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Abstract
Recent advances in the development of exchange and correlation functionals to be employed in
density functional theory calculations combined with the availability of ever more powerful
high-performance computing facilities, let predictive computational materials science become
reality. In order to assess the quality of calculated material properties, Jacob’s ladder provides an
informal classification, where exchange and correlation functionals of similar capabilities are
placed at the same rung of this ladder, while improved and more accurate ones are placed at higher
rungs. Climbing Jacob’s ladder, i.e. employing more accurate exchange and correlation functionals,
increases the quality of the results and the computational demands, and provides some guidance as
to what accuracies and computational costs to expect from specific calculations. This is particular
important for materials whose electronic ground state properties are incorrectly described, e.g.
small band gap semiconductors, and materials, where system sizes for subsequent investigations,
like defect properties or band offsets in heterostructures, become prohibitively large for more
accurate exchange and correlation functionals.

Here, we provide a systematic density functional theory study on the ground state properties of
Ag2ZnSnSe4 and Cu2ZnSnSe4 for the lowest four rungs of Jacob’s ladder. Cu2ZnSnSe4, and in
particular its alloys with Ag, is a promising candidate material for future thin-film solar cell
absorber layers. In the present work, the obtained material properties are compared to available
experimental data, allowing to benchmark the accuracy of the employed exchange and correlation
functionals. We also provide a comparative study for subsequent quasiparticle calculations.
Therein, the influence of differently obtained eigenvalues and orbitals as starting points are
critically assessed with respect to available experimental data. Our results show that, structural
properties based on the SCAN functional show overall best agreement with available experimental
data, whereas additional hybrid functional calculations are necessary for satisfying results on
electronic and optical properties.

1. Introduction

Novel photovoltaic materials based on the kesterite crystal structure are ingredients for third generation
thin-film solar cells based only on earth-abundant and non-toxic elements. Prominent examples include
Cu2ZnSnS4 (CZTS), Cu2ZnSnSe4 (CZTSe), and their solid solution Cu2ZnSn(SxSe1− x)4 (CZTSSe), where
the latter one allows to continuously tune the electronic band gap between around 1.0 eV for CZTSe [1, 2]
and 1.53–1.67 eV for CZTS [3], respectively, thereby including the optimum band gap of 1.34 eV for single
junction photovoltaic cells [4]. Subsequently, the overall potential of CZTSSe based solar cell devices has
been demonstrated with a reported power conversion efficiency of 12.6% [5]. Following up on the question
posed very early on, of why kesterite solar cells are not 20% efficient [6], the last years have seen a lot of
experimental investigations into the structural, electronic, and optical properties of kesterite based solar cell
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materials, as well as theoretical investigations based on first-principles calculations employing density
functional theory (DFT) for a comprehensive atomic understanding.

These combined experimental and theoretical efforts have identified the most likely cause for limiting
further advances as a large defect density of Cu-Zn antisites [7], either intrinsic CuZn or ZnCu antisite defects
or CuZn–ZnCu defect complexes observed for the Cu–Zn disorder [8]. Looking at the final device geometry,
i.e. a CZTSSe/CdS interface for a p–n junction, these defects are accumulating at the interface region, thereby
pinning the Fermi level in the middle of the band gap [7]. Subsequently this leads to only a small band
bending into the absorber layer and a large deficit in the open-circuit voltage (Voc) [9]. Experimentally, this
can be verified by the difference in the band gap determined from internal quantum efficiency and
photoluminescence measurements [10].

In order to significantly reduce the Cu–Zn antisite defect density, a partial replacement of Cu with larger
Ag cations has been proposed [11, 12], based on promising results on kesterite type Ag2ZnSnSe4 (AZTSe)
[13, 14]. DFT calculations indicate an increase in the formation energy of I–II antisite defects, leading to a
significant reduction in I-II antisite defect density by an order of magnitude and subsequently a reduced
band tailing [9, 15].

