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We present the results of a study of the vortex lattice in the heavy fermion superconductor CeCu2Si2, using
small-angle neutron scattering (SANS). In this material at temperatures well below Tc ∼ 0.6 K, the value of
the upper critical field Bc2 ∼ 2.2 T is strongly limited by the Pauli paramagnetism of the heavy fermions. In
this temperature region, our SANS data show an increase in the magnetization of the flux line cores with
field, followed by a rapid fall near Bc2. This behavior is the effect of Pauli paramagnetism and we present a
theory-based model, which can be used to describe this effect in a range of materials. The pairing in CeCu2Si2

appears to arise from the effect of magnetic fluctuations, but the evidence for a d-wave order parameter is
rather weak. We find that the vortex lattice structure in CeCu2Si2 is close to regular hexagonal. There are no
phase transitions to square or rhombic structures; such transitions are expected for d-wave superconductors and
observed in CeCoIn5; however, the temperature dependence of the SANS intensity indicates that both large and
small gap values are present, most likely due to multiband s-wave superconductivity, rather than a nodal gap
structure.

DOI: 10.1103/PhysRevB.104.184508

I. INTRODUCTION

CeCu2Si2 was the first example of a heavy fermion su-
perconductor [1], where the many-body interactions strongly
renormalize the electronic properties. The low-temperature
physical properties are very sensitive to extremely small
changes in the stoichiometry [2]. This means that with minor
variations in the Cu content, samples that are antiferromag-
netic (A-type), superconducting (S-type), or both (A/S-type)
can be prepared. A stoichiometric CeCu2Si2 sample exhibits
both antiferromagnetic and superconducting properties (A/S-
type); a slight excess of copper gives an S-type sample.

Since the discovery of CeCu2Si2, it was clear that the
upper critical field (∼2 T) for the superconducting state is
lower than expected. This is usually an indication that the
superconductivity is not destroyed by the typical orbital mech-
anism, but instead by Pauli paramagnetic effects (PPE). The
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Pauli spin susceptibility acts to align unpaired spins parallel
to the applied magnetic field; this competes with the expected
antiparallel spin alignment for a Cooper pair in a singlet
superconductor [3]. If the contribution from the Pauli spin
susceptibility is large enough, this gives a low-temperature
paramagnetic limiting field BP = �/

√
2μB, which is below

the value Borb
c2 expected from the orbital mechanism. The

relative strength of the two mechanisms is described by the
Maki parameter, αM = √

2Borb
c2 /BP [4]. For conventional su-

perconductors, this has a value lower than 1; for CeCu2Si2,
αM = 9.5 [5] and the observed low-temperature value of Bc2 is
limited to a value ∼BP. Strong PPE are also expected to favour
the formation of a Fulde-Ferrell-Larkin-Ovchinnikov (FFLO)
spatially modulated superconducting state [6,7]. Direct proof
for this state remains elusive, but Kitagawa et al. [5] report a
proposed signature in their nuclear magnetic resonance mea-
surements in the high-field and low-temperature part of the
phase diagram.

Extensive transport and thermodynamic studies have been
undertaken on this compound, to study both the antifer-
romagnetic and the superconducting order parameters [8].
Inelastic neutron scattering results relate the superconducting
pairing energy to spin excitations, rather than phonons [2].
Angle-resolved resistivity measurements of Bc2 show a four-
fold oscillation in the critical field, suggesting a dxy symmetry
of the order parameter [9]. However, specific-heat measure-
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FIG. 1. Rocking curve in ω at 130 mK and 1.5 T for the reflection
labeled �A in the inset, which shows the diffraction pattern of the
vortex lattice in CeCu2Si2 obtained by summing ω and φ rocking
scans with the field applied along c. One pair of spots is aligned with
the crystal [100] direction.

ments point to the existence of two nodeless superconducting
gaps [10,11]. Several different theoretical models for the gap
structure have been put forward [12,13].

