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Witnessing entanglement in quantum magnets using neutron scattering
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We demonstrate how quantum entanglement can be directly witnessed in the quasi-1D Heisenberg anti-
ferromagnet KCuF3. We apply three entanglement witnesses—one tangle, two tangle, and quantum Fisher
information—to its inelastic neutron spectrum and compare with spectra simulated by finite-temperature density
matrix renormalization group (DMRG) and classical Monte Carlo methods. We find that each witness provides
direct access to entanglement. Of these, quantum Fisher information is the most robust experimentally and
indicates the presence of at least bipartite entanglement up to at least 50 K, corresponding to around 10% of
the spinon zone-boundary energy. We apply quantum Fisher information to higher spin-S Heisenberg chains
and show theoretically that the witnessable entanglement gets suppressed to lower temperatures as the quantum
number increases. Finally, we outline how these results can be applied to higher dimensional quantum materials
to witness and quantify entanglement.
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I. INTRODUCTION

Quantum entanglement (QE) is intrinsically linked to
measurements of correlations between observables. Cele-
brated examples of this relationship are the Bell [1] and
Clauser-Horne-Shimony-Holt (CHSH) [2] inequalities in-
volving correlations of, e.g., photon polarization, used to
demonstrate entanglement in few-particle systems [3–5]. Re-
cently, such experiments have been successfully extended
to systems of many particles [6,7]. Indeed, entanglement in
many-body systems is attracting great interest [8–13] for
potential technological application as well as a route to
new insight into novel states of matter—particularly ones
with interesting emergent [14] and topological [15] states
and dynamics [16]. Experimentally detecting and quantifying
entanglement in macroscopic systems, though, is challeng-
ing [13,17–20] especially in the solid state. In cases where
a quantum system can be quantitatively modeled, insight
into quantum behavior can be gained by measuring cor-
relation functions and carefully comparing experiment and
theory [21–25]. However, model-independent approaches to
verifying and quantifying entanglement would give a more
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direct route to quantum properties of materials and their
enhancement.

The most commonly studied form of QE within condensed
matter physics is bipartite entanglement, defined as follows.
If one considers a quantum system described by a density
matrix ρ, in a Hilbert space H , one can (bi)partition H
into two parts, A and B. The trace of ρ over the degrees
of freedom in B yields the reduced density matrix, ρA =
TrB[ρ]. From ρA we can obtain, e.g., (i) the von Neumann
entanglement entropy SvN = −Tr[ρA lnρA], which provides
a natural quantitative measure of the entanglement between
regions A and B, and (ii) the related entanglement spectrum
[26] given by the eigenvalues of ρA. This formalism has al-
lowed significant progress, including a deep understanding
of critical systems [14], topological states [15], and devel-
opment of advanced numerical methods [10]. In particular,
both entanglement entropy [27–29] and spectrum [26,30–33]
can be used to identify topological ground states and low-
energy field theories of quantum systems. Despite being a
nonlocal measure, the entanglement entropy has been directly
probed in cold atom [19,20] and photonic [34] systems. These
measures do not readily lend themselves to experimental de-
tection in solid systems, where the number of particles is very
large. Fortunately, however, other entanglement measures ex-
ist. Researchers studying quantum information have defined
many types of entanglement and have introduced measures to
detect, quantify, and witness them. Since quantum informa-
tion is mainly concerned with systems of qubits, which are
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mathematically equivalent to spin-1/2 systems, we can di-
rectly apply many of its insights to quantum materials.

Entanglement witnesses (EWs) [8,9,17] are functionals of
the density matrix ρ used to identify specific sets of entan-
gled states and distinguish them from separable (unentangled)
states. Every entangled state can, in principle, be detected by
some EW [17]. However, the construction of an EW capable
of detecting all possible entangled states would be equivalent
to a solution of the so-called separability problem, which is
NP hard, meaning that the runtime of any algorithm solving
the problem is believed to grow exponentially with the size
of the Hilbert space. Hence, for practical purposes, no single
EW can detect all entangled states, much like a single order
parameter cannot describe all phase transitions. To be prac-
tically useful in experiment an EW (like an order parameter)
should correspond to a quantity that can be directly measured
or calculated from measurable quantities. While many EWs
have been proposed, in the present work we choose to focus
on three EWs suited for magnetic systems, where the QE is
reflected in spin-spin correlations. These are (i) the one tangle
[35–37], (ii) concurrence [22,35,37–39] and the related two
tangle [35–37], and (iii) quantum Fisher information (QFI)
[40–42]. These probe different types of entanglement, reflect-
ing the rich mathematical structure of many-body states. As
the results on the transverse-field XXZ spin chain material
Cs2CoCl4 [43] demonstrate, the chosen EWs are practical
to apply in the analysis of neutron scattering data, allowing
for a protocol of entanglement identification in spin systems.
By utilizing multiple witnesses, this approach goes beyond
previous neutron scattering measurements of concurrence as
applied to dimerized alternating chains [22,44] and molecular
magnet systems [45]. By obtaining the scattering intensity
in absolute units we also go beyond a recent study [46] of
temperature scaling of QFI in an isotropic spin chain, allowing
for a quantitative determination of the entanglement present.
Our method may further be combined with independent mea-
surements of EWs based on, e.g., static susceptibility [47]
or magnetic specific heat [48], which have been applied to
a number of spin chain materials [22,49–52]. We thus believe
our approach is widely applicable to quantum spin systems
and can allow rapid identification of materials hosting highly
entangled states, such as quantum spin liquids [53–55] with
stringent but feasible measurements.

In this study we apply our protocol to high-quality inelastic
neutron scattering (INS) data on the one-dimensional S = 1/2
Heisenberg antiferromagnetic (HAF) chain material KCuF3.
Previous literature has established that KCuF3 provides an
excellent realization of the isotropic HAF chain model,

H = J
N∑

i=1

�Si · �Si+1, (1)

both qualitatively and quantitatively [56]. KCuF3 consists of
chains of interacting Cu2+ ions extending along the c axis
(Fig. 1), with intrachain coupling J = 33.5 meV. Weak inter-
chain coupling (J⊥ = −1.6 meV) causes the system to order
magnetically at 39 K, nevertheless at low temperatures the
spectrum is dominated by a continuum of scattering above
∼15 meV [57] and is essentially 1D above 30 meV [56]. The

FIG. 1. Crystal structure of KCuF3. The Cu orbital order makes
interchain exchange J⊥ much weaker than intrachain exchange J .

form of the scattering continuum is a signature of fractional-
ized excitations (spinons) and long-range entanglement in 1D
[21,56].