From a first-principles perspective, kesterite type materials pose a very challenging task. First of all, they
are quaternary materials with a complicated interplay of interactions among the atoms. Secondly, as
potential absorber layers in solar cell devices, they have band gaps in the range of 1.0–1.5 eV, which are
notoriously difficult to treat accurately by DFT methods due to an underestimation of the band gap in
simpler exchange and correlation functionals. One way to circumvent this particular band gap problem is to
employ more accurate exchange and correlation functionals, i.e. hybrid functionals, which incorporate some
fraction of Hartree–Fock exact exchange and have been shown to yield better electronic properties of
semiconducting materials. Another way would be to perform additional quasiparticle investigations based on
many-body perturbation theory, i.e. subsequent GW calculations. While those two approaches can routinely
be applied to the bulk properties of kesterite type materials, an increased demand of computational resources
prohibits their use for subsequent material properties investigations, e.g. formation energies of defects and
defect complexes or the calculation of band offsets in modelled device heterostructures.

To this end, a well tested and proven theoretical approach would be highly desirable, providing a guide
towards a useful combination of available exchange and correlation functionals together with their overall
accuracy and their demands on computational resources. Here, we provide a detailed first-principles
investigation on the structural, electronic, and optical properties of AZTSe and CZTSe in both, the kesterite
and stannite crystal structure, and benchmark the results obtained from exchange and correlation
functionals of increasing complexity with respect to available experimental data.

The paper is organised as follows. Section 2 provides information on the structural polymorphs of
AZTSe and CZTSe, as well as the necessary theoretical background for first-principles calculations, the
employed exchange and correlation functionals, and important computational details. In a first step, in
section 3 the obtained results on the structural, electronic, and optical properties are compared with and
benchmarked against available experimental data. Results from subsequent quasiparticle calculations based
on the GW approximation will be discussed as well. In a second step, the overall performance of the
employed exchange and correlation functionals will be critically discussed, leading to suggestions for
material properties investigation, such as the calculation of defects and defect complexes or band offsets in
modelled heterostructures. Finally, section 4 provides a short summary and conclusion, and gives an outlook
into future investigations.

2. Background and computational details

2.1. Structural polymorphs
At ambient condition AZTSe and CZTSe crystallise in the kesterite crystal structure (space group I4̄, no. 82),
as shown in figure 1(a). The kesterite crystal structure can be most easily understood as originating from a
binary II–VI zinc-blende crystal structure via pairwise cation substitutions, with the restriction that the
bonding to adjacent cations has to fulfil the so-called octet rule, i.e. the valence shell of each atom comprises
eight electrons. Starting from a II–VI zinc-blende material, doubling the unit cell along the c axis, and
additionally replacing the group-II element by a pair of group-I and group-III elements, can lead to ternary
I–III–VI2 compounds of the chalcopyrite and the CuAu-like structure, respectively. A further replacement of
the group-III elements by pairs of group-II and group-IV elements in the chalcopyrite structure leads to the
I2–II–IV–VI4 kesterite crystal structure. However, performing the same replacement starting from the
CuAu-like structure can lead to the I2–II–IV–VI4 stannite crystal structure (space group I4̄2m, no. 121),
which is shown in figure 1(c).
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Figure 1. Cu, Zn, and Sn cation planes with z = 0.0, 0.25, 0.5 and 0.75 in the (a) ordered kesterite (space group I4̄, no. 82),
(b) disordered kesterite (space group I4̄2m, no. 121), and (c) stannite (space group I4̄2m, no. 121) crystal structures, respectively.
The dashed lines in the disordered kesterite structure (b) denote the additional symmetry elements due to the totally random
distribution of Cu and Zn cations in the z = 0.25 and z = 0.75 planes. The lower parts list the colour-coded Wyckoff positions for
each of the structural polymorphs.