In this paper, we study the magnetic vortex lattice (VL)
in an S-type sample using small-angle neutron scattering
(SANS). In most superconductors, the neutron scattering in-
tensity from the vortex lattice decreases exponentially with
applied magnetic field, as the vortex cores come closer to-
gether. In CeCoIn5, the observed intensity increases towards
Bc2, before dropping rapidly just before Bc2 [14]. This anoma-
lous behavior is ascribed to PPE, which increase the relative
strength of the magnetization in the vortex cores. This has
been modelled by Ichioka and Machida [15] using self-
consistent microscopic calculations based on quasiclassical
Eilenberger theory. Much weaker anomalies are reported in
some other superconductors (TmNi2B2C [16], YBa2Cu3O7

[17]), and are thought to have the same origin. We now report
that CeCu2Si2 shows similar behavior to CeCoIn5, and present
a calculation-based model that captures the behavior in mate-
rials exhibiting PPE, without requiring numerically intensive
calculation.

II. VORTEX LATTICE ORIENTATION AND DISTORTION

In Fig. 1, there are six spots, with the strongest spots lying
along a [100]-type direction. CeCu2Si2 is tetragonal, so when
the magnetic field is parallel to c, two degenerate VL domain
orientations should be observed, at 90◦ to each other. How-
ever, in this image, it is clear that one domain is preferentially
favored; we have observed this in all of our experiments. The
second domain does exist, but is significantly weaker. We do
not have clear evidence as to why this arises; we postulate that
there is some small anisotropy between the [100] and [010]
directions, perhaps due to a small misalignment of the sample
with respect to the field, or related to the sample growth.

FIG. 2. (a) θ angle dependence of the opening angle β between
the bottom diffraction spot, which lies on the [110] direction, and
the bottom right spot. The data were obtained at 1.5 T and base
temperature. The curve is a fit to Eq. (9). The � point corresponds to
the average of all β angles measured at 40 mK. The � point at θ = 0◦

is the average of all α angles measured at 130 mK [Fig. 5(d)], and is
not included in the fit as it corresponds to a different VL orientation.
(b) Schematic of the setup where θ is the angle between the incoming
magnetic field and the c axis of the sample. (c) Diffraction pattern of
the vortex lattice in CeCu2Si2 obtained at θ = 30◦, 50 mK and 1.5 T.
(d) Field dependence of the opening angle α between the directions
[100] and �A at 130 mK. The green squares represent the anisotropy
measured in previous STM experiments [18].

In Fig. 2 we show measurements at 50 mK and 1.5 T of
the changes in the vortex lattice on rotating the c axis of the
sample with respect to the magnetic field by an angle θ about
the vertical axis [Fig. 2(b)]. Above θ = 5◦, the vortex lattice
changes its orientation from that in Fig. 1 to that in Fig. 2(c),
with two spots along the vertical [110]-type direction. With
this sample rotation, the vertical [110]-type direction remains
unchanged, but is distinguished from the horizontal direction,
which is now of type [HHL]. The reorientation of the VL
indicates that there is no strong locking of the vortex lattice
to the underlying crystal structure, and ac anisotropy plus
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rotation can drive the vortex lattice to a new orientation. This
indirectly supports the hypothesis that the superconducting
gap is not nodal, and is likely to be s wave.

At all tilt angles, the lattice is not quite a perfect hexagonal
shape, but instead a hexagon circumscribed by an ellipse. We
have characterized this distortion by measuring the angle β

between the bottom and bottom-right spots for 10◦ � θ �
45◦. Supposing that there is an effective mass anisotropy �

between the directions ⊥ and ‖ to the c axis, the data are fitted
to the expression [19]:

tan β =
[

3

�0(cos2 θ + � sin2 θ )

] 1
2

(1)

Here,
√

�0 = 1.06(2) allows for distortion of the hexagonal
lattice at θ = 0 by the fourfold crystal symmetry [20]. From
fitting the θ dependence we obtain

√
� = 1.40(7). In conven-

tional superconductors, the anisotropy of the upper critical
field is given by Bc2,c/Bc2,ab = √

� [21]. Values of upper
critical fields obtained from heat capacity measurements [11]
yield

√
� = 1.14 at low temperatures. However, these critical

fields are strongly Pauli limited and do not directly reflect the
anisotropy of coherence length. It appears more appropriate
to use the estimates for the orbitally-limited critical fields re-
ported in the same publication, which give

√
� = 1.47, close

to our result from VL distortion.
In Fig. 2(d), the angle α (defined in Fig. 1) measured at

130 mK shows little change with field, being close to regular
hexagonal, with a a small change in anisotropy at high field.
In a previous STM study, a big distortion was reported at
1.6 T [18]; however, we observe only a slight distortion of
the lattice near this field and nothing of the magnitude and
abruptness reported in the STM paper, perhaps because we are
observing the bulk, not the surface of the sample. The small
VL distortions we observe at high field may be linked to PPE
or even the proposed onset of the FFLO state [5], but are so
small that they rule out d-wave effects.