Importantly, the one-dimensional setting allows accu-
rate simulation of the system at various temperatures using
the numerically exact density matrix renormalization group
(DMRG) technique and analytical Bethe ansatz calculations
at low temperature. Thus we can compare the entanglement
quantified from data to accurate theoretical values. Since both
excitation spectra and entanglement properties of the Heisen-
berg model are relatively well understood, this system is an
ideal platform for testing the use of many-body EWs.

We find that, when experimental conditions are taken into
account, the entanglement inferred from the data agrees with
theoretical predictions of entanglement witnesses. However,
each EW has strengths and weaknesses. The one tangle is
straightforward to calculate but suffers from strictly being
applicable only at zero temperature. The concurrence and two
tangle, on the other hand, measure finite-temperature two-spin
entanglement, but the precision required in the low-energy
correlations makes their quantification difficult for KCuF3,
so for gapless or very small-gap systems they may be of
limited utility. In contrast, the quantum Fisher information
is found to be a more practical measure of entanglement.
It involves an integral that can be determined from inelastic
neutron scattering data and gives a measure of multipartite
entanglement, making it well suited for strongly fluctuating
quantum magnets.

We provide here a theoretical and experimental examina-
tion of applying entanglement witnesses to a model S = 1/2
HAF chain. In Sec. II we briefly review the notions of separa-
bility and entanglement and describe the studied entanglement
witnesses. We present our methods in Sec. III and results
in Sec. IV. Section V discusses the results and guidelines
for future experiments probing entanglement properties in
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quantum matter. We end with conclusions in Sec. VI and
provide appendices with further technical details.

II. ENTANGLEMENT WITNESSES

What does it mean for a state to be entangled? A state is en-
tangled if its density matrix is not separable. An arbitrary state
can be described with the density matrix ρ = ∑

i pi|φi〉〈φi|,
where pi are probabilities of individual pure states |φi〉. In the
case of bipartite entanglement we say that ρ is a separable
state if it can be expressed ρ = ∑

i piρ
A
i ⊗ ρB

i , where ρA
i (ρB

i )
is constructed from the states in region A (B) in H . Product
states are a special class of separable states with ρ = ρA ⊗ ρB.
The state ρ is then called entangled if it is not separable
[17]. Note that some separable states have genuine quantum
correlations (quantified by, e.g., quantum discord) despite not
being entangled [12,58,59] and may be of use in quantum
information applications [60]. Identifying whether a given
state ρ is separable or not has been shown to be NP hard [17].
This is known as the separability problem.

The definitions above can be generalized to the multipartite
case [17,41]. We say that a state is fully separable if it can be
expressed ρ = ∑

i piρ
(1)
i ⊗ · · · ⊗ ρ

(N )
i , where N is the number

of regions in the Hilbert space H , e.g., the number of lattice
sites or particles in the spin system described by Eq. (1). If
a state cannot be expressed this way, it possesses some entan-
glement. However, this does not require that all N particles are
entangled. Indeed, we generally only expect full entanglement
in specially engineered states and not in typical condensed
matter systems. To quantify how many particles are entangled,
we first need two more definitions. We say that a pure state is
m separable if it can be written |φm-sep〉 = ⊗M

l=1|φl〉, where |φl〉
is a state of Nl � m particles and

∑M
l=1 Nl = N . The pure state

has m-partite entanglement if it is m separable but not (m − 1)
separable. A mixed state has m-partite entanglement if it can
be written as a mixture of (ml � m)-separable pure states, i.e.,
ρm-sep = ∑

l pl |φm-sep〉〈φm-sep|, where |φm-sep〉 = ⊗M
l=1|φl〉.

The above may seem rather formal, but it provides the
background necessary to appreciate entanglement witnesses
[8,9,17]. As mentioned earlier, these are functionals of the
density matrix ρ that identify some set of (bi- or multipar-
tite) entangled states without having to solve the separability
problem in general. If the EW corresponds to an observable O
it can be used to identify entangled states without full knowl-
edge of ρ, since any measurement gives 〈O〉 = Tr[ρO]. EWs
thus provide a way to experimentally detect entanglement in
materials. The choice of witness (or witnesses) will depend
on the system or state of interest and the type of entanglement
to be probed. In this study we focus on three entanglement
witnesses expressible as spin-spin correlation functions mea-
surable by neutron scattering.

A. One tangle

The one tangle τ1, which quantifies entanglement of a
single spin with the rest of the system [35,36,61] gives a mea-
sure of total entanglement. For translation-invariant S = 1/2
systems it can be expressed in terms of the ordered moment

Mα = 〈Sα〉, α ∈ {x, y, z} as

τ1 = 1 − 4
∑

α

(Mα )2. (2)

It vanishes for a classical magnetic order and reaches its
maximum in the absence of order due to quantum fluctuations.
However, it is only defined at T = 0, restricting its experi-
mental use to the lowest temperatures. We are not aware of a
finite-temperature generalization.

B. Two tangle

The two tangle τ2 quantifies the total entanglement stored
in pairwise correlations [37,39] and satisfies τ2 < τ1 [35,62].
It is defined as τ2 = 2

∑
r 	=0 C2

r , where Cr is the concurrence
[35,37–39] for a pair of spins separated by a distance r. The
concurrence is itself an entanglement witness that quantifies
the pairwise entanglement of two spins and is closely related
to Bell’s type inequalities. For the isotropic S = 1/2 HAF
chain in the absence of order it simplifies to

Cr = 2 max

{
0, 2

∣∣gzz
r

∣∣ −
∣∣∣∣1

4
+ gzz

r

∣∣∣∣
}
, (3)

where gzz
r = 〈Sz

i Sz
i+r〉. In general, concurrence for S = 1/2

systems is a function of real-space spin correlations and mag-
netization components [36]. The concurrence remains short
ranged and τ2 is noninfinite even at quantum critical points
where correlations become long ranged—a consequence of
quantum monogamy (the tradeoff in bipartite entanglement
between multiple spins) [35,37,62], which is itself linked to
frustration effects in spin-spin correlations [62].

