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We investigate the nature of the ground state of the spin- 1
2 Heisenberg antiferromagnet on the shuriken lattice

by complementary state-of-the-art numerical techniques, such as variational Monte Carlo (VMC) with versatile
Gutzwiller-projected Jastrow wave functions, unconstrained multivariable variational Monte Carlo (mVMC),
and pseudofermion/pseudo-Majorana functional renormalization group (PFFRG/PMFRG) methods. We estab-
lish the presence of a quantum paramagnetic ground state and investigate its nature, by classifying symmetric
and chiral quantum spin liquids, and inspecting their instabilities towards competing valence bond crystal (VBC)
orders. Our VMC analysis reveals that a VBC with a pinwheel structure emerges as the lowest-energy variational
ground state, and it is obtained as an instability of the U(1) Dirac spin liquid. Analogous conclusions are drawn
from mVMC calculations employing accurate BCS pairing states supplemented by symmetry projectors, which
confirm the presence of pinwheel VBC order by a thorough analysis of dimer-dimer correlation functions. Our
work highlights the nontrivial role of quantum fluctuations via the Gutzwiller projector in resolving the subtle
interplay between competing orders.

DOI: 10.1103/PhysRevB.104.L220408

Introduction. The kagome lattice, which has played such a
decisive role in the higher echelons of frustrated magnetism,
owes much of its intriguing physics to the corner-sharing
arrangement of triangular motifs. This geometry leads to only
a marginal alleviation of frustration in a system of antifer-
romagnetically interacting spins, and in essence accounts for
the appearance of novel quantum paramagnetic phases such as
quantum spin liquids. In this Letter, we consider the much less
explored non-Archimedean [1] variant of the two-dimensional
corner-sharing arrangement of triangles, namely the shuriken
lattice [2] (also referred to as the square-kagome or squagome
lattice in literature) (see Fig. 1). Following the recent exper-
imental reporting of a gapless spin liquid in a first material
realization of the shuriken geometry by spin S = 1/2 Cu2+

magnetic ions in KCu6AlBiO4(SO4)5Cl [3], there is renewed
interest in exploring the nature of frustration-induced phases
in the quantum Heisenberg antiferromagnet.

*These authors contributed equally to this work.
†yiqbal@physics.iitm.ac.in

In this Letter, we investigate the ground state of the Heisen-
berg antiferromagnetic model

Ĥ = J
∑

〈i, j〉
Ŝi · Ŝ j (1)

for S = 1/2 operators Ŝi = (Ŝx
i , Ŝy

i , Ŝz
i ) decorated on the

shuriken lattice, where the two symmetry inequivalent ex-
change couplings, i.e., on the square (J�) and triangular
(J�) bonds [see Fig. 1(a)] are taken as equal and denoted
by J (= J� = J�) [see Fig. 1(a) and Supplemental Material
(SM) [7]]. We employ (i) variational Monte Carlo (VMC)
with Gutzwiller-projected fermionic wave functions on large
system sizes (up to 2400 sites), (ii) many-variable variational
Monte Carlo (mVMC) involving an unconstrained optimiza-
tion of a BCS pairing function on system sizes up to 384
sites, and (iii) a pseudofermion functional renormalization
group (PFFRG) analysis to firmly establish the absence of
long-range magnetic order in the ground state of (1), which
remained to be conclusively shown within exact diagonal-
ization [4,5,8–10], mean-field [11], and perturbative [12,13]
schemes. To identify the precise nature of the quantum
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FIG. 1. (a), (b) Top row: Illustration of two types of magnetic orders within the ground-state manifold of the classical Heisenberg
antiferromagnet on the shuriken lattice [4,5]. The two symmetry inequivalent nearest-neighbor bonds are labeled as J� and J�. The q = 0
(
√

3 × √
3) order has an angle of 120◦ between neighboring spins, and a magnetic unit cell which is identical (three times enlarged) compared

to the six-site geometrical unit cell is marked by a dashed line. The green ellipses depict further degrees of freedom present in the classically
degenerate ground-state manifold. Bottom row: The first (solid line) and extended (dashed line) Brillouin zones of the shuriken lattice showing
the location of the Bragg peaks with the fraction of the total spectral weight of the classical (a) q = 0 order, at (4π, 0) and (2π, 2π ) (and
symmetry related points) with equal spectral weight, and (b)