III. PAULI PARAMAGNETIC EFFECTS ON THE
MAGNETIC FIELD DISTRIBUTION

The magnetic field in the VL may be expressed as a sum of
Fourier components in q space,

B(r) =
∑

hk

F (qhk )eiqhk ·r. (2)

The magnitude of each Fourier component |F (qhk )|, often
called the “form factor”, is extracted from the measured inte-
grated intensity I (qhk ) of the vortex lattice Bragg peaks using
the Christen formula [23]:

I (qhk ) = 2πV φn

(γ

4

)2 λ2
n

�2
0 qhk cos(ζ )

|F (qhk )|2, (3)

where V is the sample volume, φn is the flux of neutrons of
wavelength λn, γ is the magnetic moment of a neutron, �0

is the flux quantum, qhk is the magnitude of the scattering
vector, and cos(ζ ) is the Lorentz correction, where ζ is the
angle between the reciprocal lattice vector q and the direction
perpendicular to the sample rotation axis.

FIG. 3. (a) Field dependence of the squared form factor calcu-
lated from the first order diffraction spots with a well-defined rocking
curve, for temperatures between 40 mK and 350 mK. The symbol
(	) corresponds to the data obtained at ILL in 2016, (◦) corresponds
to data obtained at ILL in 2018, and (�) data were obtained at PSI
in 2018. � data were measured with the sample rotated away from
the B ‖ c orientation [see Fig. 2(a)] but the integrated intensity is not
affected by this change, as we can observe from the points at 1.6 T,
250 mK and 130 mK, that match with measurements from other
experiments. The cyan arrow corresponds to the value of Bc2(T ) for
T = 350 mK and the wide black arrow covers all the upper critical
fields for T = 40, 130, and 250 mK obtained from Ref. [5]. Solid
lines are guides for the eye and the crossing of the lines is not real
[simulated dependence at low fields shown in Fig. 4(a)]. (b) Com-
parison between the normalized squared form factor of CeCu2Si2 at
40 mK and CeCoIn5 at 50 mK [22]. The lines are the results of fits
using a model for PPE described in the next section.

In Fig. 3(a), we show the field dependence of the
form factor of the first order reflections from the VL at
T = 40, 130, 250, and 350 mK. For these measurements, B ‖
c except at 40 mK, where there is an offset of 28 degrees [see
Fig. 2(a)]. As shown in Fig. 3(a) this does not appear to affect
the observed intensities. The form of the field-dependence
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changes with temperature, with PPE visible over almost the
entire field range. In general, the form factor rises up to a
maximum, and then begins to fall to zero on approaching Bc2,
indicating strong PPE. For 40 mK and 130 mK the intensity
falls steeply on reaching ∼2.1 T, showing a rapid variation on
approaching the normal state. At 250 mK the form factor in-
creases slightly with field, showing that PPE remain important
but we do not observe a sudden decrease near Bc2. Meanwhile,
at 350 mK the form factor is more constant as a function of
field, but falling towards zero at low and high fields.

This kind of behavior is also observed in CeCoIn5 [22] [see
Fig. 3(b)]. However in this material, a first order transition into
the normal state at Bc2 is clearly observed at low temperatures,
both in heat capacity and SANS. This is in contrast to the
second-order transition observed in CeCu2Si2, again both in
heat capacity [10] and in our SANS data.

In both materials, the field-dependence cannot be described
by the various standard models for the form factor associated
with vortex lattices. A brief discussion of such models is
therefore given in the Supplemental Material [24].

IV. MODELLING OF VORTEX CORE MAGNETIZATION
AND PPE

To better understand the behavior of CeCu2Si2 in the mixed
state, we have derived a physically-based algebraic expression
for the form factor in Pauli-limited superconductors, based on
the results of first-principles computation [15,25]. This shows
that Pauli-limiting leads to two effects: (i) additional spin
magnetization developing in the cores, and (ii) the core radius
growing with increasing field. One effect of the finite size of
the cores is that they will tend to suppress the form factor at
large q. This will apply both for the paramagnetic contribution
FPM and also the small contribution from orbital currents Forb

described in the Supplemental Material [24]. We represent this
by the Brandt model [26], with a Gaussian cut-off depending
on a now field-dependent coherence length ξPM and the value
of q:

F (B) = exp
( − cq2ξ 2

PM

)
(Forb(B) + FPM(B)), (4)

where the constant c is a parameter expected to have a value
between 0.25 and 0.5. A value for c of 0.42 was found in
YBa2Cu3O7 [27], and q2 is proportional to B by flux quan-
tization.

