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We present a simple and precise method to minimize aberrations of mirror-based, wavelength-dispersive
spectrometers for the extreme ultraviolet (XUV) and soft X-ray range. The concept enables an enhanced
resolving power E/∆E over a wide spectral band with high efficiency, in particular close to the diffrac-
tion limit around the design energy of the instrument. Our optical element, the "diffractive wavefront
corrector" (DWC), is individually shaped to the form and figure error of the mirror profile and can be
fabricated by existing technologies on plane and even strongly curved substrates. Theory, simulations of
various configurations like Hettrick-Underwood or compact all-in-one setups for TiO2 spectroscopy with
E/∆E . 4.5× 104, and aspects of their experimental realization are addressed. © 2019 Optical Society of America

OCIS codes: (050.1970) Diffractive optics; (050.6875) three-dimensional fabrication; (100.5070) phase retrieval; (120.6650) surface measure-
ments, figure; (220.1000) aberration compensation; (300.6560) spectroscopy, x-ray; (340.7470) x-ray mirrors.
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1. INTRODUCTION

Modern wavelength-dispersive spectroscopy for extreme ultra-
violet (XUV) radiation and soft X-rays with photon energies be-
tween about 0.05 keV and 2 keV is typically based on a collecting
mirror in combination with a varied-line-space (VLS) grating [1].
If well designed [2], they both together reduce geometrical and
chromatic imaging errors in the convenient flat-field detection
mode over a large spectral range of several 10 % of the design
energy. In general however, the widely used since inexpensive
toroidal mirror profile still introduces wavefront distortions –
firstly, due to its deviation from the ideal ellipsoid and secondly,
because of imperfect fabrication that becomes inevitably evident
in a rough and bumpy surface [3].

For several years, correction mechanisms to improve the
quality of reflective and other X-ray optics toward the ultimate
resolution limit [4–6] are being intensively discussed. Until
now, mainly mirrors applied in the hard X-ray regime or one-
dimensional (1D) focusing systems have been corrected, either
by additionally coated multilayers [7], using active X-ray op-
tics [8, 9], or with refractive phase plates [10, 11]. The former
approach requires a serious technical effort, whereas the latter
method is excluded for radiation below 1 keV because of the ab-
sorption for all practical materials like e.g. SiO2 or SU-8. Hence,
there exists a strong need for beam shaping components [12, 13]
being suitable for the XUV and soft X-ray range.

In this work, we propose the "diffractive wavefront correc-

tor" (DWC) as a novel optical element that compensates for the
phase deformations as induced by the erroneous mirror shape.
The device can be understood as a generalized version of the
well-known reflection zone plate (RZP) [14, 15] with its ellip-
tical grooves to free-form 2D VLS gratings on fairly plane or
irregularly curved substrates.

We choose a heuristic approach in Sect. 2 and correct an ex-
isting type of instrument by replacing the conventional 2D VLS
grating by a customized DWC. The open question that remains,
i.e. how to retrieve the phase whose accurate knowledge the
adequate calculation and function of the DWC depends on, is
addressed in Sect. 3. Equipped with that information on the
wavefront, we are ready to integrate the overall arrangement
and inscribe the DWC into the mirror surface – whose profile
can be also measured directly as described in Sect. 4. The variety
of experimental and theoretical ways to diffractive wavefront
correction opens the door to further optics development and
future-oriented X-ray science, as concluded in Sect. 5.

2. THE HETTRICK-UNDERWOOD SCHEME

We start with the instrumental configuration of an X-ray spec-
trometer, commonly used at synchrotron or X-ray laser facilities
but also in laboratory-scaled, table-top experiments. Named
after their inventors M. C. Hettrick and J. H. Underwood [1], we
abbreviate the setup, visualized in Fig. 1, by "HU". For photons
emitted from the source (S), the arrangement is composed of a
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Fig. 1. Scheme of an X-ray HU spectrometer. The pre-focusing
mirror with its radius of curvature (ROC) is followed by a 1D
or 2D VLS grating that enables dispersion. In its optimized
version, the diffractive optical element (DOE) compensates the
mirror-introduced aberrations around the design wavelength.

collecting mirror (M) operated under total external reflection at
an angle θ and a subsequent, fixed VLS grating (G) on a plane
substrate. We assume separations U−V and angles as listed in
Tab. 1, where E0 represents the design energy. The parameters