√
3 × √

3 order, at (2π ± q, 2π ∓ q) with q = 4π/3, and leading subdominant
peaks at (q,−q) with 36%, i.e., λ/� = 0.36, of the spectral weight of the dominant ones [6]. The

√
3 × √

3 order breaks the fourfold rotational
symmetry. From (c) VMC, the size scaling of the hAF parameter (fictitious Zeeman field [7]) for q = 0 and

√
3 × √

3 orders on finite clusters
of Nsites = 6L2 sites, with L = 6, 9, 12, 15, and 18 (quadratic fit), (d) mVMC, the size scaling of the sublattice magnetization for the q = 0
order finite clusters of Nsites = 6L2 sites, with L = 2, 4, 6, and 8 (quadratic fit), and (e) PFFRG, the RG flow of the susceptibility tracked at the
dominant ordering vectors of the two classical orders.

paramagnetic ground state, we construct symmetric and chiral
U(1) fermionic mean-field Ansätze of quantum spin liquids,
compute their projected energies, and investigate their po-
tential instability towards competing VBC orders which have
been proposed within a quantum dimer model approach [5,13]
and a large-N analysis [2]. Our study finds an instability of the
U(1) Dirac spin liquid towards a pinwheel (PW) VBC order
with a 2 × 2 expanded, i.e., 24-site unit cell [5,13], which
emerges as the lowest-energy variational state, in contrast to
the findings in Ref. [13] which claimed for the stabilization
of a loop-6 (L6) VBC (see also Fig. 2). An unconstrained
mVMC optimization of the BCS pairing function starting
from a random choice of pairing amplitudes is also found
to converge to a long-range dimer-ordered ground state with
a PW-VBC type structure, as revealed from the dimer-dimer
correlation functions. These findings are further corroborated
by a PFFRG analysis of the dimer-response functions. The
estimates of the ground-state energy on finite clusters ob-
tained within VMC by the application of a couple of Lanczos
steps to the PW-VBC state supplemented by a zero-variance
extrapolation, as well as those obtained from mVMC are
found to be in excellent agreement. The respective estimates
in the thermodynamic limit obtained by finite-size scaling
are in good agreement with those obtained from our infinite
projected entangled pair state (iPEPS) and pseudo-Majorana
functional renormalization group (PMFRG) calculations, thus
lending strong evidence in favor of a PW-VBC ground state

of the S = 1/2 Heisenberg antiferromagnet on the shuriken
lattice.

Results. We start by employing fermionic VMC [14] to
investigate the possible presence of magnetically ordered
ground states with two different periodicities: (i) a transla-
tionally invariant, i.e., q = 0 state [see Fig. 1(a)] and (ii) the
so-called

√
3 × √

3 state [see Fig. 1(b)]. Details on the form
of the variational wave functions are given in the Supplemen-
tal Material (SM) [7] (see also Refs. [15–31]). The Zeeman
field variational parameter hAF extrapolates to zero in the
thermodynamic limit [see Fig. 1(c)], indicating the absence
of long-range magnetic order in the ground state. Additional
evidence is provided by mVMC calculations (see SM [7] and
also Refs. [32–39]), in which the sublattice magnetization m2

is computed by evaluating the spin-spin correlation 〈Ŝi · Ŝ j〉
at maximum distance (for two spins i, j within the same sub-
lattice) [40], where 〈· · · 〉 denotes the expectation value over
the variational state |φpair〉 [7]. The sublattice magnetization is
seen to display a similar size scaling as the hAF parameter of
VMC [see Fig. 1(d)], thus confirming the absence of magnetic
order. These results are further corroborated by a PFFRG
analysis (see SM [7] and Refs. [41–62]) which does not find
in the RG flow any evidence for a divergence or a breakdown
of the susceptibility at the ordering wave vectors of either the
q = 0 or

√
3 × √

3 orders [see Fig. 1(e)].
Thus, having established the paramagnetic character

of the ground state, we proceed towards deciphering its
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FIG. 2. Two competing dimer orders, (a) PW-VBC and (b) L6-
VBC on the shuriken lattice. Both dimer states are eightfold
degenerate. (c) The evolution of the energy per site during a typical
VMC optimization for the VBCs, here shown for Hamiltonian (1)
on the L = 20 cluster. The inset shows the finite-size scaling of the
energy gain of the PW-VBC state with respect to the U(1) DSL.