One can see the limitations inherent in pairwise EWs by
considering resonating valence bond type states in higher
dimensional lattices. Monogamy will mean the correlations
between pairs will be reduced due to sharing of singlets in the
ground state. For such a state, although clearly quantum entan-
gled, the strict condition of exceeding the classical correlation
value of 1/4 may not be met and this can be expected to be a
problem for most quantum magnets beyond explicitly dimer-
ized systems and low-dimensional geometries. For example,
the concurrence vanishes for the highly entangled Kitaev spin
liquid [63], reinforcing the point that a single EW cannot
detect all nonseparable states. There are generalizations of
concurrence to S > 1/2 [64–66], but to our knowledge there
are so far no simple expressions for spin models of interest.
Thus concurrence and two tangle are currently only useful for
S = 1/2 systems.

C. Quantum Fisher information

Finally, quantum Fisher information (QFI) originates from
quantum metrology in analogy with classical Fisher informa-
tion. It puts precision bounds on parameter estimation through
the quantum Cramér-Rao bound [67,68] and has been shown
to act as a witness of multipartite entanglement [41,42]. In
nonintegrable systems, QFI could also be used to test the
eigenstate thermalization hypothesis [69]. For a system of
N spin-1/2’s in a separable state the QFI FQ is limited to
FQ[ρ; Sα

tot] � N (where Sα
tot = ∑N

i=1 Sα
i and Q in the subscript

denotes “Quantum”)—whereas the maximum is FQ[ρ; Sα
tot] �
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N2 for a completely entangled quantum state. It is convenient
to define the QFI density fQ[ρ; Sα

tot] = FQ[ρ; Sα
tot]/N .

The QFI is rigorously related to the dynamical suscepti-
bility of the observable O [40]. For spin systems, where the
dynamical susceptibility is accessible to INS experiments, we
have the QFI density:

fQ(T ) = 4h̄

π

∫ ∞

0
d (h̄ω) tanh

(
h̄ω

2kBT

)
χ ′′(h̄ω, T ), (4)

where the dynamical susceptibility χ ′′ is measured at a
specific point in reciprocal space. For a S = 1/2 antiferro-
magnetic chain, QFI is evaluated at the nearest neighbor
correlation k = π (which would be the ordering wave vector
of an equivalent classical system). If the QFI density satisfies
the bound

fQ > m(hmax − hmin)2, (5)

where hmax and hmin are the maximum and minimum eigenval-
ues of the observable O and m is an integer, then the system
must be at least (m + 1)-partite entangled [41,42]. (Strictly
speaking this holds only if m is a divisor of N . We assume that
N in experiment is large enough and indeterminate, such that
N is divisible by all m � N . Note also that, unlike Ref. [40],
we treat χ ′′ as an intensive quantity, i.e., it includes a factor
1/N , as is conventional in the study of magnetism.) To deter-
mine if this bound is met, it is thus necessary to obtain the
inelastic scattering in absolute units.

Here, the fluctuation-dissipation theorem, χ ′′(k, ω) =
1
h̄ tanh( h̄ω

2kBT )S(k, ω), links χ ′′ to the dynamical spin structure
factor S(k, ω) measured by neutron scattering. Sum rules for
total scattering, e.g.,

∑
α∈{x,y,z}

∫ ∞

−∞

∫ 2π

0
dωdk Sαα (k, ω) = S(S + 1) (6)

in the isotropic case, constrain the dynamical response. It is
evident then that Eq. (4) relates QFI to a quantum enhance-
ment in the linear response of a system and thus provides
a potentially useful discriminator for quantum materials. For
neutron scattering studies of spin-S systems satisfying Eq. (6),
the bound (5) becomes [43]

nQFI = fQ
12S2

> m. (7)

This is the relevant bound for systems of arbitrary spin.
Throughout this work we will call the left hand side ( fQ

12S2 )
“normalized QFI” (nQFI). Unlike the other EWs we discuss,
QFI is generally applicable to physical systems over all phys-
ical conditions (e.g., temperature) reinforcing its usefulness.

III. DATA ANALYSIS AND NUMERICAL METHODS

A. Analysis of INS data

We use inelastic neutron scattering data on KCuF3

from Refs. [56,70] to evaluate experimental entanglement
witnesses. The spectra were measured on the MAPS time-
of-flight spectrometer at the ISIS pulsed neutron source and
cover the full frequency and wave-vector response of the ma-
terial over temperatures (6, 50, 75, 150, 200, and 300 K) up
to the order of the Curie-Weiss temperature 	CW = JS(S +

1) = 274 K. At high temperatures the low energy scattering
is dominated by phonons. Accordingly, the estimated phonon
contributions were subtracted from the data at all tempera-
tures. To ensure this was done accurately the phonon spectrum
was remeasured carefully using the ARCS spectrometer at
Oak Ridge National Laboratory; see Appendix B for details.
After phonon subtraction, data were corrected for anisotropic
Cu2+ form factor and converted to absolute units to obtain
S(k, ω), see Appendix A for details. Phonon-subtracted and
form-factor corrected S(k, ω) are shown in Fig. 2.

The concurrence and two tangle require the distance-
dependent equal-time correlations gαα

r . These are extracted
from Sαα (k) = ∫ ∞

−∞ dωSαα (k, ω) by an inverse Fourier trans-
form [see Figs. 3(a)–3(f)]. The elastic line has been masked
due to the incoherent scattering from other sources. Negative-
energy transfers were not measured in the experiments so
they are calculated from the positive energy scattering us-
ing detailed balance—see Appendix A for details. From this
spin-spin correlation we calculate the concurrence and two
tangle, using Eq. (3). We find that only onsite and nearest
neighbor spin-spin correlations exceed the |gzz

r | = 1/4 thresh-
old in Eq. (3). Thus only the latter correlations contribute to
concurrence and two tangle (r = 0 is excluded by definition).
The uncertainty on all experimental entanglement witnesses
in this paper is statistical and arises from counting statistics of
the neutron experiments.

B. Simulations

To compare these calculated quantities with the theoretical
behavior of a pure S = 1/2 HAF chain, neutron spectra were
simulated with DMRG [71–73]. We used the Krylov-space
correction vector approach [74,75] to calculate S(k, ω), allow-
ing accurate results at all ω. Due to finite-size limitations the
spectra were calculated with a Lorentzian energy broadening
with half width at half maximum (HWHM) η = 0.1J . To
simulate experimental conditions, the DMRG spectra were
convolved with a resolution function using the ms_simulate
package of the MSLICE program (see Appendix A for de-
tails). The simulated spectra are shown in Figs. 2(g)–2(l).