Table 1. Design parameters of the example HU instrument

E0 S−M ROC θ M−G α β G−D

183 eV 0.4 m 8.6 m 4◦ 0.2 m 4◦ 8◦ 1.0 m

are adapted to the specific beamline properties or scientific de-
mands, to create a flat-field spectrum on an imaging detector
(D), e.g. CCD or CMOS array. The mirror’s surface profile can
be described as a perturbed sphere,

yM(x, z) = yForm(x, z) + δyFig.(x, z), (1)

where the first term describes the nominal "form" – a sphere
in our case, with its deviation from the ideal ellipsoid, and the
second one the irregular, relatively small "figure error". Since

yForm(x, z) = RM −
√

R2
M − x2 − z2 � δyFig.(x, z), (2)

the profile function in Eq. (1) decouples second order distor-
tions from yForm that dominates the overall design via the ROC
RM. For our proof-of-principle simulation, we map measured
[9] fabrication tolerances {xi, yi, zi} on the mirror’s aperture as
shown in Fig. 2. The grid spacing of these 3D data near 0.6 mm
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Fig. 2. Mirror substrate with its color-coded spherical form,
characterized by the ROC, on the left and the additive figure
error on the right. The black dots represent the rays’ footprint
of the incident beam. Note the different (P-V) amplitudes.

and the Nyquist-Shannon sampling theorem ensure a power
spectral density (PSD) which mainly contains the relevant low
spatial frequencies (. 10−3 mm−1). The nonlinear fit with a 2D
polynomial of sufficiently high order P,

yM(x, z) ≈
P

∑
m=0

P−m

∑
n=0

cmnxmzn with P = 16, (3)

and coefficients cmn ε R provides an analytical, differentiable
approximation to the mirror’s surface on a confidence level of
95 %. Now we simulate an incomplete setup in the sequential
Monte-Carlo mode: A monochromatic point source at~rsrc. illu-
minates the mirror, as given by Eq. (3), uniformly. From there,
the rays are reflected toward the grating substrate, which can be
modeled as any planar optical element, e.g. an absorbing screen.

A. The optical path length method

For each individual ray indexed by the superscript (i), its total
length OLi (which equals the optical length in vacuum) is written
with the Euclidian norm ‖.‖ as the sum

OLi = ‖~rsrc. −~r(i)mir.‖+ ‖~r
(i)
grat. −~r(i)mir.‖+ ‖~r

(i)
det. −~r

(i)
grat.‖, (4)

where the 3D coordinates in the global system from Fig. 1 refer
to the intersection points of the rays with the respective optical

elements. In particular,~r(i)det. is not determined in the simulation
but rather user-defined, according to the desired image type – in

our case a "telescopic" line focus with x(i)det. ≡ x(i)grat. ∀ i. Using Eq.
(4) and the on-axis distance notation from Tab. 1, we obtain

OPD(x̃(i)grat., z̃(i)grat.) ≡ OLi −
(
S−M + M−G + G−D

)
, (5)

called the "optical path difference". Notably, the OPD is mea-

sured as a scalar function of the local 2D coordinates x̃(i)grat., z̃(i)grat.

in the grating’s substrate plane. The discrete data set is fitted
once again conveniently with a 2D polynomial analog to Eq. (3).
Figure 3 visualizes on the left the result of that semi-analytical
procedure. If normalized to the design wavelength λ0, the point-

x (mm)

0

+40

-40

-36

+9
0

-9

+36

z
 (

m
m

)

+9-9
x (mm)

-36

+36

0

®

projection on
grating substrate area

z (m
m)

0

2.7

1.0

lin
e
 d

e
n
s
it
y
 (

1
0
  
m

m
  
 )

-
1

3

relative ray length

„source focus“®

OPD [10 ]l
3

Fig. 3. Optical path length from source to detector, relative to
the length of the principal ray, across the grating area on the
left and the corresponding groove structure of the DWC on the
right. Black dots indicate traced rays from the simulation.

wise deviation of the ray-traced data according to Eq. (5) from
the OPD fit function measures the residual phase error which
will affect the subsequent wavefront correction. The sample
mirror from Fig. 2 is approximated at best to an accuracy of
about ±λ0/1200 (rms) for instance, usually considered as suf-
ficiently precise for diffraction-limited imaging. Despite such
inaccuracies, the fit allows us to treat the system analytically,
rather than by interpolation. In the final step to design the DWC,
we project the phase Φ similar to a hologram onto the grating
substrate via Φ(x̃grat., z̃grat.) = 2πλ−1

0 OPD(x̃grat., z̃grat.) and apply
the "Fresnel zone equation" for a binary structure,

Φ(x̃grat., z̃grat.) = m · π for m ε Z. (6)
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The implicit Eq. (6) is solved for the mth Fresnel zone z̃m(x̃) –
the index "grat." has been omitted for simplicity – using an ap-
propriate computer algorithm. Figure 3 depicts on the right the
shape of representative grating lines. Their apparent similarity
to grooves of a regular RZP with elliptical zones deceives: To
prove the effect of the µm-scaled deviations, we derive [16] via

2π~g(x̃grat., z̃grat.) = ~∇x̃grat., z̃grat. ·Φ(x̃grat., z̃grat.) (7)

the vector field ~g(x̃grat., z̃grat.), identify it with the 2D line density
and simulate the focusing capabilities of the DWC in a feed-
back loop by ray tracing. Figure 4 compares its performance
to that of an uncorrected, ordinary RZP in the same optical
setup from Fig. 1. The DWC effect over a wide spectral range
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Fig. 4. Aberrations in the detector plane before (left) and after
(right) correction, simulated for the focal line at the design en-
ergy of 183 eV. End points of traced rays appear as black dots
or – in case of high intensity – as a color-encoded distribution.

