Large Conduction Band Energy Offset is Critical for Extracting Electron from Inorganic Perovskite in Efficient Solar Cells

Qiong Wang¹*, Fengshuo Zu², Pietro Caprioglio^{3,4}, Christian M. Wolff³, Martin Stolterfoht³, Meng Li^{1,5}, Silver-Hamill Turren-Cruz¹, Norbert Koch^{2,5,6}, Dieter Neher³, Antonio Abate^{1,7,8}*

¹Young Investigator Group Active Materials and Interfaces for Stable Perovskite Solar Cells, Helmholtz-Zentrum Berlin für Materialien und Energie, Kekuléstraße 5, 12489 Berlin, Germany

²Institut für Physik & IRIS Adlershof, Humboldt-Universität zu Berlin, 12489 Berlin, Germany ³Institute for Physics and Astronomy, University of Potsdam, Karl-Liebknecht-Straße 24–25, 14476 Potsdam-Golm, Germany

⁴Young Investigator Group Perovskite Tandem Solar Cells, Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, Kekuléstraße 5, 12489 Berlin, Germany

⁵Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou 215123, China

⁶Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, Kekuléstraße 5, 12489 Berlin, Germany

⁷Department of Chemical, Materials and Production Engineering, University of Naples Federioco II, Piazzale Tecchio 80, 80125 Fuorigrotta, Naples, Italy.

⁸State Key Laboratory of Photocatalysis on Energy and Environment, Institute of Advanced Energy Materials, Fuzhou University, Fuzhou, Fujian 350002, China

giong.wang@helmholtz-berlin.de; antonio.abate@helmholtz-berlin.de

Abstract: Charge extraction at the interface of the electron selective contact and the perovskite plays an essential role in photocurrent collection and thereby, the fill factor of solar cells. Here, we studied the charge extraction at the pertinent interface in inorganic perovskite solar cells with two different electron selective contact materials, *i.e.* titanium dioxide (TiO₂) and tin dioxide (SnO₂). We found that the charge extraction between SnO₂ and CsPbI_{1.8}Br_{1.2} perovskite is strongly limited by the low conduction band minimum energy offset of approximately 250 meV. In contrast, TiO₂ has a higher energy offset (400 meV) against the conduction band minimum of CsPbI_{1.8}Br_{1.2} perovskite. This resulted in a superior fill factor up to 78% with a power conversion efficiency of up to 13.3% for inorganic perovskite solar cells with a TiO₂-based electron selective contact. Compared to the mixed organic-inorganic triple cation perovskite (Cs_{0.05}(FA_{0.83}MA_{0.17})_{0.95}Pb(I_{0.83}Br_{0.17})₃, where FA is formamidinium, and MA is methylammonium), the inorganic CsPbI_{1.8}Br_{1.2} perovskite demands a much higher conduction

band energy offset for efficient charge extraction. This work provides a clear guideline for the future design and choice of electron selective contacts for inorganic perovskite solar cells.

Keywords: inorganic perovskite, electron selective contact, conduction band energy offset, charge extraction, charge collection

Introduction

Compared to mixed organic/inorganic metal halide perovskites, purely inorganic perovskites, have an extraordinary advantage in terms of thermal stability.¹ Robust thermal stability is critical for passing the accelerated ageing test applied for industrial photovoltaics.²⁻⁴ Until today, pure iodide inorganic perovskite CsPbI₃ has the smallest bandgap of ~ 1.7 eV among all caesium lead halides. However, this composition transforms from the cubic phase at temperatures above 310 °C to the delta phase at room temperature⁵⁻⁷, which represents a thermodynamic stability issue. In contrast, mixed halide inorganic perovskites such as CsPbI₃₋ _xBr_x have demonstrated a highly stable cubic or slightly distorted orthorhombic phase at room temperature in an inert atmosphere, *i.e.* nitrogen-filled glove box.^{8, 9} Solar cells with compositions of CsPbI_{3-x}Br_x perovskite thus exhibit great potential. In recent years, a power conversion efficiency (PCE) of over 16% has been reported for CsPbI₂Br perovskite.^{10, 11} However, the photocurrent is likely overestimated in many works¹⁰⁻¹³ because the maximum short-circuit photocurrent (J_{sc}) at a bandgap of 1.9 eV for CsPbI₂Br¹⁴⁻¹⁶ is 16.97 mA cm⁻², based on the Shockley-Queisser equation for single-junction solar cells, considering only radiative recombination.¹⁷ In reality, we calculated the maximum J_{sc} of 16.16 mA cm⁻² at an external quantum efficiency (EQE) of up to 96% above the bandgap (Figure S1). On the other hand, the reported open-circuit voltage (V_{oc}) of CsPbI₂Br inorganic perovskite solar cells of less than 1.25 V^{15, 18, 19} is generally much lower than the radiative V_{oc} limit of ~1.589 V¹⁷. Therefore, to achieve higher efficiency in inorganic perovskite solar cells, we need a higher V_{oc} by reducing the non-radiative recombination at the interfaces with the perovskite film and reduced defects in its bulk.¹³