The DMRG calculations were carried out with the
DMRG++ code [73], keeping a minimum of 100 and up
to 1000 states in the calculation, while targeting a truncation
error below 10−8. In practice, the actual truncation error in
obtaining wave functions was �10−10. The 6 K result was
approximated with a T = 0 DMRG calculation on a chain
with 100 sites and open boundary conditions (OBC). For T >

0 calculations we used the ancilla (or purification) method
[76–78] with a system consisting of 50 physical and 50 ancilla
sites, also with OBC. Details on how to reproduce our results
are given in Appendix C and the Supplemental Material [79].
Based on finite-size scaling between 50, 100, and 120 site
DMRG, we estimate an uncertainty of 0.4% in the overall
intensity of the DMRG simulations.

To highlight the quantum nature of entanglement, we
also consider a fully classical system where entanglement is
strictly absent. For this purpose, we simulated a HAF chain
using Landau-Lifshitz dynamics (LLD) followed by Metropo-
lis annealing [80]. A spin chain of 2000 classical vector
spins of length S = 1/2 was solved for LLD starting from a
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FIG. 2. Spectra and quantum Fisher information. (a)–(f): Neutron scattering of KCuF3 measured on MAPS at different temperatures.
(g)–(l): DMRG simulated scattering from a 1D HAF with experimental resolution broadening applied. (m)–(r): QFI integrand at k = π , shown
with normalized quantum Fisher information ( fQ

12·S2 ) calculated at that point. At 6 K the data is also compared with the algebraic Bethe ansatz
result (m).

thermalized spin configuration at a given temperature. A
standard Metropolis sampling algorithm has been used to
thermalize the spin system starting from a long-ranged
antiferromagnetic configuration. Correlation functions were
calculated by averaging over 192 independent simulation
runs.

IV. RESULTS

A. One tangle

The low-temperature (T � TN ) ordered moment for
KCuF3 is μ = 0.49(7) μB [81] (〈Sz〉 = 0.24(3)). This gives a
one-tangle value, Eq. (2), of τ1 = 0.76 ± 0.14. Theoretically,
the S = 1/2 HAF chain does not order (giving τ1 = 1), but
the ordering in KCuF3 is due to interchain coupling [57]. Al-
though τ1 is reduced due to long-range order it still indicates
substantial entanglement.

B. Two tangle

The calculated two-tangle τ2 values as a function of tem-
perature are plotted in Fig. 4. In this case, τ2 extracted directly
from DMRG simulations is noticeably higher than the ex-

perimental values over the whole temperature range. This
discrepancy is surprising: The prima facie agreement for S(k)
in Fig. 3 between theory and experiment appears excellent
while the Bethe ansatz calculations (shown by the green bars
in Fig. 4) show resolution effects are small.

The origin of the discrepancy can be deduced from a close
examination of the data in Figs. 3(a)–3(f). DMRG S(k)—
which was calculated with resolution broadening—is much
sharper than experiment at k = π at low temperatures. This is
because the elastic line was masked below h̄ω = 4 meV in the
MAPS data to eliminate substantial background contamina-
tion from unavoidable incoherent elastic scattering. The most
intense magnetic scattering at k = π is then masked, resulting
in S(k) not being as sharp as theory, nearest-neighbor 〈S · S〉
being slightly reduced, and the calculated τ2 is suppressed.

Another thing to note about the data in Fig. 3 is that 〈S · S〉
at R = 0 falls off in the experimental data as temperature
increases. This is not true for the DMRG—it remains constant
for all temperatures. This shows that there is missing magnetic
spectral weight for the MAPS data at elevated temperatures.
[〈S · S〉 at R = 0 corresponds to the zero-moment sum rule,
which for S = 1/2 should be S(S + 1) = 3/4.] Both MAPS
and DMRG satisfy the sum rule at low temperatures, but at
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FIG. 3. Spin-spin correlations. The left column [(a)–(f)] shows
the energy-integrated scattering S(k) (blue) from the MAPS KCuF3

data compared to DMRG S(k) (black). The right column [(g)–(l)]
shows the spin-spin correlation calculated as the Fourier transform
of S(k). The x axis in this case gives neighbor distance along the
1D chain. The horizontal gray bars show the threshold of quantum
correlations |gzz| = 1

4 ; see Eq. (3). Any value within the shaded re-
gions indicates quantum entanglement. The comparison of classical
Monte Carlo, DMRG, and experimental results clearly shows the
quantum behavior of the system, with enhanced onsite correlations
and decay of correlation functions at low temperatures driven by
quantum fluctuations.

high temperatures only the DMRG does. The reason for this
can be seen in Fig. 2, where the high-temperature MAPS data
is oversubtracted at low energies due to intense phonon scat-
tering (see Appendix B). To simulate this missing intensity,
we masked the low-energy DMRG intensity (details are given
in Appendix A) and recalculated two tangle. As shown by
Fig. 4, the DMRG-masked two tangle closely matches the
experimental calculations below 100 K. This shows that the
low-energy scattering has a strong influence on two-tangle
calculations, in contrast to QFI.

As a final note, the classical MC simulations, shown in
purple in Fig. 3, have zero concurrence and thus zero two

FIG. 4. Two tangle. Two tangle τ2 for KCuF3 calculated from
the spin-spin correlation functions in Fig. 3. DMRG two tangle is
≈ 0.1 higher than the experimental values, but the correspondence
is very close if the low-energy scattering is excluded (light blue
data), showing the low-energy features are key to accurate two-tangle
calculations. Classical MC two angle is zero at all temperatures.

tangle at all temperatures. This is as expected for a classical
system.