For the expansion of the core size by paramagnetic effects,
we take ξPM to vary quadratically with B at low fields and
linearly at high fields [25]:

ξ 2
PM(B, T ) = ξ 2

orb(T ) + ε

(
�0

2πBc2(T )

)(
B

Bc2(T )

)2

, (5)

where ξorb is the core size in the absence of PPE and Bc2(T )
is the experimental upper critical field at temperature T . The
Bc2(T ) factors have been included so that the fitting parameter
ε will be ∼1 and fairly temperature independent if ξPM is
comparable with the vortex spacing at B = Bc2(T ). ε can be
interpreted as a correction of the size of the core when PPE
are present.

For the value and temperature dependence of the core
size ξorb, we have to consider several effects. One length
scale is the BCS coherence length ξBCS(T ) = h̄vF /π�(T ).

As Kramer and Pesch pointed out [28], in clean type-II
materials the core contracts strongly at low temperatures:

ξorb(T ) ∼ ξBCS(T ) × T/Tc (6)

This is because �(r) is self-consistently determined by the
wave functions in the core of the occupied unpaired states,
and these are restricted to smaller r as the temperature is
lowered. If the material is not perfectly clean, the core shrink-
age stops below a temperature given by T/Tc < ξBCS/�. As
shown in the Supplemental Material [24], this ratio is ∼0.25.
We shall therefore use Eq. (6) to give the temperature de-
pendence of ξorb(T ) down to T = 0.25Tc, with a constant
multiplier below that temperature. We take ξBCS(T = 0) =
�0/2πBorb

c2 (T = 0), with the orbital-limiting field at zero tem-
perature given by Borb

c2 (T ) = Borb
c2 (0)

∑
i wi(�i(T )/�i(0))2,

assuming ξorb(T ) ∝ 1/�(T ) and where �i(T ) are the differ-
ent superconducting gaps present and wi are their respective
weights. At low field values, the increase in core size with
temperature will tend to increase the paramagnetic contribu-
tion to the form factor; however, at high fields the form factor
will drop due to the effect of the Gaussian cut off.

At T = 0, we expect the spin susceptibility outside the
cores to be zero so there will be a full magnetic contrast
between vortex cores and the remainder of the VL. Hence
the paramagnetic form factor will be proportional to the
core magnetization. This rises rapidly, proportional to mag-
netic field up to ∼0.1Bc2, but in the field range where we
have measured, it varies little with applied field [25] with a
value μ0M ∼ χnμ0Hc2 ∼ χnBc2, where χn is the normal state
Pauli susceptibility at T = 0. With increasing temperature,
the quasiparticles excited above � will increase M outside
the cores and decrease the contrast, while χn will remain
approximately constant. Assuming that � between the cores
is not strongly suppressed by field, the spin susceptibility in
this region is given by [29]

χs(T )

χn
=

∑
i

2wi

∫ ∞

0
dy

exp
[(

y2 + β2�2
i (T )

) 1
2
]

{
exp

[(
y2 + β2�2

i (T )
) 1

2
] + 1

}2

(7)
where β = 1/kBT and wi is the weight of a band (if multi-
band) having energy gap �i(T ). Hence the magnetization
contrast μ0δM in the VL becomes ∼[χn − χs(T )]Bc2. A cal-
culation of the fraction of normal fluid in the superconducting
state [30] gives the same integral as Eq. (7). Hence we can
write the contrast in terms of the superfluid fraction ρs(T )/ρ
to give μ0δM ∼ χnBc2 × ρs(T )/ρ. To calculate ρs(T ), we
need the temperature-dependence of the superconducting gap
function, which is taken as [30]

�i(T ) = �i(0) tanh

(
πkBTc

�i(0)

√
a
(Tc

T
− 1

))
, (8)

where �i(0) is the value of the gap at zero temperature. Some
quantities in this equation depend on the pairing state of the
superconductor: in the case of BCS isotropic s wave, �(0) =
1.76 kBTc and a = 1.

