from EADMs in β40(t) observed here is unlikely to be

accidental and the underlying reason for this is contained in the variation of the MF electronic

wavefunction between the two eigenstates involved in a quantum beat. For the observed

photoelectron angular distribution (PAD) to vary with time delay in a given quantum beat

(the coherent sum of which is the wavepacket signal), the set of partial waves produced by

each ionizing transition must differ in amplitude, phase or both: if they were identical, only

the photoelectron yield and not the shape of the PAD would vary with time delay. The

fact that that the shape of the PAD demonstrably varies with delay is proof that the set of

partial waves produced by ionizing the two eigenstates involved in the quantum beat must

be different. In particular, if β40(t) varies more strongly than β20(t), this difference must be

greater for the higher l than the lower l partial wave components.

The well-known Wigner-Eckart theorem determines that the photoionization matrix el-

ement can, in complete generality, be separated into a geometrical factor and a dynamical

factor (the reduced matrix element - the vibronic part). For the intrastate ionization tran-

sitions (the ADMs), the reduced matrix element should remain essentially the same since,

by definition, they originate from the same electronic and (here) vibrational state: the only

variation between eigenstates is therefore due to the geometrical factor alone. In contrast,

for the interstate ionization transitions (the EADMs), both the geometrical factor and the

reduced vibronic matrix element will vary, since by definition they originate from different

electronic states. Therefore, one might expect that the difference in partial wave distri-

butions (between the two eigenstates in the quantum beat) is more likely to be larger for

interstate rather the intrastate coherences. The extent to which this larger difference ap-

pears in the higher l or lower l partial wave components will likely depend on the specific
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differences between shapes of the electronic wavefunctions involved. For the case of NH3,

even though their time scales are (unfavourably) similar, the separation of rotational from

electronic coherences is still demonstrably excellent.

We again state our second key point: β40(t), the highest moment of the scattering

anisotropy (containing the EADMs), completely separates electronic coherences from pop-

ulation dynamics (which dominate the β00(t) signal). This result emerges from our analysis

of the TRPADs in terms of ADMs and EADMs, the latter being introduced here for this

purpose.

IV. SUMMARY AND OUTLOOK

We presented a wavepacket method, deriving from angular momentum correlations, for

studying electronic coherences in isolated systems which (i) completely separates electronic

population dynamics from electronic coherences and (ii) is based on ultrafast angle-resolved

scattering measurements. We introduced the EADM, a measure of interstate electronic an-

gular momentum coherence which is distinct from intrastate rotational coherences (ADMs).

The highest moment of our observed LF scattering anisotropy, β40(t), completely separates

electronic populations from coherences, a long standing goal. To a high degree, it further

separates rotational from electronic coherences. The EADMs generate an LF electronic

anisotropy observable in principle using any ultrafast angle-resolved scattering probe, be it

electron or X-ray scattering or, as shown here, angle-resolved photoelectron spectroscopy

(TRPADs). In general, EADMs for molecular valence states will be driven by electronic

coherences on attosecond to few-fs time scales, determined by electronic energy gaps. Elec-

tronic coherences in isolated molecules driven by vibrational dynamics near conical inter-

sections [7], will generate short-lived (on the order of inverse vibrational level spacings)

LF electronic anisotropies observable by lab-based attosecond angle-resolved photoemis-

sion [57, 58], or by time-resolved X-ray scattering such as becoming available at X-ray Free

Electron Lasers (XFELs) [59]. With these tools in hand, the exploration of electronic co-

herences in molecular systems [60] will surely accelerate.
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V. APPENDIX - WAVEFUNCTION REPRESENTATION AND ELECTRONIC

DENSITY CALCULATIONS

The time varying electronic probability densities shown in Fig. 1(c) were calculated by

recasting Eq. 6 in the |JKMΛ〉 basis, using Eq. 9. For excitation out of a fixed initial state,

Eq. 6 becomes

Ψ(t) =
∑

JΛKΛMΛΛ

c
(Λ)
JΛKΛMΛ

(t)|JΛKΛMΛΛ〉, (11)

where the basis function amplitudes can be calculated using Eq. 9 and the procedure de-

scribed in Section III B. Given the c
(Λ)
JΛKΛMΛ

(t), the wavepacket can be projected onto

eigenfunctions of the electronic coordinate space {ri|i = 1, . . . , N} and the Euler angles

Ω = {φ, θ, χ} to get the time varying probability density. Projecting the basis onto the

Euler angles gives the symmetric top basis functions,

〈Ω|JΛKΛMΛΛ〉 =

√
2J + 1

8π2
D
J∗Λ
MΛKΛ

(Ω)|Λ〉. (12)

Defining the projection of the electronic basis functions onto the basis of electronic coor-

dinates as |Λ(r1, . . . , rN)〉, the total wavefunction can be written as,

ψ(Ω, {ri|i = 1, . . . , N} , t) = Φ+1(Ω, t) |+1(r1, . . . , rN)〉+ Φ−1(Ω, t) |−1(r1, . . . , rN)〉 . (13)

This is a superposition of the MF electronic states |±1〉, with ΦΛ(Ω, t) =
∑

JΛKΛMΛ
c

(Λ)
JΛKΛMΛ

(t)