C. Quantum Fisher information

The experimental and DMRG-simulated QFI values agree
remarkably well with each other, as shown in Fig. 5. Such
correspondence between theory and experiment is possi-
ble because the tanh function in the finite-temperature QFI

FIG. 5. Normalized quantum Fisher information [Eq. (7)] as a
function of temperature. The y-axis units directly indicate the degree
of multipartite entanglement present. When nQFI = fQ/(12S2) >

m, where m > 0 is an integer, the system is in a state with �(m + 1)-
partite entanglement. We show nQFI densities calculated according
to the formula in Eq. (4) from DMRG simulations and MAPS
data. We also show theoretical nQFI calculated for a S = 1 chain
(“Sørensen”) [82] and for S = 5/2 (“G-M-A”) [83]. Classical MC
nQFI is zero at all temperatures.
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integral suppresses the low-energy scattering, which is where
the effects of interchain coupling and background subtraction
are most manifest [70]. Thus, the theoretical integral is quite
close to the experiment as shown in Figs. 2(m)–2(r). To show
the effects of finite resolution, we include a Bethe ansatz
calculation of the T = 0 HAF S = 1/2 chain with and without
resolution broadening [56], shown by the green bars in Fig. 5.
(Bethe ansatz is exact and not subject to finite-size broadening
like DMRG is.) To avoid the zero-temperature divergence, we
calculated the QFI at T = 6 K. This shows that resolution
effects decrease the normalized QFI by about 1. This effect
is noticeable, but it by no means suppresses the normalized
QFI. However, there is a qualitative difference in that the
Bethe ansatz result indicates the presence of at least tripartite
entanglement, while experiment and DMRG witness at least
bipartite entanglement.

We now consider QFI in higher-spin HAF chains. Partial
suppression of nQFI = fQ/(12S2) occurs for the isotropic S =
1 spin-chain QMC calculation in Ref. [82], which is plotted in
Fig. 5. We also simulated higher-spin systems with exchange
strength J scaled to keep the exchange energy scale [approx-
imated by the Curie-Weiss temperature 	CW ∝ JS(S + 1)]
constant across all spin values. Appendix C shows T = 0
DMRG spectra for S = 3/2 and S = 5/2 HAF chains, which
are quantum critical systems with extensive entanglement. We
find that T = 0 nQFI is approximately the same for these S
values. Meanwhile, finite-temperature S(k, ω) and nQFI for
higher spin chains can be calculated with the semiclassical
Gozel-Mila-Affleck approximation in Ref. [83], and the S =
5/2 QFI is plotted in Fig. 5. nQFI is noticeably suppressed
with the larger spin at nonzero temperature. Increasing the
spin quantum number further shows a power-law decrease in
nQFI as S → ∞, as shown in Appendix D. Thus, although
higher spin chains are highly entangled at T = 0, the larger
spin quantum number suppresses the measurable entangle-
ment to lower and lower temperatures. In the classical limit,
which we consider in Appendix E, the ability to witness en-
tanglement is completely suppressed.

V. DISCUSSION

We have shown three different EWs which quantitatively
demonstrate entanglement in KCuF3. These results highlight
the requirements and limitations of measuring the one tangle,
two tangle, and QFI.

The one tangle is the easiest EW to measure and pro-
vides an immediately useful number directly related to the
entanglement of a spin with the rest of the system [61]. For
a translationally invariant Hamiltonian at zero temperature
the one tangle can be extracted from the ordered moment,
which is readily measurable with neutron scattering (through
magnetic elastic intensity). However, some care is needed in
interpreting the results, since τ1 may be overestimated if the
moments are not fully characterized, see Ref. [43]. A major
problem though is that τ1 is derived for a pure eigenstate and
thus restricted to zero temperature. Generalizing this result
would be very useful in the experimental quantification of
quantum effects in materials. Despite the lack of rigorous
derivation beyond zero temperature, it is reasonable to expect
that the nonentangled contribution will be within kBT of the

elastic line at low temperature and instead of the Bragg peak
intensity it will be given by the total long-time correlations
beyond t ∼ 1/kBT , i.e.,

τ1 ∼ 1 − 4
∑

α, β=x,y,z

∫ kBT

−kBT
dω

∫
B.Z.

dqSαβ (q, ω). (8)

Similarly, a useful expression for the one tangle in disordered
systems would provide a way of determining whether an ex-
perimental system is of interest as say a quantum spin liquid
versus a glassy or thermally disordered state.

Two tangle is less susceptible to experimental broaden-
ing effects than QFI, but it is more susceptible to other
experimental artifacts and perturbations away from quan-
tum criticality. Of all the EWs we considered, two tangle
required the most careful isolation and treatment of mag-
netic scattering—DMRG had to be masked in accord with
missing experimental spectral weight—which may prove a
serious limitation to studying less ideal systems than KCuF3.
On the other hand, the two tangle is easy to compute
theoretically and is almost immune to finite-size effects.
However, since concurrence is typically short ranged, τ2

is less powerful than the QFI in demonstrating long-range
entanglement.

Finally, QFI is a powerful measure of finite-temperature
entanglement for low-dimensional systems, showing �2-
partite entanglement in KCuF3. At finite temperature, QFI
remains robust against weak perturbations away from quan-
tum criticality, as shown by the correspondence to DMRG at
the quantum critical point. This correspondence also shows
the robustness against experimental artifacts in the neutron
scattering data. Nevertheless, there are two limitations to
QFI as an EW. First, resolution broadening somewhat sup-
presses the calculated QFI, and thus good energy resolution
is key to a successful calculation. Second, the T → 0 QFI
for a real experiment will never diverge. This is because (i)
resolution effects are always present which smooth over di-
vergent intensity, and (ii) real condensed matter systems are
generally not ideal. KCuF3, for example, has interchain cou-
pling which brings the system away from criticality, causing
the low-energy scales—which determine the low-temperature
multipartite entanglement—to deviate from the theoretical
T → 0 behavior.

Higher spin simulations show that normalized QFI also dis-
criminates between systems of different spin size. A spin-1/2
chain shows extreme quantum behavior—a quantum critical
ground state and pairs of fractional S = 1/2 spinons as quasi-
particles. The QFI shows an immediate difference between
S = 1/2 and S = 1 chains, with a low-temperature plateau in
S = 1 due to the Haldane gap [82,84]. The difference in the
behavior is due to a topological term in the quantum field
theory describing the systems. The strength of this term is
JS2 exp(−πS), which defines an energy scale above which
the dynamics behaves akin to spin waves. Correlations on
temperature and energy scales below this exponentially sup-
pressed crossover will still show divergent QFI in the case of
half-odd-integer spins. This agrees with the conformal field
theory predictions for the von Neumann entanglement entropy
and QFI [14,85]. However, this energy and temperature scale
suppression implies that the regime of diverging multipartite
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entanglement will be extremely hard to access in high-spin
systems. DMRG at zero temperature on S = 3/2 and 5/2 1D
chains are plotted in Appendix C, and we expect similar rapid
crossover to semiclassical behavior with spin length in other
quantum magnets. QFI may then prove to be a very useful
experimental indicator for when a fully quantum theoretical
approach is required and when a semiclassical approach may
suffice instead.