is evaluated for a test spectrum with photon energies from 147
eV to 237 eV, which disperse over ≈ 25 mm in the detection
plane. Assuming perfect alignment and neglecting practical
restrictions such as the finite source or pixel size, aberrations
constrain the resolving power E/∆E toR(E0) = 6.7× 104, about
13 % below the natural diffraction limit which is given by the
number of illuminated grating lines. In Fig. 5, the simulated
data follow a modified model [17] for RZP-based spectrom-
eters, R(E) = [1 + [σ−1

0 (E − E0)]
2]−1/2R(E0) + σ−1

∞ (E − E0)
with σ0 ≈ 0.53 and σ∞ ≈ 0.34. The resolving power ratio to the
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Fig. 5. Resolving power of the HU spectrometer from Fig.
1 for a coherent source. Simulation results (dots) are fitted
[17] (red curve), and the performance of an ordinary RZP is
sketched by means of a black, dashed line. Far from the design
energy, i.e. for |E− E0| & 18 eV, both curves nearly coincide.

uncorrected version peaks sharply at E0 but degrades asymptot-
ically to & 1 for off-design X-ray energies, where the spherical
form dominates, yForm(x, z) ≫ δyFig.(x, z), according to Fig. 2.

B. The line density approach
An alternative strategy to the direct use of the OPD determines
at first the vector field ~g = (gx, gz) of the line density at the local

substrate position (x̃, z̃), again without the index "grat.", from

• the grating equation in its general [18], two-dimensional
form with partially conical diffraction for the incident beam;
• the focusing condition at the design energy, e.g. to a line

or point focus [16], for the outgoing beam toward the detector.

Specialized simulation software such as RAY-UI [19] is capable
to scan that 2D line density on a matrix-like grid across the
aperture of the DWC being designed. By means of high-order
polynomials, either in the standard form as defined in Eq. (3)
or using Legendre polynomials in 2D as an orthogonal basis
[20], these data may be subsequently fitted again, to obtain the
continuous, differentiable function ~g(x̃, z̃). The term

(2π)−1Φ(x̃, z̃) ≈
∫

gz(x̃, z̃)dz +
∫
F (x̃, z̃)dx (8)

defines a path integral in the DWC area, that yields the phase
Φ(x̃, z̃) again. In the auxiliary function as used in Eq. (8),

F (x̃, z̃) ≡ gx(x̃, z̃)− ∂x

∫
gz(x̃, z̃)dz, (9)

the partial derivative ∂x acts on the following integral over dz.
An optical setup proposed for resonant inelastic X-ray scat-

tering (RIXS) around 150 eV [21], in fact very similar to the
configuration as specified in Tab. 1, is chosen to demonstrate the
functionality: Figure 6 illustrates the correspondence between
an – in the present case – simulated figure error profile and the
associated DWC, integrated from ~g(x̃, z̃) and applying Eq. (6).
The result should be subject to a control loop via Eq. (7). The
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Fig. 6. Simulated deformation of a spherical mirror (left) and
its diffractive correction (right) in a HU system, calculated via
~g(x̃, z̃) and displayed on a cut region of the full size ∼ (101 ×
102)mm2. Note that the "wavy" line characteristic is artificially
enhanced for illustrative purposes – in reality, the grooves
deviate on a scale of a few µm from straight horizontal lines.

relative deviations between the grating vector field which is
derived as the gradient of the phase from Eq. (8) and its origi-
nal ~g(x̃, z̃) are typically negligible for the lateral component gx,
here in the order of 10−13 %. In the critical, axial dimension in
contrast, the line density differs by ∼ 10−2 %. The precision of
the DWC structures as calculated by means of that integration
method falls therefore short of those which follow from the OPD,
using Eq. (6). The errors are, according to the present state of
knowledge, however tolerable and the amplitudes of the focal
aberrations in the order of≈ (0.33± 0.13) µm (FWHM) lie below
the practical detection limit, which is e.g. constrained by the
spatial detector resolution of usually at least a few µm.

https://www.helmholtz-berlin.de/forschung/oe/np/optik-strahlrohre/arbeitsgebiete/ray_en.html
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Besides, there’s a way to circumvent the phase at all. We
make use of the discrete 2D line density data scanned across
the grating aperture once more, as described above. On the
one hand, the local slope of the grating lines results from the
quotient gx/gz. Compared to the separate fit of both vector
components, the simplified single fit of their ratio tends to di-
minish the residual wavefront error. On the other hand, the axial
component gz(0, z̃) yields the groove distribution z̃(0)

m for m ε Z

via 1D integration along z̃ immediately. These values serve as
initial conditions for the iterative, approximative solution of the
ordinary differential equation

d
dx

z̃m(x̃) ≈ ± gx[∓x̃, z̃m(x̃)]
gz[∓x̃, z̃m(x̃)]

with z̃m(0) ≡ z̃(0)
m (10)

by the established "Runge-Kutta" method, for instance. The reli-
able algorithm needs to maintain the stability as far as possible,
to avoid an addition of numerical errors, namely the gradual
deviation of the curve z̃m(x̃) from its exact shape. Hence, this
method works best in the case of relatively straight grooves with
an only weak slope dz̃m(x̃)/dx, similar to a 1D VLS grating. A
further enhancement of the numerical precision is achieved via
balancing the numerically small, axial asymmetries to the final
result 〈z̃m(x̃)〉± for the sign cases in Eq. (10).