To make matters worse, the ionic radii of Cu and Zn are nearly identical, giving rise to a high probability
of cation exchange in the Cu–Zn planes perpendicular to the crystallographic c axis, located at z = 0.25 and
z = 0.75. While partial exchange of Cu and Zn cations leads to an increase in the CuZn and ZnCu defect
density, a totally random distribution of Cu and Zn cations within the Cu–Zn planes leads to the
introduction of additional symmetry elements and has therefore been named disordered kesterite structure,
shown in figure 1(b). In terms of structural investigations this disordered kesterite structure crystallises in the
same space group as the stannite crystal structure, and has hindered the correct crystal structure
determination of possible solar absorber materials for some time.

2.2. Theoretical background
In recent years, first-principles calculations based on DFT have become a very powerful tool for materials
science investigations, not only due to the development of ever more accurate exchange and correlation
functionals, but also due to the wide-spread availability of local, regional, and national high-performance
computing (HPC) facilities, providing the necessary computational resources for investigations of increasing
complexities. With the constant development of improved exchange and correlation functionals to be
employed in first-principles investigations, for somebody not that familiar with the topic it became more and
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Figure 2. Jacob’s ladder, placing exchange and correlation functionals of similar capabilities at the same rung [16].

more difficult to judge the accuracy and reliability of the reported results. In order to allow for some
guidance, the so-called Jacob’s ladder can provide a first hint [16], as adopted in figure 2.

Here, exchange and correlation functionals of similar capabilities are grouped together at the same rung
of this ladder, while improved and more accurate ones are placed at a higher rung. Functionals of the local
density approximation (LDA) can be found at the lowest rung and are based solely on the electron density,
the more common examples include the parametrisations after Perdew and Zunger [17] and Perdew and
Wang [18]. The next rung depicts the generalised gradient approximation (GGA) functionals, which
additionally take into account the gradient of the electron density. Examples include the parametrisations
after Perdew, Burke, and Ernzerhof (PBE) [19], the PBE parametrisation revised for solids (PBEsol) [20], and
the parametrisation after Armiento and Mattsson (AM05) [21], respectively. Additional inclusion of the
second derivative of the electron density (the Laplacian) and the orbital kinetic energy density leads to the
rung of the so-called meta-GGAs, with the SCAN functional [22] being a prominent example. This SCAN
functional satisfies all known possible exact constraints for the exact density functional, and has been
claimed to match or improve on the accuracy of computationally more demanding hybrid functionals [23].

The mentioned hybrid functionals replace a pre-defined fraction of the underlying exchange and
correlation energy by a Hartree–Fock exact exchange term. Prominent examples include the parametrisations
after Heyd, Scuseria, and Ernzerhof [24], or the PBE0 functional [25]. Recent years witnessed a surge in
investigations trying to improve hybrid functional investigations by adjusting the pre-defined fraction of
Hartree–Fock exact exchange, ultimately being determined in a fully self-consistent manner [26, 27].

On the one hand, by climbing Jacob’s ladder and employing ever more sophisticated exchange and
correlation functionals, we expect to obtain improved accuracy from our first-principles calculations, as
indicated by the right arrow in figure 2. On the other hand, this is accompanied by an increase in
computational resources, as depicted by the left arrow in figure 2. However, with the more wide-spread
availability of HPC facilities, hybrid functional investigations became more and more common in recent
years and led to a better description of structural, electronic, and optical properties of a range of materials
[28–31].

Apart from the calculation of electronic and optical properties by means of exchange and correlation
functionals of four distinct rungs of Jacob’s ladder as described above, we also performed quasiparticle
calculations of those material properties based on the GW approximation introduced by Hedin [32]. While
the GW approximation remains the most accurate method for quasiparticle calculations available, its
numerical requirements and perturbative nature make approximations unavoidable [33–37].

From a numerical requirements’ point of view several flavours of practical GW calculations have been
established over the years. The most simple one is the single-shot G0W0 method, with G0 being the
noninteracting Green’s function of the system andW0 its screened Coulomb interaction. Extensions iterate
the eigenvalues to self-consistency in the Green’s function alone (GW0), or also in the screened interactionW
(GW). Methodical extensions see the inclusion of vertex corrections as well [38], however, this is beyond the
scope of the present work.