We can expect, on the basis of the results here, that combin-
ing quantum entanglement witnesses could prove useful in a
wide range of other magnetic systems. For short-range entan-
gled systems, such as dimerized and molecular magnets, the
concurrence and two tangle alone provide a useful measure
of the entanglement [86,87]. Meanwhile, the combination of
two tangle and one tangle is able to provide new potential
insights into both entanglement and quantum phase transitions
by identifying changes in entanglement and quantum wave
functions. A prominent example of this is the proposed en-
tanglement and QPTs in the XXZ model in transverse field,
which is explored in Ref. [43]. However, the addition of
the quantum Fisher information provides a powerful, system
agnostic indication of the impact of entanglement on the re-
sponse of the materials. Further, the observation of significant
multipartite entanglement in systems where it is not expected
could lead to discovery of new quantum states where theories
have not yet been developed.

Of particular interest are quantum spin liquids and their
discrimination from the effects of other forms of disorder.
As mentioned earlier, quantum monogamy is likely to make
the concurrence and two tangle go to zero between all sites
in higher dimension spin liquids [63]. Instead, nonzero two
tangle in a higher-dimensional system might be a signature of
a random singlet phase [88–90] and so possibly discriminates
spin-liquid-like random singlet phases from true quantum spin
liquids. The QFI on the other hand may well show multi-
partite entanglement in higher dimensions. The approach to
measuring QFI we have outlined is necessarily local and does
not directly probe the topological entanglement in quantum
spin liquids [40,84,91,92]. However, such measurements can
still confirm the presence of entanglement, and derivatives of
local QFI may signal topological phase transitions [92]. Thus,
although topological quantum spin liquids such as the Kitaev
model have long-range quantum entanglement that cannot be
fully quantified by multipartite entanglement, a combination
of (i) substantial τ1, (ii) τ2 = 0, and (iii) finite QFI would
strongly indicate long-range entanglement. This would be a
useful way of selecting systems on which to undertake ex-
periments to probe topological quantum states (like quantum
interference measurements).

As a final note, these results show that neutron scattering
is well suited to witnessing entanglement in solid state sys-
tems. The demands of entanglement witnesses will require
high-resolution techniques and carefully designed scattering
experiments. For systems more complex than the S = 1/2
HAF chain, polarized scattering may be required to isolate
the magnetic signal. Also, for anisotropic systems, quantify-
ing entanglement witnesses will require measuring the full
polarization tensor of the spin-spin correlation functions [43].
These EW measurements could be aided by self-entangled
neutron beams as recently demonstrated for CHSH states [93].

These measure spin-spin correlations like unentangled beams,
but they can be conditioned to simultaneously measure com-
binations of correlations of distance, time, and polarization,
measuring Fourier components directly. In this respect, these
techniques could be used to develop more direct measure-
ments of EWs in materials. For other systems and methods,
a recent reformulation of QFI [94] or the related quantum
variance EW [95,96] may prove useful.

Although our results have focused on neutron scattering,
many other experimental techniques can measure EWs (QFI
in particular), for example inelastic x-ray scattering and THz
spectroscopy. Furthermore, there is rich information content
in the correlation functions not used in the present entangle-
ment witnesses, so other insightful neutron scattering witness
measures could powerfully elucidate many-body quantum
states. Given the potential utility of identifying and quan-
tifying entanglement in the response behavior of quantum
materials, experimental and theoretical approaches should be
explored further. In theoretical condensed matter physics we
are often used to thinking about entanglement exclusively
in terms of bipartite entanglement—e.g., in the form of en-
tanglement entropies and spectra. It is time to broaden this
perspective and more seriously consider entanglement mea-
sures that are experimentally accessible.

VI. CONCLUSION

We have demonstrated several model-independent means
of quantifying entanglement using the neutron spectrum
of the 1D Heisenberg antiferromagnet KCuF3. One tan-
gle, two tangle, and QFI all show nonzero entanglement.
We find each has specific advantages and disadvantages:
One tangle is simple to calculate but limited to the zero-
temperature limit. Two tangle provides direct insight to the
bipartite entanglement but is easily disrupted by experimen-
tal artifacts. QFI we find to be the most robust, giving
quantitative agreement with DMRG calculations across the
entire temperature range. Further, QFI directly and unambigu-
ously shows that KCuF3 has at least bipartite entanglement,
up to at least 50 K.

These results serve as a proof of principle that mean-
ingful information about quantum entanglement can be
extracted from experimentally measured spin-spin correla-
tions. Our results call for the development of additional
EWs accessible through spin correlation functions. More gen-
erally, EWs formulated in terms of accessible observables
present a promising direction forward. Armed with such
tools, the study of exotic quantum materials can progress in
new ways.

DOE will provide public access to these results of feder-
ally sponsored research in accordance with the DOE Public
Access Plan [97].
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APPENDIX A: DATA PROCESSING

The MAPS KCuF3 neutron scattering data were corrected
for the anisotropic dx2−y2 Cu2+ form factor in order to account
for the orbital order in Fig. 1:

f (k) = 〈 j0〉 + 5

7
(3 cos2 β − 1)〈 j2〉 + 3

56
(35 cos4 β

− 30 cos2 β + 35 sin4 β cos 4α + 3)〈 j4〉, (A1)

where β is the angle between k and the dx2−y2 orbital z
axis, and α is the angle from the x axis in the xy plane
[98]. Cu2+ 〈 jn〉 constants were from Ref. [99]. To isolate
the magnetic scattering, a phonon background was sub-
tracted (described in Ref. [56]). This background intensifies
as temperature increases (see Appendix B), so the low-
energy scattering at the highest temperatures has a large
uncertainty—but the higher energy scattering is clear. Data
were already normalized to absolute units, but we normalized
the data again by setting the zero moment total sum rule
of the 6 K data explicitly to 0.75. This was done to ensure
greater accuracy in the entanglement witness calculations; ab-
solute unit conversions often carry large uncertainty [100] in
themselves.