D
J∗Λ
MΛKΛ

(Ω) being the amplitude of each electronic state |Λ〉. These can be interpreted as a

rotational wavepackets in each electronic state. The time evolution of the total probability

density |ψ(Ω, {ri|i = 1, . . . , N}, t)|2 is thus determined by three terms. Two population

terms, |ΦΛ(Ω, t)|2, one for each electronic state, which represent the time evolving axis

distribution and total population of the states. These only contain intrastate, rotational

quantum beats |J1 − J ′1| = 0, 1, 2 and/or |K1 − K ′1| = 0, 2. The ADMs AKQS(Λ,Λ; t) are

proportional to angular moments of these distributions. The remaining interference or co-

herence term 2Re{Φ+1(Ω, t)Φ∗−1(Ω, t)}, contains interstate quantum beats |J1−J ′−1| = 0, 1, 2

and/or |K1−K ′−1| = 0, 2. The alignment angle dependence of this MF electronic coherence,

which varies with time, introduces an LF anisotropy of the electronic probability distribu-

tion quantified by Eq. 2. The EADMs are proportional to angular moments of this cross

term. Note that typically the rotational and electronic coordinates are uncoupled, and

the electronic states are well separated. The axis distributions |ΦΛ(Ω, t)|2 thus typically
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evolve on a much slower time scale than the interference term 2Re{Φ+1(Ω, t)Φ∗−1(Ω, t)}.

The electronic LF anisotropy and the EADMs will therefore oscillate on this fast, electronic

time scale (essentially a single quantum beat), unaffected by rotation over a relatively long

time window, directly reflecting the MF electronic motion. However, in the specific case

of NH3 (B̃1E ′′) described here, the ADMs evolve on a time scale similar but not identical

with that of the MF electronic motion. Therefore, since the electronic coherence term

2Re{Φ+1(Ω, t)Φ∗−1(Ω, t)} is alignment angle dependent, the evolving axis distribution in

each state strongly influences the frequency and amplitude of the MF electronic motion,

and correspondingly that of the electronic LF anisotropy and EADMs. Qualitatively, this

can be thought of as the effect of the Coriolis force on the electron where the electron ’lags

behind’ the rotation of the molecular frame. Also note here that in the absence of the

Coriolis and Jahn-Teller effects the electronic states | ± 1〉 remain degenerate, rendering

the electronic coherence term time-independent and the MF electronic charge distribution

therefore appears stationary in the molecular frame.

Choosing (J0, K0,M0)=(1, 1, 0) as the initial rotational state in the ground state manifold,

we calculated the c
(Λ)
JΛKΛMΛ

(t). Selection rules discussed in Section III B only allow for exci-

tation of (JΛ, KΛ,MΛ,Λ) = (2, 2, 0, 1), (2, 0, 0,−1) and (0, 0, 0,−1). The Wigner DJΛ∗
MΛKΛ

(Ω)

matrix elements are tabulated analytical functions [56]. The electronic basis functions are

calculated numerically as follows at the second-order algebraic diagramatic construction

(ADC(2)) level of theory using the 6-311++G** basis set. Let γ(0,ψ)(rE, rH ,Ω, t) denote

the one-electron transition density (1TDM) corresponding to excitation from the ground

electronic state |0〉 to the state |ψ〉,

γ(0,ψ)(rE, rH ,Ω, t) = N

∫ ∞
−∞

0(rH , r2, . . . , rN)ψ(Ω, rE, r2, . . . , rN , t)dr2 · · · drN . (14)

In the electron-hole picture, |γ(0,ψ)(rE, rH ,Ω, t)|2 represents the probability of finding the

excited electron at rE and the corresponding hole at rH , as a function of Ω and t. Integrat-

ing |γ(0,ψ)(rE, rH ,Ω, t)|2 over the hole coordinate rH yields the angle- and time-dependent

particle density ρ(Ω, rE, t),

ρ(Ω, rE, t) =

∫ ∞
−∞
|γ(0,ψ)(rE, rH)|2drH , (15)

which can be interpreted as the probability of finding the excited electron at the position

rE, as a function of Ω and t.
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The practical calculation of the angle-dependent particle density makes use of the fact

that the 1TDM γ(0,ψ)(rE, rH ,Ω, t) can represented in the molecular orbital (MO) basis

{φp(r)} as

γ(0,ψ)(rE, rH ,Ω, t) =
∑
pq

d(0,ψ)
pq (Ω, t)φp(rE)φq(rH). (16)

Here, d(0,ψ)(Ω, t) denotes the one-electron transition density matrix between |0〉 and |ψ(Ω, t)〉:

d(0,ψ)
pq (Ω, t) =

〈
0
∣∣â†pâq∣∣ψ(Ω, t)

〉
, (17)

where â†p and âp denote the elementary fermionic creation operators corresponding to the

single-particle basis {φp(r)}.

Fig. 1(c) shows the maximum value isosurfaces of ρ(Ω, rE, t) for Ω = (0, π/2, π/2) at

time delays of t = 0, 0.65 and 1.05 ps.
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Physics, 91(5):2901–2911, 1989.

[56] Richard N Zare. Angular Momentum: Understanding Spatial Aspects in Chemistry and

Physics. John Wiley and Sons, 1988.

[57] Samuel Beaulieu, Antoine Comby, Alex Clergerie, Jérémie Caillat, Dominique Descamps,
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