From a perturbative nature’s point of view, all mentioned flavours of GW calculations depend on the
starting one-electron energies and orbitals, usually taken as Kohn-Sham eigenenergies and orbitals from
preceding DFT calculations. This immediately implies that the accuracy of GW calculations will be
influenced by the accuracy of the starting one-electron energies and orbitals, as will be discussed later in the
results section.
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2.3. Computational details
All the calculations of the present work have been performed using the Vienna ab initio Simulations package
(VASP, 5.4.4) [39–41] together with the projector-augmented wave (PAW) method [42, 43]. Structural
relaxations employed the recommended PAW potentials supplied by VASP that provided 17, 17, 12, 14, and 6
valence electrons for the Cu, Ag, Zn, Sn, and Se atoms, respectively. The electronic band structures, the
optical properties, and the many-body perturbation theory calculations based on the GW approximation
made use of the PAW potentials recommended for GW calculations, and provided 19, 19, 20, 14, and 6
valence electrons for the Cu, Ag, Zn, Sn, and Se atoms instead.

In order to judge the accuracy and computational efficiency of several rungs of Jacob’s ladder, we
employed the following exchange-correlation potentials: for the LDA functional we chose the Perdew and
Zunger parametrisation [17, 44], for the GGA functional we chose the Perdew, Burke, and Ernzerhof
implementation revised for solids (PBEsol) [20], as meta-GGA functional we chose the relatively new SCAN
functional [22], and finally as hybrid functional we chose the range-separated HSE06 functional [24],
respectively.

Structural relaxations of the kesterite and stannite crystal structures have been performed for the
standard primitive unit cells, containing one formula unit (f.u.) for both structural polymorphs. The ground
state structures have been optimised by analysing the total energy curves, which have been obtained for
several volumes around the experimentally known ground state volume. Keeping these volumes fixed, the
respective lattice constants and all internal coordinates have been allowed to relax until the forces on all
atoms were below 0.001 eV Å–1. While the ground state volume V0 has been obtained by a spline fit to the
total energy curves, a subsequent analysis via Murnaghan’s equation of state [45, 46]

E(V) = E(V0)+
B0V

B ′
0

[
(V0/V)B

′
0

B ′
0 − 1

+ 1

]
− V0B0

B ′
0 − 1

(1)

additionally yielded the bulk modulus B0 and its pressure derivative B ′
0, respectively. A final relaxation of

internal coordinates has been performed for the ground state volumes, yielding the overall ground states that
have been further analysed using the AFLOW [47] and FINDSYM [48, 49] packages.

The obtained relaxed ground state structures served as a starting point for subsequent calculations of the
electronic band structures and the real and imaginary parts of the dielectric functions, which have been
obtained by summing over empty states using Fermi’s Golden Rule, transition matrix elements, and applying
a Kramers-Kronig transformation [50]. In order to ensure converged results the number of empty bands in
the calculations of the optical properties have been increased by a factor of four. The final real and imaginary
parts of the dielectric functions have been obtained by diagonalising the dielectric tensors for every energy
point and averaging over the resulting main diagonal elements, as applied before to non-cubic oxide [51] and
amorphous materials [52, 53].

Together with the other technical parameters, k-point grid of 6× 6× 6, cut-off energy of the plane-wave
expansion of 500 eV, and a convergence criteria for the total energy of 10−6 eV, this ensured well-converged
results. Due to the increased numerical demand the k-point grid has been reduced to 4× 4× 4 for the GW
calculations.

3. Results and discussion

3.1. Structural properties
The total energy curves for various employed exchange and correlation functionals, normalised to one
functional unit (f.u.) and rescaled to zero energy, are shown in figure 3 for the kesterite crystal structures of
AZTSe (a) and CZTSe (b), respectively. The dashed vertical lines indicate the experimental ground state
volumes taken from a combined x-ray and neutron powder diffraction study of Gurieva et al [2]. The
respective total energy curves for the stannite crystal structures of AZTSe and CZTSe can be found in the
appendix (figure A1).