In order to compare the DMRG calculations directly with
the experimental data, we simulated the dataset that would be
collected on the MAPS instrument at ISIS for a sample with
the dynamic structure factor (DSF) of the DMRG, by using the
ms_simulate package of the MSLICE program. Before this
was done, however, a number of corrections were applied to
the theoretical DSF. First, in order to model the instrumental
resolution, the DSF was convolved numerically by a Gaussian
whose width was the energy-dependent resolution obtained
from the MCHOP program. Second, to take account of the
mosaic spread of the sample, a Gaussian angular broadening

FIG. 6. Detailed balance applied to MAPS KCuF3 data and
DMRG simulations. The red shaded regions in the right column
indicate the masked regions used to calculate two tangle in Fig. 4.

was introduced which resulted in an effective wave-vector
broadening. The resulting simulated datasets were identical in
form to the experimental datasets, and all manipulations (such
as binning) performed on the real data were also performed on
the virtual data. Direct comparison between theory and exper-
iment was achieved by using the MSLICE program to perform
the same cuts and slices on the virtual and real datasets.

To simulate the effects of experimental artifacts and
background subtraction, we masked the low-energy DMRG
simulated intensity as shown in Fig. 6. Because the re-
gion of missing intensity grows with temperature [see
Figs. 6(a)–6(g)], we varied the region masked with the phe-
nomenological function

masked < 4 meV + 8.5 meV

1 + exp
( − T −80 K

15 K

) .
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FIG. 7. Normalized quantum Fisher information (nQFI) as a
function of wave vector k for KCuF3 at 6 K, with a k bin size
2π/100. Note that the largest nQFI corresponds to the strongest spin
correlations: k = π .

This function is not meant to be exact but to approximate the
missing intensity in the MAPS data. Below 100 K, it matches
the spectrum visually and matches two tangle quantitatively.

Calculating QFI

According to the formalism in Ref. [40], QFI for a linear
response function is evaluated at a fixed wave vector. We
have evaluated QFI at k = π in this study, because the spin
correlations are strongest at the antiferromagnetic wave vector
π and staggered magnetization is a relevant order parameter
in the HAF chain. In principle, QFI could be evaluated at other

wave vectors (see Fig. 7), but the nQFI is by far the largest at
the antiferromagnetic point.

APPENDIX B: KCuF3 PHONON SPECTRUM

The phonon spectrum of KCuF3 was measured at the
ARCS spectrometer [101] at the ORNL SNS in the (hh�)
scattering plane with Ei = 50 meV neutrons (T0 chopper at
90 Hz, Fermi 1 chopper at 120 Hz, Fermi 2 chopper at 420 Hz,
slits 40 mm wide and 18 mm tall). The sample was the same
6 g single crystal used in the MAPS data. The large scattering
vector k coverage of ARCS allows for a much clearer picture
of the phonons than MAPS, which are stronger at large k.
This data also have significantly better energy resolution than
the MAPS data. Data were analyzed and plotted using Mantid
[102]. The data at 6 K, 100 K, and 300 K are shown in Fig. 8.
The phonon dispersions are primarily below 30 meV and grow
more intense as temperature increases, confirming the phonon
subtraction scheme used for the MAPS data. (Note that the
the ARCS data were not used as phonon background but as
confirmation of the MAPS phonon subtraction described in
Refs. [56,70].) At high temperatures, the complicated spec-
trum makes the phonon subtraction difficult: As shown in
Fig. 8, the 300 K low-energy magnetic scattering is much
weaker than 6 K, while the phonon scattering is much stronger
at 300 K than 6 K. This explains why the high temperature
KCuF3 data from MAPS that was used to extract the two
tangle witness is noisy at low energies.

APPENDIX C: DMRG CALCULATIONS

In this Appendix we provide additional DMRG results.
Detailed instructions on how to reproduce the DMRG results
are given in the Supplemental Material [79].

FIG. 8. Phonon spectrum for KCuF3. (a)–(c) show the phonon spectrum along (00�), the direction of magnetic chains, at 6 K, 100 K,
and 300 K, respectively. Magnetic scattering is visible as the strongly dispersive modes coming out of � = 1, 3, 5, etc. (d)–(o) show constant
energy slices (h̄ω ± 1 meV) at the three temperatures. The phonon spectrum is mostly below 30 meV and increases in intensity as temperature
increases. Note that above 25 meV the phonons are mostly gone, leaving only magnetic intensity.
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FIG. 9. Effects of system size scaling in DMRG. (a)–(c) show the T = 0 DMRG simulated spectra. (d)–(e) show the effect on QFI
(assuming T = 6 K), and (f)–(g) show the effect on two tangle. QFI is dependent on system size, but two tangle is nearly independent.

1. Finite size effects

We investigated finite-size scaling effects by running T =
0 DMRG simulations with 50, 100, and 120 sites, shown in
Fig. 9. The Lorentzian broadening was set to η = 0.1J for
N = 100 and scaled as η ∼ 1/N for other system sizes follow-
ing Ref. [103]. These results show QFI increases with system
size. This is because QFI is strongly dependent upon the
low-energy intensity at k = π , which gets sharper as system
size increases. However, experimental broadening suppresses
QFI and removes this size dependence. Meanwhile, the two
tangle is nearly independent of system size, both with and
without experimental effects. This is because τ2 is dominated
by the nearest-neighbor concurrence, which is determined by
nearest-neighbor correlations that are less influenced by the
overall size of the simulated system.

2. Higher half-integer spin Heisenberg antiferromagnets

We also calculated the DMRG spectrum at T = 0 for
S = 3/2 and S = 5/2 HAF spin chains, as shown in Fig. 10.
Similarly to the main T = 0 S = 1/2 calculation, these results
were obtained with J = 1, η = 0.1J , and N = 100 sites. In
order to reduce computational and memory cost, a ground
state in the Sz = 0 sector was targeted. To avoid an unphysical
artifact in the spectrum (a line of moderately intense scattering
at k = π extending to the highest frequencies, due to a com-
bination of diverging intensity as ω → 0 and the Lorentzian
energy broadening) we removed a Lorentzian with height
S(k, 0) and η = 0.1J at each k point. This was necessary to
avoid unphysical contributions to the QFI values. Following
the DMRG computation, J was scaled to keep the Curie-Weiss
temperature 	CW ∝ JS(S + 1) constant across all spin values.