nature. To this end, we construct a family of fully symmetric
and chiral fermionic mean-field Ansätze with a U(1) gauge
structure based on a symmetry classification of flux patterns.
These Ansätze are completely determined by specifying the
fluxes threading three distinct plaquettes within the unit cell
of the lattice: vertically oriented triangles (��), horizon-
tally oriented triangles (��), and squares (��). Henceforth,
we label the mean-field Ansätze by specifying the flux triad
(��,��,��). We obtain four distinct fully symmetric U(1)
spin liquids (see Table I and SM [7]), and several chiral
states out of which we focus only on those with a π/2 flux
through triangles. In Table I, we present the energies of the
(self-consistent) mean-field and Gutzwiller-projected wave
functions for these states. At the mean-field level, the chiral
( π

2 , π
2 , π ) state has the lowest energy, in complete compliance

with the Rokhsar rules [63,64]. However, after Gutzwiller
projection, the chiral spin liquid is no longer energetically
competitive, and the (0,0,0) flux uniform Ansatz featuring
a spinon Fermi surface (SFS) emerges as the lowest-energy
spin-liquid state, followed by the (0, 0, π ) state which is a
U(1) Dirac spin liquid (DSL). Since, in two spatial dimen-
sions, the U(1) SFS and DSL are potentially susceptible to
gap opening instabilities [65,66], we investigate their poten-
tial instability towards previously proposed VBC candidates
[5,13].

A quantum dimer model treatment of (1), truncated to
a minimal nearest-neighbor valence bond basis, identified
a PW-VBC with C4 symmetry and loop-4 resonances [5]
[see Fig. 2(a)]. This picture was subsequently challenged in

TABLE I. For Hamiltonian (1), we present the mean-field (MF)
and Gutzwiller-projected (proj.) ground-state energy per site (in units
of J) on the 4 × 4 × 6 cluster for the different fully symmetric (FS)
and chiral U(1) quantum spin liquid Ansätze (see Fig. S4 of SM
[7]) labeled by the flux triad (��, ��, ��) (see text), as well as
dimer states. The (π, 0, 0) and (π, 0, π ) Ansätze have extensively
degenerate levels at half filling which prevents a computation of their
energy (as the wave function cannot be uniquely defined).

Ansatz Fluxes MF energy Proj. energy MF spectrum

FS (0,0,0) −0.36570 −0.42714(2) Fermi surface
(0, 0, π ) −0.38388 −0.41720(3) Dirac points
(π, 0, 0) −0.36657 Flat band
(π, 0, π ) −0.37130 −0.41362(3) Fermi surface

Chiral ( π

2 , π

2 , 0) −0.35041 Flat band
( π

2 , π

2 , π ) −0.39803 −0.40489(3) Gapped
( π

2 , − π

2 , 0) −0.38040 −0.38702(4) Fermi surface
( π

2 ,− π

2 , π ) −0.36123 −0.40205(3) Fermi surface
Dimer L6-VBC −0.41013 −0.43009(1) Gapped

PW-VBC −0.40623 −0.43333(1) Gapped

Ref. [13] by a L6-VBC with loop-6 resonances [see Fig. 2(b)]
when accounting for a basis beyond nearest-neighbors. In
particular, it was argued that the virtually excited long-range
singlets that are induced around defect triangles lead to an
enhancement of loop-6 resonances compared to loop-4, help-
ing stabilize the L6-VBC in lieu of the PW-VBC [13]. Here,
we investigate the energetic competition between PW-VBC
and L6-VBC orders within VMC and mVMC wherein the
effect of quantum fluctuations is captured via the Gutzwiller
projector. To construct variational VBC states within VMC,
we consider each of the symmetric spin-liquid Ansätze listed
in Table I, and allow the hopping amplitudes to take different
values according to the dimer pattern of the strong/weak
symmetry inequivalent bonds within the 24-site VBC unit
cells [67]. Our study reveals that while the SFS spin liquid
remains robust to both these VBC perturbations, the U(1)
Dirac spin liquid destabilizes towards both these VBCs, with
the PW-VBC yielding a lower energy [see Fig. 2(c) and
Table I]. It is interesting to note that at the self-consistent
mean-field level the L6-VBC has a lower energy compared to
the PW-VBC, but the relative hierarchy is inverted in favor
of the PW-VBC once the Gutzwiller projector is enforced
within VMC, highlighting the role of quantum fluctuations
in resolving the delicate competition of these two dimerized
states. Furthermore, VMC calculations show that the energy
gain of the PW-VBC relative to the U(1) Dirac spin liquid
remains finite in the thermodynamic limit [see the inset of
Fig. 2(c)] indicating the size consistency of the PW-VBC
state, thereby lending support to it being a stable variational
ground state in the thermodynamic limit. The energy of the
PW-VBC Ansatz is found to be lower compared to the SFS
spin-liquid state, thus representing the optimal wave function
within our VMC calculations.