Many recent works on Cs_{0.05}(FA_{0.83}MA_{0.17})_{0.95}Pb(I_{0.83}Br_{0.17})₃ triple cation perovskite²⁰ (referred as CsFAMA in the following) and methylammonium lead trihalide²¹⁻²³ (MAPbX₃, X = I, Br, Cl) demonstrated that the energy levels of electron and hole selective contact have a significant influence on the non-radiative recombination at the interface.^{24, 25} In general, small energy offset against the valence band maximum (VBM) of the perovskite, e.g. with poly[bis(4phenyl)(2,4,6-trimethylphenyl)amine] (PTAA), results in a high V_{oc} , whereas poly(2,3dihydrothieno-1,4-dioxin)-poly(styrenesulfonate) (PEDOT:PSS) with a large energy offset features a low V_{oc} .²⁰ Similarly, a small conduction band minimum (CBM) energy offset with electron selective contacts is beneficial for a high V_{oc} as well. In the case of TiO₂ and SnO₂, two commonly used inorganic electron selective contacts (ESCs), the latter allows a higher V_{oc} than TiO₂-based solar cells. Consequently, higher efficiency is achieved in SnO₂-based solar cells.²⁰ high conductivity²⁶ and photo-stability against UV light^{27, 28}. For example, Jiang *et al.*²⁹ deposited SnO₂ from a SnO₂ nanoparticle suspension, followed by annealing on a hot plate at the temperature of 150 °C, and achieved an efficiency of 23% for formamidinium lead triiodide perovskite solar cells. Correa Baena et al.³⁰ reported a maximum V_{oc} of 1.214 V for CsFAMA-triple cation perovskite solar cells using SnO₂ based ESC prepared by chemical bath deposition. Tavakoli *et al.*³¹ prepared SnO₂ from tin chloride dissolved in isopropanol and deposited it on top of TiO₂ to form a double-layered ESCs. They reported a significant increase in V_{oc} and fill factor (FF) of their devices.

Here, we employed TiO₂ and SnO₂ as the ESCs for our inorganic perovskite solar cells with CsPbI_{1.8}Br_{1.2} as the light absorber. CsPbI_{1.8}Br_{1.2} is selected here because we found that CsPbI_{1.8}Br_{1.2} perovskite exhibits robust phase stability compared to CsPbI₂Br perovskite³². In particular, we studied the charge extraction and interface recombination in inorganic perovskite solar cells using steady-state photoluminescence and time-resolved photoluminescence. We found that, in line with our previous work²⁰, SnO₂ exhibits slower interface recombination lifetime of approximately 60 ns is extracted from a FTO/SnO₂/CsPbI_{1.8}Br_{1.2} film, in comparison to around 10 ns for FTO/TiO₂/CsPbI_{1.8}Br_{1.2} stack. As further revealed from ultraviolet photoelectron spectroscopy measurements, SnO₂ has a deeper CBM against the vacuum level and correspondingly smaller energy offset to the perovskite as compared to TiO₂. Although a higher V_{oc} was achieved with SnO₂, the fill factor was worse. This work reveals that a higher CBM energy offset, of over 250 meV is required to provide enough driving force for charge extraction for inorganic perovskite solar cells. Thus, this work will greatly contribute to the future design of ESCs for use in inorganic perovskite solar cells.

Results and discussion

The details regarding the preparation of TiO₂ and SnO₂ contacts and deposition of CsPbI_{1.8}Br_{1.2} are given in the experimental section (see SI). It should be noted that here we adopted the double-layered structure for SnO₂ contacts, as reported in Tavakoli's work³¹. This is because a single SnO₂ compact layer deposited from the sol-gel method frequently resulted in up to 90% shunted devices. By depositing a SnO₂ compact layer on top of a compact TiO₂ (c-TiO₂, prepared from spray-pyrolysis), the percentage of shunted devices is significantly reduced to less than 5%. The reference TiO₂ contact adopts the classic architecture with mesoporous TiO₂ (m-TiO₂) deposited on top of c-TiO₂ covered fluorine-doped tin oxide (FTO). **Figure 1a** illustrates the scheme of the configuration of the studied solar cells with a double-layer

structured ESCs. In the case of SnO₂-ESC based solar cells, the thin SnO₂ layer of less than 50 nm takes the place of a mesoporous TiO₂ layer of around 150 nm. Figures 1b and 1c present cross-section scanning electron microscopy (SEM) images of CsPbI_{1.8}Br_{1.2} deposited on SnO₂-ESC and TiO₂-ESC, respectively. In both cases, the CsPbI_{1.8}Br_{1.2} film has a thickness of approximately 500 nm. The features of m-TiO₂ deposited on top of c-TiO₂ on FTO can be seen in Figure 1c, while the double-layered SnO₂/c-TiO₂ on FTO can also be identified in Figure 1b. Figures 1d and 1e present the surface morphology of CsPbI_{1.8}Br_{1.2} perovskite deposited on SnO₂-ESC and TiO₂-ESC. We can see that both contacts support a compact CsPbI_{1.8}Br_{1.2} perovskite film with similar morphological features.