Both mathematical techniques, the integration of the 2D line
density and its interpretation as a vector field in the differen-
tial equation, lead to nearly identical solutions. For the exam-
ple studied here in Sect. B, we compute the mean deviation
〈δz̃m(x̃)〉x,m between grating lines of the same number m, being
calculated by the two methods. Across the full aperture of the
DWC, that error amounts to no more than (0.36± 0.23) nm – neg-
ligible in comparison to the mean period of 1.67 µm, which corre-
sponds to a residual, maximum wavefront error of . λ/3× 103.

Using RAY-UI, the HU spectrometer [21] which is now
equipped with the DWC from Fig. 6 instead of the original
1D VLS grating, is "traced" again. The straight focal line, that
covers nearly the full CCD (27.6 mm) in its width, shows tiny
rest aberrations with an overall FWHM of only 0.4 µm in the dis-
persive direction – well below the uncorrected spatial resolution
of 20 µm and even still less than the diffraction limit of 1.2 µm.

3. ABERRATION ANALYSIS VIA PHASE RETRIEVAL

With the successfully corrected profile distortions in Sect. 2,
one question remains: How to unveil the wavefront that carries
the footprint of yM(z) in terms of the spatial phase distribution
along the propagating beam? Among others [22–25], one pop-
ular method is based upon a measurement of the 3D intensity
distribution in the focal vicinity, evaluated by CCD recordings in
at least 2 detection planes at different distance from the mirror.
Figure 7 shows the principle of the technique. Our experiment
is performed as follows. The available electron source (4.4 keV,
max. 10 µA) is assumed to excite an emission region of 7 µm
in diameter (FWHM) on the Carbon target. Kα fluorescence
at 277 eV is generated predominantly, accompanied by weak
bremsstrahlung with an intensity (3− 4) orders of magnitude
below the Kα peak [26].

A commercially available [27], spherical mirror sample "M1"
is studied, with parameters as listed in Tab. 2. Mounted on
the 6-axis goniometer "SmarPod 225.75" (SmarAct GmbH), the
mirror can be adjusted with nm/µrad precision. Illuminated
from a distance R

′
1 = 838 mm under the grazing incidence angle

θ = 1.65◦, the mirror reflects (74.72± 0.02)% of the unpolarized
X-rays to a horizontally divergent, nearly straight focal line
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Fig. 7. In situ phase measurement with a nearly point-like,
i.e. in part spatially coherent source. The imaging detector
is stepwise moved along the optical axis to retrieve the 3D
intensity distribution in the vicinity of the aberrated focus.

Table 2. Technical specifications of the mirror sample "M1"

size (L×W) ∆tsub. ROC surface ±σ (rms)

120× 30 mm2 8 mm 29.13 m blank Si ≈ 0.25 nm

at a distance R
′
2 = R

′
1 in the symmetric configuration. The

CCD camera (Andor, "CCD 47-10"), which resolves structures
with an effective pixel size of ≈ 25 µm due to electronic split
events, is moved to 7 positions in- and outward of the focal
plane, recording the series of intensity patterns in Fig. 8. The
integration time of 30 s for all exposures (except from the 0.5 s
for the focal line image at R

′
2 = 838 mm) and a low dark count

rate of ≈ 20 s−1 ensure a sufficiently high signal-to-noise ratio.
We compare the experimental outcomes with simulations us-

ing the partially known mirror profile: The proven and reliable
metrology technique [28, 29] based on the long trace profiler
(LTP) probes the tangential, local slope along the central, on-
axis surface line of the mirror on a length of 100 mm. The nu-
merical integration of these data yields the absolute, 1D height
profile yM(z) as introduced in Eq. (1) with an error amplitude
δyFig.(z) = ±31 nm (P-V) or 〈δyFig.〉z = ±20 nm (rms). As dis-
played in Fig. 8, the thereby obtained ray tracing results coincide
well with the intensity measurements, verifying their correctness
within −50 mm ≤ y ≤ +50 mm.