The obtained ground state structural properties of the kesterite and stannite crystal structures of AZTSe
and CZTSe are given in tables 1 and 2 for various exchange and correlation functionals in comparison to
experimental data, respectively. For both, kesterite-type AZTSe and CZTSe, the LDA calculated ground state
volume is severely underestimated by approximately 4%, as shown in figures 3 and 4. Deviations from the
experimental ground state volumes of about 1% are obtained for the PBEsol and the SCAN functionals, with
a much better agreement of the SCAN functional in case of kesterite-type CZTSe. The hybrid functional
HSE06 overestimates the experimental ground state volumes by 2%–3%, respectively.
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Figure 3. Total energy curves for the kesterite crystal structures of Ag2ZnSnSe4 (a) and Cu2ZnSnSe4 (b), calculated using various
exchange and correlation functionals. The dashed lines (- - - -) indicate the experimental values of Gurieva et al [2], and all
energies are normalised to one functional unit (f.u.) and rescaled to zero energy, respectively.

Table 1. Ground state structural properties (ground state volume V0, lattice constants a0 and c0, fractional coordinates x, y, and z of the
anion Wyckoff position 8g, and bulk modulus B0 and its pressure derivative B ′

0 ) obtained by various exchange and correlation
functionals in comparison to experimental data for the kesterite crystal structures of Ag2ZnSnSe4 and Cu2ZnSnSe4.

Ag2ZnSnSe4 V0 (Å
3) a0 (Å) c0 (Å) x y z B0 (GPa) B ′

0

LDA 198.912 5.916 11.365 0.262 0.241 0.131 62.8 5.0
PBEsol 205.756 5.987 11.479 0.264 0.242 0.130 56.1 4.9
SCAN 209.448 6.072 11.362 0.269 0.243 0.130 53.5 5.0
HSE06 213.628 6.096 11.496 0.272 0.246 0.128 49.3 5.0
exp. [2] 207.262 6.046 11.340
exp. [11] 205.866 6.036 11.301 0.251 0.231 0.128

Cu2ZnSnSe4

LDA 176.011 5.605 11.207 0.228 0.239 0.131 72.9 4.8
PBEsol 181.736 5.665 11.327 0.229 0.239 0.131 66.1 5.0
SCAN 183.887 5.695 11.340 0.232 0.240 0.130 64.3 5.2
HSE06 187.615 5.732 11.422 0.239 0.244 0.129 59.6 5.0
exp. [1] 183.976 5.695 11.345
exp. [11] 183.702 5.692 11.340 0.251 0.240 0.128
exp. [2] 183.880 5.693 11.347

The obtained ground state volumes increase with the increasing sophistication of the employed exchange
and correlation functionals (LDA, PBEsol, SCAN, and HSE06). This trend is equally observed for the lattice
parameters a and c for both materials, AZTSe and CZTSe, and for both crystal structures, given for kesterite
in table 1 and for stannite in table 2, respectively. The bulk modulus B0 shows the same decreasing trend for
both materials and crystal structures, and its pressure derivative is mostly around 5.

The fractional coordinates of the anion Wyckoff positions show a complementary trend, i.e. increasing
(decreasing) for the kesterite-type 8g fractional coordinates x and y (z), and decreasing (increasing) for the
stannite-type 8i fractional coordinates x (z), respectively. The performance of various exchange and
correlation functionals in describing fractional coordinates will become important in comparison to precise
experimental local structure investigations, and has been shown to substantially influence the electronic
band gaps in CZTS and CZTSe [54].