Figure 1. a) Scheme of the structure of inorganic perovskite solar cells using $SnO_2/c-TiO_2$ double-layered ESCs. Cross-section SEM images of CsPbI_{1.8}Br_{1.2} perovskite deposited on b) SnO_2 and c) TiO_2 covered c-TiO_2/FTO (scale bar: 800 nm). Surface morphology of CsPbI_{1.8}Br_{1.2} perovskite deposited on d) SnO_2 and e) TiO_2 covered c-TiO_2/FTO with low magnification (left panel, scale bar: 2 µm) and high magnification (right panel, scale bar: 800 nm).

Figure 2a reveals that $CsPbI_{1.8}Br_{1.2}$ deposited on TiO_2 and SnO_2 contacts has essentially the same optical bandgap of 1.93 eV. It should be noted that for the UV-Vis absorption measurements and the later-mentioned photoluminescence measurements, which were

conducted in air, the samples were encapsulated with a thin microscopic slide as the cover glass to avoid the permeation of moisture during the measurements. We found that the encapsulation is very critical for these measurements, because without encapsulation CsPbI_{1.8}Br_{1.2} films quickly decomposed into yellow lead iodide. This decomposition process is predominantly triggered by the air humidity that is influenced by weather and season. Solar cells made out of this inorganic perovskite are stored in a dry airbox with constant dry airflow and relative humidity of lower than 0.3%.

Figure 2b reveals the absolute photoluminescence (PL) spectra of CsPbI_{1.8}Br_{1.2} films deposited on bare glass (black line), as well as SnO₂ (red line) and m-TiO₂ (blue line) on c-TiO₂/FTO, respectively. It gives an optical bandgap of around 1.89 eV for CsPbI_{1.8}Br_{1.2} perovskite/glass. A slight shift to the higher energy for CsPbI_{1.8}Br_{1.2} deposited on the contacts is observed, compared to the glass substrate. The reason behind the shift is currently unknown. Importantly, CsPbI_{1.8}Br_{1.2} films deposited on both contacts (SnO₂ and m-TiO₂) exhibit a distinct decrease in photoluminescence quantum yield (PLQY). This demonstrates that both SnO₂ and TiO₂ transport layers introduce significant interface recombination at the perovskite interface or bring additional non-radiative recombination within the transport layer, reducing the amount of free carriers able to recombine radiatively in the perovskite bulk, as previously observed.²⁰ Moreover, the SnO₂ contact resulted in a less quenched PL signal compared to TiO₂, in line with the previous report on CsFAMA-triple cation perovskite with a smaller bandgap.²⁰ This trend indicates slower interface recombination at the SnO₂ interface compared to that of TiO₂, or that the charge extraction from the perovskite to the TiO₂ layer is faster which accelerates the overall non-radiative recombination of charges at the interface or within the ESC itself.³³ The maximum quasi-fermi level splitting (QFLS) is calculated from the absolute PLQY following previous works^{20, 34}, and it is presented in Figure 2c. Details of the calculation can be found in SI (Figure S2). Accordingly, with the PLQY values, the QFLS of the different samples illustrates that CsPbI_{1.8}Br_{1.2} deposited on glass features the highest QFLS (1.365 eV), followed by SnO₂-ESC (1.343 eV) and TiO₂-ESC (1.317 eV). As we discuss further below, the trend in QFLS matches well with the trend in Voc of solar cells based on these two contacts, with SnO₂-ESC based solar cells holding a higher V_{oc} than that of TiO₂-ESC. Figure 2d illustrates the timeresolved PL (trPL) measurements. By fitting the PL decay curve with a mono-exponential equation, we calculated that a longer non-radiative recombination lifetime (60 ns) is extracted for CsPbI_{1.8}Br_{1.2}/SnO₂ than that of CsPbI_{1.8}Br_{1.2}/TiO₂ (10 ns). Therefore, the trPL measurements agree well with the PLQY measurements, confirming slower interface recombination at the interface CsPbI_{1.8}Br_{1.2}/SnO₂-ESC.

Figure 2. a) Tauc plots of SnO₂-ESC/CsPbI_{1.8}Br_{1.2}- (red line) and TiO₂-ESC/CsPbI_{1.8}Br_{1.2}- (blue line). b) Absolute PL, c) Quasi Fermi Level Splitting (QFLS), and d) time-resolved PL (trPL) of CsPbI_{1.8}Br_{1.2} deposited on non-conductive glass (black line), SnO₂ (red line) and TiO₂ (blue line) covered FTO/c-TiO₂.

The above PL analysis would suggest that solar cells with compositions of SnO₂-ESC/CsPbI_{1.8}Br_{1.2} would result in a better open-circuit voltage and hence potentially better photovoltaic performance (than that of TiO₂-ESC/CsPbI_{1.8}Br_{1.2}). With this expectation in mind, fabricated inorganic perovskite solar cells using 2,2',7,7'-tetrakis-(N,N-di-pwe methoxyphenyl-amine)-9,9'-spirobifluorene (spiro-OMeTAD) as the hole selective contact. It should be noted that the "oxygen soaking"^{35, 36} of spiro-OMeTAD was conducted by storing the devices overnight in a dry airbox with a very low relative humidity of less than 0.3%. Figure **3a** displays the *J-V* curve of solar cells based on SnO_2 and TiO_2 contacts for CsPbI_{1.8}Br_{1.2} inorganic perovskite. In agreement with Figure 2c, a higher V_{oc} of 1.294 V is achieved with SnO₂-ESC based solar cells than 1.209 V for that of TiO₂. However, we observed a much lower FF and a smaller J_{sc} for SnO₂-ESC based solar cells. Overall, SnO₂-ESC based inorganic perovskite solar cells result in a much worse photovoltaic performance compared to TiO₂-ESC based inorganic perovskite solar cells. Table S1 summarises the detailed photovoltaic parameters of J_{sc} , V_{oc} and FF. Figure 3b illustrates the external quantum efficiency (EQE) measurement of the solar cells. It evidences that TiO2-ESC based inorganic perovskite solar