For the subsequent wavefront reconstruction, either an iter-
ative algorithm [30] in analogy to the Gerchberg-Saxton code
or the deterministic approach [31] via the transport-of-intensity
equation (TIE) may be used. Based on the latter option [32] in
accordance with the instrumental conditions of – to a far extent –
incoherent light and an only small number of detection planes,
we apply here an elementary and particularly robust procedure.
The TIE, which simplifies in our case of the 1D intensity profile
I(y, z) and its associated phase Φ(y, z) to

− 2πλ−1
0 ∂z I(y, z) = ∂y[I(y, z) · ∂yΦ(y, z)], (11)

relates the 3D intensity variation to the slope and curvature of
the phase. A formal modification of Eq. (11) leads to

− 2πλ−1
0 dir(~S) = ∂yΦ(y, z) with dir(~S) ≡ ∂y/∂z, (12)

which accommodates the fact that the Poynting vector, charac-
terized by its direction dir(.), is always oriented orthogonally
to the local slope of the phase. In the frame of Monte-Carlo
simulations, we interpret the measured intensity as a sorted set
of rays which are statistically distributed according to the spatial
probability distribution as defined via I(y, z) in each detection
plane and state two assumptions:

https://www.helmholtz-berlin.de/forschung/oe/np/optik-strahlrohre/arbeitsgebiete/ray_en.html
https://www.smaract.com
https://andor.oxinst.com
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Fig. 8. Intensity distribution in the vicinity of the focal plane at R
′
2 = 838 mm, reflected from the spherical mirror "M1". In the upper

row, the images from the CCD camera are displayed, where the intensity increases with the brightness of blue tones. The lower row
shows the measured (gray) and simulated (red) 1D intensity profile after tilt correction, background subtraction and normalization
for the relative detector position ∆z ≡ R

′
2 − 838 mm. All pictures are rotated by −90◦ with respect to the coordinate system in Fig. 7.

•Normalization: Neglecting absorption along the free-space
propagation in the evacuated system, the power

∫
I(y, z)dy is

maintained. For that purpose, the intensity as displayed in the
2nd row of Fig. 8 must be correspondingly re-normalized, to
compensate fluctuations in the photon flux from the source.
• No cross-over: The small magnitude of wavefront aber-

rations and the lateral magnification of the beam cross section
allow to neglect accidental cross-over rays for the trace from one
detection plane to any other one – except from the focus which
plays the role of an "intensity mirror" with respect to ∆z.

Sequential ray tracing is performed for all "downstream" combi-
nations of planes from Fig. 8, numbered from 1 ≤ i, j ≤ 7, along
the propagating beam: i → j with j ≥ i + 1 and i, j 6= 4. For
each ray with index 1 ≤ n ≤ 107 and coordinates (yn, ∆z), the
derivative from Eq. (12) is interpreted as

∂y/∂z 7→ [∆zj − ∆zi]
−1[y±n(∆zj)− yn(∆zi)], (13)

where the index "+n" refers to i, j ≤ 3∨ i, j ≥ 5 and "−n" denotes
the cross-over case i ≤ 3∧ j ≥ 5. For each one of the 15 sets i→ j,
the numerical operation of Eqs. (12,13) yields, after integration
along y and the free choice of an additive constant, the absolute
phase as the sum of the dominant spherical term and a relatively
small perturbation, in analogy to the additive separation of the
mirror profile in Eq. (1). After the nonlinear fit and subtraction
of those spheres, again in analogy to Eq. (2), the – as expected –
similar phase functions for the 15 samples i 7→ j are

• re-scaled to the y-coordinates of the same observation
plane, in our case the 1st one at z1 = 438 mm or ∆z = −400 mm;
• arithmetically averaged to minimize statistical errors due to

inaccuracies in the camera recordings and phase reconstruction.

In the chosen, fairly de-focused observation plane, the large
cross section of the beam ensures an also wide-spread footprint
on the grating substrate for the DWC, about 74 mm in the dis-
persive direction, which will be now designed in the HU mode
with grazing angles α0 = 2θ/3 and β0 = 4θ/3. Assuming that
geometry, the reconstructed wavefront error (2π)−1Φ(y, z1) is

Fig. 9. Reconstructed wavefront distortion δ OPD from the
ideal spherical shape in units of λ for the mirror "M1" from Fig.
8, projected on the substrate plane (local coordinate z̃grat.) of
the DWC for the designed HU spectrometer. For comparison,
the OPD as derived from the mirror profile is plotted in red.

projected on that plane, as shown in Fig. 9. The apparently good
agreement with the reference from the mirror profile, calculated
in the conventional scheme from Sect. 2, is quantified to a resid-
ual rms deviation of ±λ/25 between the two curves. We sim-
ulate the performance of the HU spectrometer with (subscript
"DWC") and without correction ("RZP") of the reconstructed
wavefront error and find a focal spot size of

∅(foc)
RZP = 4.39 µm and ∅(foc)

DWC = 1.06 µm, (14)

respectively. The phase retrieval thus improves the resolution by
a factor of 4.2, where the diffraction limit (0.65 µm) is nonethe-
less still exceeded by 64 % in the DWC version, mainly caused by
the slight but systematic shift in the lateral z̃grat.-direction (see
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Fig. 9) that occurred in nearly all 15 sample calculations from
above. Though the wavefront reconstruction from 3D intensity
scans presently does not work as precise as the direct calculation
from the mirror’s surface, future technical improvements in that
method might yield refined results of competitive accuracy.