To obtain competitive wave functions within mVMC, we
impose a 2 × 2 unit cell periodicity on the parameters of
the variational state |φpair〉. The properties of the optimized
wave function are assessed by measuring the dimer-dimer cor-
relation function χD

b,b′ = 〈D̂bD̂b′ 〉 − 〈D̂b〉〈D̂b′ 〉 for all pairs of
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FIG. 3. (a) Dimer-dimer correlations between the base bond (between sublattice B and C sites [7]), marked by a black dotted line, and
other bonds measured within mVMC on the L = 8 cluster. Solid red (dashed blue) lines represent positive (negative) correlation values. An
analogous figure with the base bond on the side of a triangle can be found in SM [7]. (b) Long-range correlations between the base bond and
other bonds labeled by α. Only correlations between the (0,0) and (2n, 2m) unit cells are shown due to the alternating 2 × 2 pattern in bond
correlations. (c) Infinite-volume extrapolation of the largest eigenvalues of χD. (d) The dominant eigenvectors of χD: Red bonds are positive,
while blue are negative and other bonds are zero. In the middle of each drawing, the high-symmetry momentum of the representation is shown,
as well as the corresponding irreducible representation label of the D4 point symmetry group.

bonds in the system, 0 � b, b′ < Nbonds, where D̂b = Ŝi · Ŝ j ,
with i, j being sites at ends of the bond b. In Fig. 3(a), we
show the dimer-dimer correlations between the base (square)
bond and other bonds lying within few unit cells, which dis-
play the characteristic pinwheel structure found also within
VMC. To carry out a quantitative assessment of the VBC
character of the ground state, we need to define suitable scalar
order parameters to perform an infinite-volume extrapolation
of the dimer order. Thus, we regard χD

b,b′ as a matrix in
the bond indices and we diagonalize it; the resulting set of
eigenvalues/eigenvectors pairs (λ, Aλ

b) is used to define the
operators Ôλ = ∑

b Aλ
bD̂b, each of them corresponding to a

certain momentum and irreducible representation of the lattice
point group. The tendency to establish a finite expectation
value of one of these operators, and thus spontaneously break
the corresponding lattice symmetry, is measured by the sus-
ceptibility χÔλ

= 〈Ô†
λÔλ〉 − 〈Ô†

λ〉〈Ôλ〉 = λ extrapolated to
thermodynamic limit [68].

This extrapolation requires a knowledge of the order pa-
rameter scaling law. We argue that 1/L2, i.e., inverse-volume
scaling, is a suitable choice. To check that, in Fig. 3(b) we
show long-range behavior of correlations between the base
bond [BC in the (0,0) unit cell] and bonds in the other
unit cells with the bond within the unit cell labeled by α

[see Fig. 3(d)]. We observe that (i) the correlator saturates
almost immediately with distance, suggesting exponential
decay finite-range corrections to correlations, and (ii) cor-
relations between the base bond and bonds with different
α converge to different and finite values, which paves the
way to finite susceptibility χÔλ

for some symmetry-breaking
operator Ôλ.

In Fig. 3(d), we depict the leading eigenvectors of χD
b,b′

and in Fig. 3(c) show the infinite-volume extrapolation of
the corresponding eigenvalues λ (i.e., of the susceptibilities
χÔλ

). We observe that the susceptibilities corresponding to the

Aπ,π
1 and Aπ,π

2 irreducible representations, which are reflective
of the PW-VBC phase symmetry structure, clearly extrapolate
to finite values, while the Bπ,π

1 irreducible representation sus-
ceptibility indicating a L6-VBC phase structure is found to
vanish (within error bars) in the thermodynamic limit.