cells exhibit a high EQE value of approximately 85% over a broad wavelength range. However, SnO₂-ESC based inorganic perovskite solar cells have a much lower EQE value of below 80% for all the wavelength range. This characteristic suggests that there is a big issue in charge extraction in SnO₂-ESC based inorganic perovskite solar cells. This trend is observed in over 12 solar cells. Figures 3c-f summarise box charts of PCE, V_{oc} , J_{sc} and FF. Interestingly, solar cells based on SnO₂-ESC exhibit on average a 100 mV higher V_{oc} than TiO₂-ESC based inorganic perovskite solar cells. This trend is observed in other that of TiO₂-ESC based inorganic perovskite solar cells.

In recent work,¹⁴ we found the first annealing step temperature in a three-step annealing procedure of CsPbI_{1.8}Br_{1.2} inorganic perovskite can significantly influence the charge extraction, indicative of a poor FF and a low EQE. Optimisation of the first annealing step temperature for TiO₂-ESC based inorganic perovskite solar cells resulted in a PCE of 13.3% with a FF up to 78% (Figure S3). Similar optimisation of the first annealing step temperature of the inorganic perovskite was conducted on SnO₂-ESC. The distribution of J_{sc} and FF in SnO₂-based solar cells is summarised in Figures 3g-h, with box charts of PCE and V_{oc} summarised in Figure S4. It shows a gradual increase in J_{sc} as the first annealing step temperature of CsPbI_{1.8}Br_{1.2} increases, but the FF is generally low at the level of 50%. Figure 3i summarises the EQE response of SnO₂-based solar cells with CsPbI_{1.8}Br_{1.2} annealed at different temperatures ranging from 45 °C to 65 °C with an interval of 5 °C. It displays that the EQE is slightly increased at the wavelength spanning from 350 to 550 nm as the temperature goes up. However, it is generally low (below 80%). It should be noted that a further increase in the temperature does not lead to higher performance in solar cells because of poor morphology of the perovskite film that was processed anti-solvent-free. Overall, it implies that the poor charge extraction is not likely due to the poor crystallisation of the inorganic perovskite, as we studied a wide range of first annealing step temperatures that are found to be crucial for the management of phase purities and crystal orientation.¹⁴ Accordingly, bulk defects in the inorganic perovskite are expected not to play a significant role here. Rather, the energy level alignment at the interface may be the cause of the poor charge extraction in case of SnO₂-based CsPbI_{1.8}Br_{1.2} cells. It is worth noting that by applying a shallow mask during the J-V measurements, our J_{sc} given in Figure 3g matches very well with the integrated J_{sc} from EQE (Figure 3i).

Figure 3. a) *J-V* curve, b) EQE spectra, and box chart of photovoltaic parameters (c: PCE (%), d: V_{oc} (*V*), e: J_{sc} (mAcm⁻²), f: FF (%)) of the solar cells based on SnO₂ (black line) and TiO₂ (red line) for CsPbI_{1.8}Br_{1.2} inorganic perovskite. Box chart of g) J_{sc} (mA cm⁻²) and h) FF (%) and i) EQE spectra for inorganic perovskite solar cells based on SnO₂-ESC with CsPbI_{1.8}Br_{1.2} inorganic perovskite annealed at a range of temperatures from 45 °C to 65 °C with an interval of 5 °C. *J-V* curves were measured with a scan rate of 200 mV/s and a shallow mask with an area of 0.1 cm².

To unravel the energy level alignment at the interfaces, we conducted ultraviolet photoelectron spectroscopy (UPS) measurements of SnO₂-ESC and TiO₂-ESC with and without CsPbI_{1.8}Br_{1.2} thin films. Moreover, we investigated a CsFAMA-triple cation perovskite on both contacts as reference. The photovoltaic performance of CsFAMA perovskite on these two contacts is given in **Figure S5**. It illustrates that SnO₂-ESC based solar cells exhibit a similar efficiency as those with TiO₂-ESC with an average efficiency of around 16.5%. Similar to inorganic perovskite solar cells, the triple cation perovskite solar cells also achieved a higher $V_{\rm oc}$ (1.157 V) with SnO₂-ESC than that of TiO₂-ESC (1.075 V). This trend agrees with previous work.^{20,31, 37}