4. INTEGRATED OPTICS USING MIRROR PROFILES

Alternatively to the in situ and "at wavelength" phase detection
as applied in Sect. 3, the form and figure errors of the collecting
mirror with its common toroidal profile can be measured ex situ
as well: In the case of sufficiently large meridional (M) and
sagittal (S) radii of curvature RM,S & 10 m, the LTP can provide
the required information, as used for validation in Sect. 3.

To incorporate the transverse slope in the x−direction, and
especially to characterize highly curved substrates [33] with
RM,S & 1 m, a newly developed method uses a differential in-
terferometer (SIOS SP-DIS series), enabling true 3D mapping
with 0.1 nm resolution, as sketched in Fig. 10. During a measure-

Fig. 10. Scheme of the interferometric setup "SP-DIS" at SIOS
GmbH. A fiber-coupled HeNe laser (λ = 632.8 nm) beam (red)
is used at the beamsplitter cube with a flat reference to test the
curved mirror profile y(x, z). The focusing unit is not drawn.

ment, the mirror under test and a reference mirror are statically
fixed in the setup. The interferometer is moved in a x-z scan
while it detects the y distance variations between the mirrors.
By subtracting the form deviations of the reference mirror from
the measurements, the y-topography of the mirror under test is
determined. Due to the principle of the interferometer, y-motion
errors of the scanning stage do not affect the measurements. The
interferometer beam is focused with a standard convex lens onto
the mirror under test. Therefore, in contrast to known Fizeau
interferometer setups, also curved and sloped mirrors can be
measured without the need for expensive spherical reference
optics with respective radii. Due to the focused interferometer
beam, the lateral resolution is ∼ 10 µm. In first investigations,
a commercially available [27], spherical mirror "M2" of length
L and width W with a large radius of curvature (ROC) was
measured, as specified in Tab. 3. The substrate thickness ∆tsub.

Table 3. Technical specifications of the mirror sample "M2"

size (L×W) ∆tsub. ROC surface ±σ (rms)

100× 30 mm2 8 mm 28.62 m blank Si ≈ 0.25 nm

ensures sufficient mechanical stability to avoid deformations

due to gravitation and / or tension in the sample holder. On
the other hand, diffuse scattering is not relevant at all in the
soft X-ray regime [3, 34] for the super-polished surface with a
micro-roughness on the Angstrom scale. Figure 11 shows on
the left the profile data, as obtained by means of the differential
interferometer from Fig. 10. A repeatability of the measured
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Fig. 11. Profile of the sphere "M2", according to Tab. 3. Raw 3D
data yi(xi, zi) (black dots) are measured on a regular grid of
97× 27 points with a sampling distance of 1 mm and fitted by
a sphere (left). The figure error is separated and modeled with
a polynomial of 20th order (right). Both shapes are color-coded
as well as characterized by the ROC and fit residuals.

y-topography of < 2 nm at specific x-z locations on the mirror
can be achieved. The data yi(xi, zi) feature thus a high reliability,
and the radius of curvature is evaluated to RM,S = 28617 mm by
means of the model in Eq. (2) with an uncertainty of ± 7× 10−5

or less than ±2 mm. Following the concept from Eq. (1), the
figure error is separated and its polynomial fit approximates the
data residuals to an accuracy of ±5.0 nm (P-V) or ±1.5 nm (rms),
respectively. The results are depicted in Fig. 11 on the right.

Such an assembly allows to build a compact soft X-ray spec-
trometer in an evacuated housing. In particular, we want to
analyze the fluorescence spectrum of a TiO2 target around the
Ti Lβ1,6 doublet [26] near 0.5 keV. Entrance and exit arm lengths
R
′
1,2 are listed in Tab. 4, together with the associated angles α0

and β0. The mean angular acceptance 〈∆ϑ〉H,V, as also sketched

Table 4. Design parameters of the example Ti spectrometer

E0 R
′
1 R

′
2 α0 β0 〈∆ϑ〉H,V

458.6 eV 838 mm 2500 mm 2.59◦ 4.11◦ 4.8 mrad

in Fig. 12, corresponds to an illuminated aperture of at least
4 × 80 mm2 on the mirror – i.e. the structured grating field.
This restriction to a relatively narrow strip helps – on the one

DWC CCD

corrected
focus

wavefront
with low aberrations

dispersion µ l

++

a0 b0

toroidal mirror

R
(mer./sag.)

M,S

source
DJH,V

x y

z

profile error
(exaggerated)

Fig. 12. The idea of an all-in-one reflective-diffractive opti-
cal element, which contains the customized DWC directly
inscribed into the toroidal mirror substrate with meridional /
sagittal radii of curvature and the evaluated profile error.
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hand – to limit the line density at the edges for the aimed 2D
focusing DWCs and enables – on the other hand – writing of
several, parallel grating structures on the same substrate, e.g. for
variable target materials and experimental conditions.