3.2. Electronic and optical properties
Based on the obtained ground state structures we calculated the electronic band structures as outlined in
section 2.3. The electronic band structures are shown in figure 5 for the kesterite crystal structures of AZTSe
(a) and CZTSe (b), respectively. The respective electronic band structures for the stannite crystal structures
of AZTSe and CZTSe can be found in the appendix (figure A2). In all electronic band structure figures, green
and red lines depict the valence and conduction bands calculated with the hybrid HSE06 functional, whereas
the shaded grey background indicates the SCAN calculated valence and conduction bands. The dotted black
lines are the results of many-body perturbation theory calculations by means of the single-shot G0W0

approximation with the HSE06 eigenvalues and orbitals as starting points.
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Table 2. Ground state structural properties (ground state volume V0, lattice constants a0 and c0, fractional coordinates x and z of the
anion Wyckoff position 8i, and bulk modulus B0 and its pressure derivative B ′

0 ) obtained by various exchange and correlation
functionals for the stannite crystal structures of Ag2ZnSnSe4 and Cu2ZnSnSe4.

Ag2ZnSnSe4 V0 (Å
3) a0 (Å) c0 (Å) x z B0 (GPa) B ′

0

LDA 199.001 5.724 12.149 0.759 0.879 62.4 4.6
PBEsol 205.720 5.776 12.334 0.758 0.880 55.7 5.0
SCAN 209.603 5.768 12.599 0.758 0.882 53.6 3.3
HSE06 213.282 5.800 12.681 0.754 0.884 49.6 4.9

Cu2ZnSnSe4

LDA 176.051 5.607 11.198 0.761 0.863 72.8 4.7
PBEsol 181.793 5.667 11.320 0.760 0.864 66.0 4.9
SCAN 183.838 5.677 11.407 0.760 0.865 64.7 5.0
HSE06 187.463 5.706 11.514 0.756 0.868 60.1 5.0

Figure 4. Ground state unit cell volumes V0 with respect to the experimental volume Vexp of Gurieva et al [2] for the kesterite
crystal structures of Ag2ZnSnSe4 (a) and Cu2ZnSnSe4 (b), calculated using various exchange and correlation functionals. The
experimental volumes correspond to V0/Vexp = 1 (dashed horizontal line).

As a first approximation to the electronic band gaps of the materials, we look at the Kohn-Sham
eigenvalue differences between the valence and conduction bands for the LDA, PBEsol, SCAN, and HSE06
functionals, and the quasiparticle energy differences in case of G0W0 calculations, respectively. For
kesterite-type AZTSe the electronic band gaps amount to 0.16, 0.12, 0.30, and 1.04 eV for the LDA, PBEsol,
SCAN, and hybrid HSE06 functionals. The closest agreement to the experimental band gap of 1.31 eV [2] is
obtained for the hybrid HSE06 calculation. Similarly, for kesterite-type CZTSe the electronic band gaps
amount to 0.01, 0.02, and 0.03 eV, i.e. close to a metallic solution, and 0.87 eV for the LDA, PBEsol, SCAN,
and hybrid HSE06 functionals. Again, the hybrid HSE06 calculation yields closest agreement with the
experimental band gap ranging between 0.94 eV [2] and 1.0 eV [1]. The closer agreement of the calculated
band gap energies with the experimental values in case of CZTSe is possibly due to the better agreement of
the obtained fractional coordinates of the anion Wyckoff position with respect to the experimental values, as
given in table 1.

From the band gap values and the electronic band structures in Figure 5 it becomes apparent, that the
simpler non-hybrid exchange and correlation functionals show the known band gap underestimation with
respect to the experimental values. This severe underestimation of the electronic band gaps obtained by
non-hybrid functionals is shown in figure 6.

One important objective of the present work is to benchmark different computational approaches against
the agreement with experimental structural and electronic properties. As for the structural properties, overall
best agreement with available experimental data has been obtained by the SCAN functional, and the PBEsol
functional being very close. The electronic properties, however, show best agreement for the hybrid HSE06
functional.

While the present investigation deals with relatively small unit cells, where even a full structural
relaxation employing the hybrid HSE06 functional is feasible, for many other possible investigations
structural relaxations based on hybrid functional become prohibitively expensive in terms of computational
resources. This includes all types of investigations requiring larger supercells, e.g. formation energies of

7
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Figure 5. Electronic band structures for the kesterite crystal structures of Ag2ZnSnSe4 (a) and Cu2ZnSnSe4 (b), with zero energy
at the top of the valence bands. Shown are the valence (green) and conduction bands (red), calculated using the hybrid HSE06
functional [24]. The dotted lines (· · · · · ·) and the shaded grey backgrounds show the results from the G0W0 and SCAN
calculations, respectively.