Figure 4a presents the secondary electron cut-off of all samples (left panel), from which the sample work function (WF) is obtained. It exhibits that SnO_2 -ESC has a higher work function of 4.26 eV than TiO₂-ESC of 3.58 eV, in agreement with the previous report.²² Moreover, for both inorganic perovskite and triple cation perovskite, the work functions are very similar on both contacts. The valence band spectra are given in the middle panel of Figure 4a on a linear

intensity scale, and a zoomed-in spectral region on a logarithmic intensity scale is given in the right panel. The position of the VBM is determined by extrapolation of the leading edge on a logarithmic photoelectron intensity scale to obtain a right band edge.^{38, 39} The CBM is calculated from the measured VBM by adding the optical gap of the material with the assumption that the exciton binding energy is negligible at room temperature. The optical gap of SnO₂ and TiO₂ of 3.6 eV and 3.2 eV were measured and given in **Figure S6**. The optical gap of CsPbI_{1.8}Br_{1.2} was determined as 1.93 eV (Figure 2a) while the optical gap of CsFAMA perovskite of 1.61 eV is taken from the steady-state PL spectra (**Figure S7**).

Figure 4. a) Secondary electron cut-off (left panel), valence spectra (middle panel), and zoomed valence spectra on logarithmic intensity scale (right panel) of SnO₂-ESC (black line), CsFAMA/SnO₂-ESC (red line) and CsPbI_{1.8}Br_{1.2}/SnO₂-ESC (blue line), TiO₂-ESC (green line), CsFAMA/TiO₂-ESC (pink line) and CsPbI_{1.8}Br_{1.2}/SnO₂-ESC (orange line). (b) Schematic energy-level diagram of SnO₂-ESC, TiO₂-ESC, CsFAMA and CsPbI_{1.8}Br_{1.2} relative to E_F.

Figure 4b illustrates the energy level alignment between the contacts and the perovskites. It displays that m-TiO₂ has its CBM very close to the Fermi level (E_F), only 50 meV distance. It should be noted that we used lithium bis(trifluoromethanesulfonyl)imide-doped m-TiO₂ as described in the experimental section (see SI). The reason for doping m-TiO₂ with the lithium salt is to enhance its electron conductivity to reduce the transport resistance on the one hand. On the other hand, to strengthen electron extraction.⁴⁰ Though SnO₂ was deposited from its solgel solution without any dopant, it presents a high electron conductivity intrinsically,^{28, 37, 41} with CBM only 250 meV away from the E_F . Notably, both CsPbI_{1.8}Br_{1.2} and CsFAMA perovskites exhibit an *n*-type character at the surface that is accessible to UPS as the E_F is found to be very close to their CBM. It is noted that in this study, we did not observe any shifts in perovskite energy levels when performing surface photovoltage measurements, indicating a flat band condition through perovskite layers,^{20, 39} as illustrated in Figure 4b.

More specifically, in the case of SnO₂-ESC contact, the CBM of CsFAMA perovskite is located at the same position as that of contact, which agrees with a previous report.³⁷ In comparison, the energy offset between TiO₂-ESC and CsFAMA is around 120 meV. Since both contacts lead to a decent efficiency in solar cells, one concludes that both SnO₂-ESC and TiO₂-ESC can extract electrons efficiently from CsFAMA perovskite and the driving force required for electron extraction from CsFAMA perovskite can be very small or even negligible. In case of the CsPbI_{1.8}Br_{1.2} perovskite, the CBM offsets are 250 meV and 400 meV for SnO₂-ESC and TiO₂-ESC and TiO₂-ESC, respectively. Based on the above discussion of the photovoltaic performance of inorganic perovskite solar cells, it is reasonable to conclude that the reason for the poor electron extraction by SnO₂-ESC from CsPbI_{1.8}Br_{1.2} requires a much higher energy offset, of over 250 meV, for efficient electron extraction. Our conclusion is supported by one recent work from Xu *et al.*¹³ who prepared SnO₂ nanoparticles from its colloid solution and used it as ESC for CsPbI₂Br, where they measured the CBM energy offset of 300 meV and thus reported a beautiful FF of 75.5% for their solar cells.

The difference between CsFAMA and CsPbI_{1.8}Br_{1.2} perovskites in terms of charge extraction may come from the relatively higher exciton binding energy of the inorganic perovskite. Yang *et al* studied the exciton binding energy of both organic and inorganic perovskites.⁴²⁻⁴⁴ They found that CsPbI₂Br exhibits a value of 22 ± 3 meV that is much higher than the exciton binding energy of 12 ± 3 meV for tetragonal phase MAPbI₃ and 13 ± 2 meV for CsFAMA perovskite. Considering the thermal energy at room temperature of ca. 26 meV, both MAPbI₃ and CsFAMA perovskites exhibit a non-excitonic behaviour at room temperature. Therefore, even at small energy offset at the interface between CsFAMA and electron selective contacts, electrons can still efficiently flow from the conduction band of CsFAMA perovskite to that of SnO₂-ESC. However, inorganic perovskites with mixed halides have an exciton binding energy highly close to the thermal energy, indicating that a higher energy offset is required as the driving force for the efficient collection of electrons. Also, compared to inorganic perovskites that exhibit ultrafast (< 0.6 ps) hot-carrier relaxation dynamics,⁴⁵ organic-inorganic perovskites were reported to have a slower carrier relaxation time of up to 100 ps,⁴⁶⁻⁴⁸ which makes the extraction of hot carriers from CsFAMA perovskite even possible. Therefore, it would be fascinating, as next step, to investigate the transient absorption spectra of the system of CsFAMA deposited on SnO₂-ESC to examine whether or not there is any hot carrier extraction happened at the interface.