APPENDIX D: SEMICLASSICAL APPROXIMATION

As the spin size increases, numerically computing the dy-
namical correlations with, e.g., DMRG or quantum Monte
Carlo and therefore calculating the QFI becomes increasingly
demanding—especially at finite temperature. The spin-1 case
has, however, been calculated by Lambert and Sørensen [82]
in a single-mode approximation. Their results are shown in
Fig. 5, normalized to match the bound given by Eq. (7). To
understand the case of higher S we turn to a recent semiclas-
sical theory work.

Gozel, Mila, and Affleck (GMA) [83] have considered
the mapping of the large-spin Heisenberg chain to an O(3)
nonlinear σ model and constructed a perturbative spin-wave
theory in 1/S. Exploiting asymptotic freedom and rotational
invariance, they obtain analytic expressions for the dynam-
ical spin structure factor valid for distances shorter than
S−1eπS and energies greater than JS2e−πS . These distance
and energy scales rapidly lengthen and decrease, respectively,
with spin size, and GMA find that their theory is useful
mainly to describe S � 5/2 HAF chains. The scales involved
also mean that the semiclassical correlations will rapidly ex-
haust the experimentally relevant scales. Such spin-wave type
excitations/correlations are consistent with inelastic neutron
scattering studies of Heisenberg chains with S = 3/2 [104]
and S = 5/2 [105].

We have calculated the QFI of large half-integer spin-S
HAF chains using the GMA theory [83] to simulate the neu-
tron spectrum. Several sample spectra are shown in Fig. 11.
Since this approach is valid at energies above � = JS2e−πS ,
we used � as a cutoff to define the lower bound of the QFI in-
tegral. Figure 11(g) shows the decay of calculated fQ/(12S2)
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FIG. 10. DMRG calculated T = 0 spectrum for (a) S = 1/2, (b) S = 3/2, (c) and S = 5/2, with normalized QFI ( fQ
12·S2 ) calculated at k = π

displayed on the figures.

for S � 5/2. As spin increases, this quantity falls off with a
power law [Fig. 11(h)].

APPENDIX E: CLASSICAL LIMIT

We used Landau-Lifshitz dynamics to calculate spectra
also for a fully classical (S → ∞) spin system. In this method,
spins are evolved by the classical equation of motion,

dSi

dt
= Si × Bi, (E1)

where Bi is the effective local magnetic field. Each S(k, ω)
is calculated by Fourier-transforming real-space correlations
into momentum space and averaging over 192 independent
simulation runs. In order to match experimental conditions,
LLD spectra were convolved with a resolution function
defined by the MAPS spectrometer. Figure 12 shows the re-
sulting spectra. We stress that the spectra obtained with the
classical simulation are in frequency-space—i.e., not in energy
space. To compare calculated S(k, ω) spectra with experiment
it is common to introduce the semiclassical approximation
εSCl(k) = h̄ωCl(k), with h̄ finite, and where the superscripts
Cl and SCl denote “classical” and “semiclassical,” respectively.
However, it is important to note that while this scaling by h̄

will introduce apparent scattering at finite energy, it cannot
by itself induce entanglement. Thus care needs to be taken
to correctly take the classical limit when evaluating the QFI
integral, Eq. (4), from semiclassical simulations.

Taking the classical limit of a quantum spin system is, in
general, a subtle problem. Here we will thus specialize to
the HAF chain, for which we can make some precise state-
ments. As S → ∞, linear spin-wave theory (LSWT) becomes
exact. At T = 0 the system is in a classical Néel state, and
the spectrum predicted by LSWT consists of a single sharp
magnon mode dispersing as ωCl(k) ∝ | sin(k)|. This collapse
of the continuous spectrum for S = 1/2 to a discrete branch
as S → ∞ can be understood as a consequence of sum rules
[106]. It follows that the QFI density, (4), evaluated at k =
π , vanishes in the classical limit at T = 0. Resolution and
thermal effects (at finite temperature) may broaden the sharp
mode and induce scattering at finite frequency ωCl, as seen in
Fig. 12. However, when we take h̄ = 0 as is appropriate for a
classical system (see below), the QFI density again vanishes.
Hence, QFI correctly does not witness entanglement in the
classical HAF chain.

To formalize this statement at finite temperature, we take
the classical limit of the HAF following the approach of Harris
et al. [107]. We let h̄ → 0, J → 0, S → ∞, while h̄S = 1

2 N0

FIG. 11. Semiclassical inelastic spectrum computed following Ref. [83]. (a)–(f) show scattering from S = 5/2 and S = 9/2 chains at
several temperatures. (g) shows the temperature-dependent normalized QFI ( fQ

12S2 ) calculated at k = π for S � 5/2. The inset (h) shows
normalized QFI vs S at 50 K, revealing a power-law decay.
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FIG. 12. Landau-Lifshitz dynamics simulated spectrum for the classical S → ∞ limit, with experimental resolution broadening applied.
Because h̄ → 0, the y axis is in units of frequency. (For comparison to Fig. 2 where h̄ 	= 0, 1 THz ≈4.1 meV). Despite the finite spectral weight
at nonzero frequency, nQFI vanishes at all temperatures when the classical limit is taken.

and the characteristic temperature scale kBT0 = 2JS2 remain
finite. Here N0 = 1 for spin-1/2. Using that tanh(x) � x in
Eqs. (4) and (7) we obtain the inequality

nQFI � h̄

6πS2

∫ h̄ωmax

0
d (h̄ω)

(
h̄ω

kBT

)
χ ′′(h̄ω, T ), (E2)

where we have introduced an explicit cutoff frequency ωmax,
corresponding to the highest frequency in the spectrum of χ ′′.
In the classical limit, the spectrum consists of a single magnon

branch with dispersion relation ωCl(Q) = 2JClSCl| sin(k)|,
and the highest frequency is the zone boundary frequency
ωCl

ZB = 2JClSCl, which may be large. However, the energy in
any mode is ε(k) = h̄ωCl(k) � h̄ωCl

ZB = 2JS = kBT0/S, which
vanishes as S → ∞. It is thus enough to note that the integral
in (E2) must vanish since it is taken over an interval that
vanishes in the classical limit. In Appendix D we provide
additional evidence that nQFI → 0 as the classical limit is
approached.
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