Figure 6. Kohn-Sham eigenvalue differences E= EKS between the valence and conduction bands for the LDA, PBEsol, SCAN, and
HSE06 functionals and quasiparticle energy differences E= EQP in case of G0W0 calculations with respect to the experimental
band gap Eexp for the kesterite crystal structures of Ag2ZnSnSe4 (a) and Cu2ZnSnSe4 (b). The experimental band gaps correspond
to E/Eexp = 1 (dashed horizontal line).

defects and defect complexes or the calculation of band offsets in modelled device heterostructures. For these
types of investigations it is indispensable to estimate the deviations introduced by less accurate exchange and
correlation functionals.

Over the last years it became more and more popular to perform structural relaxations of larger unit cells
employing computationally cheaper functionals, and obtain the electronic properties by means of hybrid
functional calculations without further relaxing the structure, so-called single-shot or one-shot hybrid
calculations. The HSE06 calculated electronic band gaps based on the SCAN optimised structures amount to
0.97 and 0.74 eV for AZTSe and CZTSe, being somewhat lower that the HSE06 values obtained for the
HSE06 optimised structures of 1.04 and 0.87 eV, respectively. Compared to the full hybrid HSE06
investigation, this approach yields the second best agreement with respect to the experimental band gaps,
however, for larger unit cells it is presently the only approach available for restricted computational
resources.

In addition, we performed quasiparticle calculations based on the single-shot G0W0 method. For
kesterite-type AZTSe and depending on the starting eigenvalues and orbitals, the G0W0 calculations yield a
quasiparticle gap of 1.48, 1.47, and 1.56 eV for the plain SCAN functional, the HSE06 calculations on top of
the SCAN optimised structures, and the hybrid HSE06 functional, respectively. The respective G0W0

calculations for kesterite-type CZTSe yield quasiparticle gaps of 1.43, 0.97, and 1.12 eV, with starting
eigenvalues and orbitals from the plain SCAN functional, the HSE06 calculations on top of the SCAN
optimised structures, and the hybrid HSE06 functional, respectively. It can be seen, that in all cases, the
G0W0 quasiparticle gaps are overestimated with respect to the experimental band gaps; however, the
agreement is best for the starting eigenvalues and orbitals taken from a single-shot hybrid HSE06
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Figure 7. Real (red) and imaginary (green) parts of the dielectric functions for the kesterite crystal structures of Ag2ZnSnSe4 (a)
and Cu2ZnSnSe4 (b), obtained by hybrid HSE06 calculations. The dashed lines in (b) present experimental results of León et al
[55], obtained via spectroscopic ellipsometry on bulk crystals.

calculation on top of the SCAN optimised structures (figure 6). Various test calculations to iterate the
Green’s functions to self-consistency, i.e. GW0 calculations, showed only negligible influence on the
quasiparticle gaps.

In terms of a direct comparison between different theoretical approaches, the G0W0 quasiparticle gaps
are enlarged by approximately 0.5 eV (0.25 eV) for kesterite-type AZTSe (CZTSe) for starting eigenvalues
and orbitals taken from both, the HSE06 calculations on top of the SCAN optimised structures, and the
hybrid HSE06 functional, respectively. The same trend is observed for the stannite-type structures. The total
overestimation of the quasiparticle gap of 1.43 eV with starting eigenvalues and orbitals from a SCAN
calculation for kesterite-type CZTSe highlights the perturbative character of the GW method in general, and
that the near metallic solution of the SCAN calculation is inadequate to provide starting conditions for
subsequent quasiparticle calculations.