Conclusion

We studied two electron selective contacts, *i.e.* SnO₂ and TiO₂, for CsPbI_{1.8}Br_{1.2} inorganic perovskite solar cells. Though there is no detrimental energy barrier for both contact materials, CsPbI_{1.8}Br_{1.2} is found to demand a much higher conduction band minimum energy offset to drive efficient electron extraction compared to the CsFAMA triple cation perovskite. Based on UPS data, an energy offset of over 250 meV is needed for efficient charge extraction from CsPbI_{1.8}Br_{1.2}. The difference between CsFAMA and CsPbI_{1.8}Br_{1.2} perovskites in terms of charge extraction may come from the relatively higher exciton binding energy of the inorganic perovskite. These results guide the future design and selection of electron transport materials to be used in inorganic perovskite solar cells. Energy level adjustment *via* doping of electron transport materials⁴⁹⁻⁵¹ or adopting the form of nanoparticles^{13, 28, 52} or tuning of the conduction band energy of inorganic perovskite *via* supramolecular approaches^{53, 54} would be fascinating routes to explore for improving charge extraction at the interface of contacts and inorganic perovskites.

Acknowledgement

The authors acknowledge the funding by the DFG (SPP2196). M.S. acknowledges the DFG (423749265). P.G. acknowledges financial support by the HyPerCells, a joint graduate school of Potsdam University and the HZB. Q.W. appreciated the kind assistance from Mrs. Klimm Carola for the SEM measurements.

Author contribution

Q.W. designed the experiment, drafted the manuscript, fabricated and characterised the solar cells and prepared the samples for the measurements. F.S.Z conducted and contributed to the data analysis of the UPS measurements for the work. P.C., C.M.W., M.S. conduced and contributed to the data analysis of the PL measurements for this work. M. L. and S.-H. T.C. provided useful discussion during the conduction of the project. D.N, N.K. and A.A provided valuable inputs on the overall data discussion and manuscript revision. All authors discussed the results and provided feedback on the manuscript.

References

- 1. Q. Wang, N. Phung, D. Di Girolamo, P. Vivo and A. Abate, *Energy & Environmental Science*, 2019, **12**, 865-886.
- 2. H. J. Snaith and P. Hacke, *Nature Energy*, 2018, **3**, 459-465.
- M. V. Khenkin, E. A. Katz, A. Abate, G. Bardizza, J. J. Berry, C. Brabec, F. Brunetti, V. Bulović, Q. Burlingame, A. Di Carlo, R. Cheacharoen, Y.-B. Cheng, A. Colsmann, S. Cros, K. Domanski, M. Dusza, C. J. Fell, S. R. Forrest, Y. Galagan, D. Di Girolamo, M. Grätzel, A. Hagfeldt, E. von Hauff, H. Hoppe, J. Kettle, H. Köbler, M. S. Leite, S. Liu, Y.-L. Loo, J. M. Luther, C.-Q. Ma, M. Madsen, M. Manceau, M. Matheron, M. McGehee, R. Meitzner, M. K. Nazeeruddin, A. F. Nogueira, Ç. Odabaşı, A. Osherov, N.-G. Park, M. O. Reese, F. De Rossi, M. Saliba, U. S. Schubert, H. J. Snaith, S. D. Stranks, W. Tress, P. A. Troshin, V. Turkovic, S. Veenstra, I. Visoly-Fisher, A. Walsh, T. Watson, H. Xie, R. Yıldırım, S. M. Zakeeruddin, K. Zhu and M. Lira-Cantu, *Nature Energy*, 2020, 5, 35-49.
- 4. L. Meng, J. You and Y. Yang, *Nature Communications*, 2018, **9**, 5265.
- 5. A. Marronnier, G. Roma, S. Boyer-Richard, L. Pedesseau, J.-M. Jancu, Y. Bonnassieux, C. Katan, C. C. Stoumpos, M. G. Kanatzidis and J. Even, *ACS Nano*, 2018, **12**, 3477-3486.
- J. A. Steele, H. Jin, I. Dovgaliuk, R. F. Berger, T. Braeckevelt, H. Yuan, C. Martin, E. Solano, K. Lejaeghere, S. M. J. Rogge, C. Notebaert, W. Vandezande, K. P. F. Janssen, B. Goderis, E. Debroye, Y.-K. Wang, Y. Dong, D. Ma, M. Saidaminov, H. Tan, Z. Lu, V. Dyadkin, D. Chernyshov, V. Van Speybroeck, E. H. Sargent, J. Hofkens and M. B. J. Roeffaers, *Science*, 2019, **365**, 679-684.
- 7. P. Becker, J. A. Márquez, J. Just, A. Al-Ashouri, C. Hages, H. Hempel, M. Jošt, S. Albrecht, R. Frahm and T. Unold, *Advanced Energy Materials*, 2019, **9**, 1900555.
- 8. Z. Zeng, J. Zhang, X. Gan, H. Sun, M. Shang, D. Hou, C. Lu, R. Chen, Y. Zhu and L. Han, *Advanced Energy Materials*, 2018, **8**, 1801050.
- 9. Q. Tai, K.-C. Tang and F. Yan, *Energy & Environmental Science*, 2019, **12**, 2375-2405.
- 10. Y. Han, H. Zhao, C. Duan, S. Yang, Z. Yang, Z. Liu and S. Liu, *Advanced Functional Materials*, **n/a**, 1909972.
- 11. W. Chen, H. Chen, G. Xu, R. Xue, S. Wang, Y. Li and Y. Li, *Joule*, 2019, **3**, 191-204.
- 12. K.-L. Wang, R. Wang, Z.-K. Wang, M. Li, Y. Zhang, H. Ma, L.-S. Liao and Y. Yang, *Nano Letters*, 2019, **19**, 5176-5184.
- 13. W. Xu, F. He, M. Zhang, P. Nie, S. Zhang, C. Zhao, R. Luo, J. Li, X. Zhang, S. Zhao, W.-D. Li, F. Kang, C.-W. Nan and G. Wei, *ACS Energy Letters*, 2019, **4**, 2491-2499.
- 14. Q. Wang, J. Smith A., D. Skroblin, J. Steele A., C. Wolff M., P. Caprioglio, M. Stolterfoht, H. Köbler, M. Li, S.-H. Turren-Cruz, C. Gollwitzer, D. Neher and A. Abate, *submitted*, 2020.