The calculation of the groove structure for the DWC follows,
in principle, the procedure from Sect. 2. Unlike the sequential,
usually ray-traced combination of the two optical elements in
the HU scheme however, their integration to an all-in-one com-
ponent allows an elegant, clearly arranged formulation of the
defining relation for the phase Φ(x, z). We find

(2π/λ0)
−1Φ(x, z) + (R

′
1 + R

′
2) = F1(x, z) +F2(x, z). (15)

The auxiliary functions F1,2(x, z) in Eq. (15) describe the optical
path length in analogy to an ordinary RZP on a plane substrate
[14, 16], but now for an arbitrary profile yM(x, z) in still analyti-
cal terms, i.e.

F1(x, z) =
√

x2 + [z + R1 cos θ]2 + [yM(x, z)− R1 sin θ]2,

F2(x, z) =
√

x2 + [z− R2 cos θ]2 + [yM(x, z)− R2 sin θ]2.

As an off-axis grating segment, necessary for the exclusion of
the specular reflection from the detector plane [14], the DWC is
characterized in Eq. (15) by arm lengths R1,2 and the reflection
angle θ. These quantities are related to the constructive param-
eters from Tab. 4 via (R1 + R2) cos θ = R

′
1 cos α0 + R

′
2 cos β0, in

combination with R1 sin θ = R
′
1 sin α0 and R2 sin θ = R

′
2 sin β0.

Equipped with the complete information on the instrumental
geometry, the expression for the phase from Eq. (15) serves as
the input for the condition in Eq. (6), and the Fresnel zones
can be computed "point by point" using an appropriate code in
MathematicaTM or Python [33], for instance. Figure 13 depicts
in the upper row the overall appearance of the DWC. The regu-

Fig. 13. Comparison of the grating line structures for the DWC
(top) and RZP (bottom), written on the mirror "M2" from Fig.
11. Each 500th line is drawn for simplicity. The deviations
∆z(x) are displayed for a series of line numbers m along the
grating aperture (indicated by arrows) in the central row. Note
the different length units [µm] vs. [mm] in this zoomed plot.

lar RZP, which corrects only for the spherical form but not the
figure error, is drawn in the lower row for comparison. Obvi-
ously, both versions look indistinguishable with the naked eye.
Their difference on the microscopic scale however, depicted for
selected lines in the central row of Fig. 13, decides on the spatial
and spectral resolution that can be achieved under otherwise
optimal conditions presumed as follows:

• Source: An ideal point source cannot be realized in practice.
Nevertheless, spatial coherence is also provided in case of a
sufficiently plane wavefront for the incident beam, e.g. at certain
synchrotron beamlines or free-electron laser (FEL) facilities. The
grating structure has to be modified, i.e. designed for an infinite
entrance arm length R′1 → ∞.
•Detector: The real detector with its constraints is omitted in

the calculation. To reach the maximum performance, the spatial
resolution element of the camera etc. should not exceed the
width of the diffraction-limited point spread function (PSF), in
the present example determined to ∅PSF = 1.2 µm.
• Adjustment: Misalignment plays a minor role for state-of-

the-art positioning mechanics and can be neglected, in particular
for the all-in-one configuration as considered in this Sect. 4.

Given those three prerequisites, the camera image of the mod-
eled source spectrum [26] may be simulated using Monte-Carlo
routines [35]. The reflectivity of the Si mirror varies only slightly
across the considered energy range, within (76.3− 77.5)% [36],
and is thus approximated as a constant. Caused by the spherical
mirror shape, the raw ray tracing data yield slightly curved,
rather than straight intensity distributions in the detector plane.
After linearization to horizontal focal lines by an ordinary fitting
procedure, the atomic peaks are finally convolved with the PSF.
Figure 14 shows the result for the TiO2 spectrum.

From the doublet around 0.40 keV to the high energy end
near 0.53 keV, the height of the peaks varies by about an order
of magnitude, due to the energy-dependent efficiency of the
photon creation process in the target material [26]. Like in the
HU scheme as characterized by Fig. 5, the wide-range behavior
of the resolving power may be classified in two regimes:

• Figure error compensation: The width of the sharp spectral
lines in the vicinity of E0 from Tab. 4 can be ascribed to the
wavefront correction by the customized DWC, rather than the
"regular" RZP (Fig. 13). Correspondingly, the resolving power
E/∆E increases from 2.6× 104 for Ti Lα, Lγ to the theoretical
maximum of 4.5× 104 for the central Ti Lβ1,6 doublet.
• Curved substrate effect: An effective suppression of aber-

rations toward the outer regions of the spectrum is accomplished
by the spherical shape of the mirror in which the grating is
inscribed [33]. In contrast, the relative bandwidth of an RZP
on a plane substrate would be typically restricted to a few
% around E0. The mean resolving power for the Ti and O
peaks around 0.40 keV and 0.53 keV, respectively, is estimated
to ≈ (7± 2)× 103. The coma tails, which are visible on the left
and right in Fig. 14, affect the result notably, and special cutoff
techniques might be applied to the low intensity level [37] to
control both photon flux and resolution in these spectral lines.