We also probe, within PFFRG, the tendency towards PW-
VBC and L6-VBC symmetry-breaking patterns, and observe
that although the dimer-response functions for these two or-
ders get enhanced under RG flow indicating dimerization,
they are of similar magnitude [7]. The absence of a categorical
identification of the dimerization tendency within PFFRG is
rooted in the fact that one does not take into account higher-
point vertex functions which ultimately seem to prove decisive
in accurately resolving the delicate competition between the
two VBC candidates.

Having established, from both VMC and mVMC, that the
ground state of the system possesses long-range dimer order,
we discuss other static quantities, namely the extrapolation
of the ground-state energy, reported in Fig. 4, and the equal-
time spin structure factor, shown in Fig. 5. Within VMC, an
improved estimate of the ground-state energy on finite clus-
ters can be achieved by applying a few Lanczos steps to the
variational state (here the PW-VBC), and performing a zero-
variance extrapolation [15,27–31]. The resulting estimate of
the ground-state energy is found to be equal (within three
error bars) with the mVMC energies on the L = 4, 6, and 8
clusters. Furthermore, the finite-size scaling estimates of the
thermodynamic ground-state energy from VMC and mVMC,

E∞
mVMC = −0.436 96(17), E∞

VMC = −0.437 30(13) (2)

are equal within two error bars and in excellent agreement
with that obtained from iPEPS (see SM [7] and Refs. [69–81])
and consistent with PMFRG (see SM [7] and Refs. [82–85])
at finite temperature directly in the thermodynamic limit. Fi-
nally, the (equal-time) static spin structure factor S(q) [7]
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FIG. 4. The ground-state energies on the L = 4, 6, and 8 clusters
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finite-size scaling. The blue star denotes the exact diagonalization
(ED) energy on the D4 symmetric 6 × 22 cluster, and the iPEPS
energy (obtained by a quadratic fit for the three largest bond dimen-
sions) is marked by a horizontal dashed line [7].

for the PW-VBC ground state obtained from both VMC
and mVMC approaches is shown in Fig. 5. One observes a
diffused distribution of intensity along the extended Brillouin
zone boundaries. We observe that within VMC the estimate of
the ground state S(q) obtained by applying two Lanczos steps
on the bare PW-VBC wave function displays soft maxima in
close vicinity to the pinch points [Fig. 5(a)] seen in a large-
N analysis (Fig. S2 of SM [7]) in conformity with mVMC
[Fig. 5(b)].

Conclusions. We have employed state-of-the-art numerical
quantum many-body methods to provide compelling evidence
that the ground state of the S = 1/2 Heisenberg antiferromag-
net on the shuriken lattice features long-range dimer-order
breaking translational invariance, i.e., a VBC. Combining the
two variational methods, (i) VMC with a priori given dif-
ferent QSL and VBC Ansätze, and (ii) mVMC involving an
unconstrained optimization of the projected-BCS wave func-
tion, we have revealed a consistent picture of a VBC with a
pinwheel structure of correlations as inferred from a compre-
hensive analysis of the dimer-dimer correlation function. This
finding is at variance with that obtained within an extended

−8π −4π 0 4π 8π
−8π

−4π

0

4π

8π

−8π −4π 0 4π 8π
−8π

−4π

0

4π

8π

0

1

2

3

4

(a) VMC (b) mVMC

FIG. 5. The static (equal-time) spin structure factor S(q) ob-
tained within (a) VMC and (b) mVMC on the L = 8 cluster. The
solid (dashed) white lines mark the first (extended) Brillouin zones.

(beyond nearest-neighbor valence bond basis) quantum dimer
model framework which argued for a loop-6 VBC [13]. Given
that KCu6AlBiO4(SO4)5Cl [3] realizes a gapless spin liquid,
and consideration of a generalized model with J� 	= J� and
further neighbor couplings fails to reproduce the neutron scat-
tering profile as shown in Ref. [3], possibly hints at the role
of non-negligible Dzyaloshinskii-Moriya interactions at play,
and the investigation of these interactions would constitute
an important future direction of research. Finally, given that
(lattice) nematic topological quantum spin liquids have been
proposed as competitive Ansätze [11], a projective symmetry
group classification [18] of fermionic mean-field Ansätze of
symmetric and nematic Z2 spin liquids, and a subsequent
analysis of the energies and correlation functions of the corre-
sponding Gutzwiller-projected spin states would constitute an
important direction for future investigations.
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