- 15. C. Liu, W. Li, H. Li, H. Wang, C. Zhang, Y. Yang, X. Gao, Q. Xue, H.-L. Yip, J. Fan, R. E. I. Schropp and Y. Mai, *Advanced Energy Materials*, 2019, **9**, 1803572.
- 16. H. Zhao, S. Yang, Y. Han, S. Yuan, H. Jiang, C. Duan, Z. Liu and S. Liu, *Advanced Materials Technologies*, 2019, **4**, 1900311.
- 17. S. Rühle, *Solar Energy*, 2016, **130**, 139-147.
- 18. J. Zhang, D. Bai, Z. Jin, H. Bian, K. Wang, J. Sun, Q. Wang and S. Liu, *Advanced Energy Materials*, 2018, **8**, 1703246.
- 19. D. H. Kim, J. H. Heo and S. H. Im, ACS Applied Materials & Interfaces, 2019, **11**, 19123-19131.
- M. Stolterfoht, P. Caprioglio, C. M. Wolff, J. A. Márquez, J. Nordmann, S. Zhang, D. Rothhardt, U. Hörmann, Y. Amir, A. Redinger, L. Kegelmann, F. Zu, S. Albrecht, N. Koch, T. Kirchartz, M. Saliba, T. Unold and D. Neher, *Energy & Environmental Science*, 2019, **12**, 2778-2788.
- 21. C. M. Wolff, P. Caprioglio, M. Stolterfoht and D. Neher, *Advanced Materials*, 2019, **31**, 1902762.
- 22. P. Schulz, E. Edri, S. Kirmayer, G. Hodes, D. Cahen and A. Kahn, *Energy & Environmental Science*, 2014, **7**, 1377-1381.
- 23. L. E. Polander, P. Pahner, M. Schwarze, M. Saalfrank, C. Koerner and K. Leo, *APL Materials*, 2014, **2**, 081503.
- 24. Q. Wang, Y. Shao, Q. Dong, Z. Xiao, Y. Yuan and J. Huang, *Energy & Environmental Science*, 2014, **7**, 2359-2365.
- 25. C.-G. Wu, C.-H. Chiang and S. H. Chang, *Nanoscale*, 2016, **8**, 4077-4085.
- 26. Q. Wali, A. Fakharuddin and R. Jose, *Journal of Power Sources*, 2015, **293**, 1039-1052.
- 27. B. Roose, Q. Wang and A. Abate, *Advanced Energy Materials*, 2019, **9**, 1803140.
- 28. B. Roose, C. M. Johansen, K. Dupraz, T. Jaouen, P. Aebi, U. Steiner and A. Abate, *Journal of Materials Chemistry A*, 2018, **6**, 1850-1857.
- 29. Q. Jiang, L. Zhang, H. Wang, X. Yang, J. Meng, H. Liu, Z. Yin, J. Wu, X. Zhang and J. You, *Nature Energy*, 2016, **2**, 16177.
- 30. E. H. Anaraki, A. Kermanpur, L. Steier, K. Domanski, T. Matsui, W. Tress, M. Saliba, A. Abate, M. Grätzel, A. Hagfeldt and J.-P. Correa-Baena, *Energy & Environmental Science*, 2016, **9**, 3128-3134.
- 31. M. M. Tavakoli, M. Saliba, P. Yadav, P. Holzhey, A. Hagfeldt, S. M. Zakeeruddin and M. Grätzel, Advanced Energy Materials, 2019, **9**, 1802646.
- 32. S. Sanchez, N. Christoph, B. Grobety, N. Phung, U. Steiner, M. Saliba and A. Abate, *Advanced Energy Materials*, 2018, **8**, 1802060.
- 33. M. Stolterfoht, V. M. Le Corre, M. Feuerstein, P. Caprioglio, L. J. A. Koster and D. Neher, ACS *Energy Letters*, 2019, **4**, 2887-2892.
- 34. P. Caprioglio, M. Stolterfoht, C. M. Wolff, T. Unold, B. Rech, S. Albrecht and D. Neher, *Advanced Energy Materials*, 2019, **9**, 1901631.
- 35. U. B. Cappel, T. Daeneke and U. Bach, *Nano Letters*, 2012, **12**, 4925-4931.
- 36. W. H. Nguyen, C. D. Bailie, E. L. Unger and M. D. McGehee, *Journal of the American Chemical Society*, 2014, **136**, 10996-11001.
- J. P. Correa Baena, L. Steier, W. Tress, M. Saliba, S. Neutzner, T. Matsui, F. Giordano, T. J. Jacobsson, A. R. Srimath Kandada, S. M. Zakeeruddin, A. Petrozza, A. Abate, M. K. Nazeeruddin, M. Grätzel and A. Hagfeldt, *Energy & Environmental Science*, 2015, 8, 2928-2934.
- 38. J. Endres, D. A. Egger, M. Kulbak, R. A. Kerner, L. Zhao, S. H. Silver, G. Hodes, B. P. Rand, D. Cahen, L. Kronik and A. Kahn, *The Journal of Physical Chemistry Letters*, 2016, **7**, 2722-2729.
- 39. F. Zu, C. M. Wolff, M. Ralaiarisoa, P. Amsalem, D. Neher and N. Koch, ACS Applied Materials & Interfaces, 2019, **11**, 21578-21583.
- 40. F. Giordano, A. Abate, J. P. Correa Baena, M. Saliba, T. Matsui, S. H. Im, S. M. Zakeeruddin, M. K. Nazeeruddin, A. Hagfeldt and M. Graetzel, *Nature Communications*, 2016, **7**, 10379.
- 41. B. Roose and R. H. Friend, *Advanced Materials Interfaces*, 2019, **6**, 1801788.
- 42. Z. Yang, *Thesis*, 2018.
- 43. Z. Yang, A. Surrente, K. Galkowski, A. Miyata, O. Portugall, R. J. Sutton, A. A. Haghighirad, H. J. Snaith, D. K. Maude, P. Plochocka and R. J. Nicholas, *ACS Energy Letters*, 2017, **2**, 1621-1627.