Based on the overall best agreement with the experimental band gaps for the hybrid HSE06 calculations,
we also calculated the optical properties. The real (red) and imaginary (green) parts of the dielectric function
are shown in figure 7 for the kesterite crystal structures of AZTSe (a) and CZTSe (b), respectively. In case of
CZTSe, the dashed lines present experimental results of Leon et al [55], obtained via spectroscopic
ellipsometry on bulk crystals. Although the overall structure of the theoretical results is much more
pronounced, the important peak positions agree well with each other. G0W0 calculations of the dielectric
functions basically show the same peak structure, and are only shifted to reflect the change in the band gap
energies. The respective dielectric functions for the stannite crystal structures of AZTSe and CZTSe can be
found in the appendix (figure A3).

4. Conclusions

In terms of a methodical overview, the present work provides a detailed first-principles investigation of the
ground state structural, electronic, and optical properties of the kesterite and stannite crystal structures of
AZTSe and CZTSe. The DFT calculations employed exchange and correlation functionals covering the lowest
four rungs of Jacob’s ladder, thereby including the LDA parametrised by Perdew and Zunger [17], the GGA
with the PBE parametrisation revised for solids [20], the meta-GGA with the SCAN functional [22], and the
hybrid HSE06 functional [24], respectively. It has been shown, that overall best agreement for the ground
state structural properties is obtained by the SCAN functional, while the electronic and optical properties are
overall best described by the hybrid HSE06 functional. Performing a single-shot HSE06 calculation on top of
the SCAN functional’s optimised structures still provided acceptable agreement with respect to experimental
data. Subsequent quasiparticle calculations based on the GW approximation revealed a strong influence of
the starting eigenvalues and orbitals, and tended to open the gaps for all considered cases. Overall best
agreement has been obtained for the starting eigenvalues and orbitals stemming from a single-shot HSE06
calculation on top of the SCAN functional’s optimised structures.

While the presented full HSE06 structural optimisations might be suitable for the unit cells employed in
the present work, they become prohibitively expensive in terms of computational time for subsequent
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material property investigations, e.g. defects and defect complexes or the calculation of band offsets in
heterostructures. In those cases, performing a structural relaxation based on the SCAN functional followed
by a single-shot HSE06 calculation for an accurate description of the electronic properties, provides a
reasonable compromise of accuracy and required computational time. This approach seems to be more
widely applicable and has recently been suggested for oxide perovskites [56]. Moreover, the eigenvalues and
orbitals provided by single-shot HSE06 calculations on top of the SCAN functional’s optimised structures,
turn out to be an excellent starting point for subsequent quasiparticle calculations based on the GW
approximation.

In terms of the material properties, the present work provides a case study into the accuracy and expected
agreement with available experimental results for the kesterite and stannite crystal structures of AZTSe and
CZTSe. The identified methodical recipes will be beneficial for subsequent investigations requiring larger
unit cells, e.g. defects and defect complexes or band offsets. They are equally applicable to investigations of
solid solutions based on the two materials, AZTSe and CZTSe, or to get a detailed atomic scale insight into
the intrinsic disorder effects. Lastly, the identified numerical recipes are expected to be transferable to
similar kesterite and stannite materials as well, thereby widening the impact of the present results
considerably.
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Appendix

Figure A1. Total energy curves for the stannite crystal structures of Ag2ZnSnSe4 (a) and Cu2ZnSnSe4 (b), calculated using various
exchange and correlation functionals. All energies are normalised to one functional unit (f.u.) and rescaled to zero energy,
respectively.

Figure A2. Electronic band structures for the stannite crystal structures of Ag2ZnSnSe4 (a) and Cu2ZnSnSe4 (b), with zero energy
at the top of the valence bands. Shown are the valence (green) and conduction bands (red), calculated using the hybrid HSE06
functional [24]. The dotted lines (· · · · · ·) and the shaded grey backgrounds show the results from the G0W0 and SCAN
calculations, respectively.

Figure A3. Real (red) and imaginary (green) parts of the dielectric functions for the stannite crystal structures of Ag2ZnSnSe4 (a)
and Cu2ZnSnSe4 (b).
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