We compare the resolution at E0 for the uncorrected (RZP) with
the corrected (DWC) grating from Fig. 13, under otherwise
identical conditions and the three assumptions for an optimized
instrumental arrangement from above,

(E/∆E)RZP = 2.76× 103 vs. (E/∆E)DWC = 4.49× 104. (16)

If we take the number of illuminated grating lines as the ana-
lytical maximum for the possible resolving power, the DWC as
designed and simulated here in Sect. 4 should reach 98 % of that
benchmark, i.e. the diffraction limit. In most practical imple-
mentations of course, the more or less serious "violation" of the
three idealizing items will reduce the quality of the spectrom-
eter accordingly, and the real performance may be calculated
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Fig. 14. Simulated TiO2 spectrum, recorded using the DWC-structured mirror from Fig. 11 for a point source and an ideal detector
with unlimited spatial resolution. All referenced emission lines [26] in the range from 395 eV to 529 eV are sampled with a resolu-
tion of 1.2 µm, whereas an about 15-fold larger step size is used for the bremsstrahlung continuum [26]. The intensity is normalized
to the maximum (Ti L l) and the red numbers in brackets indicate the theoretical resolving power for the central Lβ1,6 doublet.

easily considering the geometrical magnification of the source,
the convolution with the detector resolution and error budget
simulations for any potential alignment tolerance.

5. CONCLUSION

In this paper, we elaborate a simple, geometrical theory of
diffractive wavefront correction for grating-based optical in-
strumentation in the XUV and soft X-ray regime, as well as
initial steps toward its experimental realization. Our findings
prove that a customized DOE can compensate the wavefront
deformation as it is induced by the usually inevitable form and
figure error of the collecting mirror, enabling diffraction-limited
resolution near the design energy and, beyond, wide-range
wavelength-dispersive spectroscopy as well. Such gratings with
an exact, "holographic" line density distribution are calculated
in three dimensions for various configurations, e.g. the com-
mon Hettrick-Underwood scheme or an especially compact,
easily aligned and highly efficient integrated design. The two-
dimensional groove structure can be directly inscribed into any
plane or curved substrate.

The successful design relies on an accurate knowledge of
the wavefront that emerges from the erroneous mirror. Two
methods are presented: The standard way to generate the DWC
for a given setup utilizes the new technology for ultra-precise,
Angstrom-scaled profile measurement of highly curved mirrors
as developed by SIOS GmbH in the framework of this project.
With radii of curvature down to & m on mirror apertures up
to 90× 90 mm2, compact table-top spectrometers with an un-
precedented performance may be constructed [33]. Here, we
demonstrate the potential with an in-house experiment for TiO2
spectroscopy across an energy range of (0.39− 0.53) keV with a
resolving power E/∆E up to 4.5× 104. Detailed modeling and
simulation quantify the gain in E/∆E to one order of magnitude,
due to the incorporation of the mirror’s figure error with an am-
plitude of only ±31 nm. A complementary approach evaluates
the phase map of the outgoing beam directly, by a 3D scan of
its intensity distribution in multiple intra- and extra-focal de-
tection planes. A relatively tolerant, i.e. stable phase retrieval
algorithm for the fairly incoherent source is developed from the
1D transport-of-intensity equation and the reconstruction works
up to an accuracy of ±λ/25 (rms) so far – with room for more.

Subsequently, the explicit computation of the DWC struc-
ture is – compared to the initial, MathematicaTM-based code
being used for the present study – vastly accelerated to typi-
cally . 10 min by means of an already available Python rou-

tine [33]. Beyond the diverse methods as discussed within this
work, software-oriented deep learning using neural nets could
promise, in future, highest reliability for use in rough environ-
ments with partially incoherent beams and omnipresent noise
[38, 39].

On the roadmap toward a potential routine for not only eas-
ily calculated but also quickly produced DWC gratings, there is
likely no way around the benefits of modern nano-fabrication
methods. Above all, the emerging technique of direct laser writ-
ing [40, 41] is expected to allow for an inexpensive generation of
true 3D VLS groove patterns, at least for the relatively relaxed
line densities in the XUV and soft X-ray regime.

Until now, we investigated the diffractive wavefront correc-
tion for the class of laboratory-sized spectrometers in the XUV
and soft X-ray regime. Nevertheless, the basic theoretical con-
cepts from Sect. 2 and the practical techniques (Sects. 3,4) can
be applied as well to large-scale instruments at synchrotron or
FEL facilities [22–25], and are – in principle – scalable to any,
especially short wavelengths in the hard X-ray range.

In view of laser-driven high harmonic generators (HHGs)
and other, modern laboratory-scaled sources at about 1000 uni-
versities and research institutes worldwide, as well as more than
50 synchrotron facilities with at least one mirror-based soft X-ray
beamline, we may expect a significant request for DWC optics
in the future, yielding "low budget" spectroscopy on a level of
high scientific performance.
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