- 44. Q. Zeng, X. Zhang, C. Liu, T. Feng, Z. Chen, W. Zhang, W. Zheng, H. Zhang and B. Yang, *Solar RRL*, 2019, **3**, 1800239.
- 45. H. Chung, S. I. Jung, H. J. Kim, W. Cha, E. Sim, D. Kim, W.-K. Koh and J. Kim, *Angewandte Chemie International Edition*, 2017, **56**, 4160-4164.
- 46. J. Yang, X. Wen, H. Xia, R. Sheng, Q. Ma, J. Kim, P. Tapping, T. Harada, T. W. Kee, F. Huang, Y.-B. Cheng, M. Green, A. Ho-Baillie, S. Huang, S. Shrestha, R. Patterson and G. Conibeer, *Nature Communications*, 2017, **8**, 14120.
- 47. S. A. Bretschneider, F. Laquai and M. Bonn, *The Journal of Physical Chemistry C*, 2017, **121**, 11201-11206.
- 48. J. Fu, Q. Xu, G. Han, B. Wu, C. H. A. Huan, M. L. Leek and T. C. Sum, *Nature Communications*, 2017, **8**, 1300.
- 49. A. K. Chandiran, F. Sauvage, M. Casas-Cabanas, P. Comte, S. M. Zakeeruddin and M. Graetzel, *The Journal of Physical Chemistry C*, 2010, **114**, 15849-15856.
- 50. B. Roose, K. C. Gödel, S. Pathak, A. Sadhanala, J. P. C. Baena, B. D. Wilts, H. J. Snaith, U. Wiesner, M. Grätzel, U. Steiner and A. Abate, *Advanced Energy Materials*, 2016, **6**, 1501868.
- 51. B. Roose, S. Pathak and U. Steiner, *Chemical Society Reviews*, 2015, **44**, 8326-8349.
- 52. A. Gagliardi and A. Abate, ACS Energy Letters, 2018, **3**, 163-169.
- C. M. Wolff, L. Canil, C. Rehermann, N. Ngoc Linh, F. Zu, M. Ralaiarisoa, P. Caprioglio, L. Fiedler, M. Stolterfoht, S. Kogikoski, I. Bald, N. Koch, E. L. Unger, T. Dittrich, A. Abate and D. Neher, ACS Nano, 2020, 14, 1445-1456.
- 54. M. A. Ruiz-Preciado, D. J. Kubicki, A. Hofstetter, L. McGovern, M. H. Futscher, A. Ummadisingu, R. Gershoni-Poranne, S. M. Zakeeruddin, B. Ehrler, L. Emsley, J. V. Milić and M. Grätzel, *Journal* of the American Chemical Society, 2020, **142**, 1645-1654.