The Pauli paramagnetic contribution to the form factor
depends on the magnetization contrast, the area of a flux line
and the number of flux lines per unit area. Hence, apart from
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FIG. 4. (a) Field and (b) temperature dependence of the squared
form factor with the results of the fits using our model for param-
agnetic effects, with a single s-wave gap (dashed line) and two-gap
s-wave model (dotted line). For all fits λ(0) = 7000 Å [33].

the Gaussian core correction factor, we have

FPM(B, T ) = η

(
2πB

�0

)[(
ρs(T )

ρ

)
χnBc2(T )

]
ξ 2

PM(B, T ),

(9)
where the constant η is a fitting parameter expected to have a
value of ∼1 included for correcting any approximations made
for the magnetization in the core.

On the other hand, the orbital contribution to the form
factor [Eq. (S1), Ref. [24]] has a temperature dependence
from the London penetration depth, which can also be derived
from the superfluid fraction, ρs(T )/ρ = (λ(0)/λ(T ))2. The
orbital and the paramagnetic contributions [Eq. (9)] can then
be substituted into Eq. (4) to give an algebraic model to fit our
data as a function of field and temperature. Figure 4(a) shows
the fits versus field at various fixed temperatures, using a sin-
gle s-wave and a two-band s-wave model, with the latter using
the gap values and weights proposed in previous specific heat
measurements [10]. In Table I are given the fitting parameters

and the root-mean-square deviation between the curves and
the data. Both models capture the behavior up to the peak
quite well, but are unable to reproduce the sharp drop on the
approach to Bc2 at low temperatures. This could be due to a
suppression of � between the cores at high fields and low tem-
peratures, or it could be an effect of the FFLO state proposed
by Kitagawa et al. [5], as the FFLO state is expected to sup-
press the form factor [31,32]. The fitting parameters ε and η

give sufficient flexibility that the two models fit equally well.

V. TEMPERATURE DEPENDENCE OF THE INTENSITY
OF VORTEX LATTICE SIGNAL

In Fig. 4(b) we plot the temperature dependence of the
form factor of the first order reflections from the VL at B =
0.8 T (combined with points at 0.808 T) and 1.6 T (combined
with points at 1.616 T). Figure 4(b) also shows the fits using
the s-wave model at 0.8 T and 1.6 T, and the s + s-wave model
again using the values of the gaps and weights proposed by
Kittaka et al. [10]. The values of the fit parameters are in
Table I, including the root-mean-square deviation for each
fit. A two-gap model is required to fit heat capacity data in
this material [10,11]. For our SANS data, we find that the
two-gap model gives parameters that are less temperature
dependent and have better correspondence between field and
temperature scans. The rise in the 1.6 T form factor at low
temperatures seen in Fig. 4(b) cannot be reproduced by a
single-gap model, so we prefer the two-gap model, although
our fits do not enforce it.

VI. DISCUSSION

In this paper we have measured the field-dependence of
the form factor of the vortex lattice in CeCu2Si2, giving a
measure of the magnetization of the unpaired electrons inside
the cores, which is particularly important at high field and low
temperatures. The field- and temperature dependence of our
results sheds light on the effects of Pauli paramagnetism on
vortex core size and which gap model works best. The extent
of our investigations, and the underlying physics involved is
summarised in Fig. 5.

Our measurements of the field-dependence of the form
factor represent the second observation of Pauli paramagnetic
effects in a heavy-fermion material, after the observations
made in CeCoIn5 [14,22]. Unlike CeCoIn5, CeCu2Si2 does
not show a first-order transition to the normal state at high
fields. Both materials have some evidence supporting the
existence of a field-induced quantum critical point [34]. We
note that rather weaker effects due to the paramagnetism of
localised f electrons have also been observed in TmNi2B2C
[16].

Near Bc2 at low temperatures the observed intensity drops
faster than expected. One possible explanation for this could
be that the material enters the postulated FFLO phase, which
would suppress the form factor (see Fig. 3 b in Ref. [31]
and Fig. 5 in Ref. [32]). This observation also matches with
previous NMR studies [5] in which an enhancement of 1/T1T ,
observed just below the upper critical field is taken as evidence
for the FFLO state (see Fig. 5). We see in Fig. 4(a) that the
maximum peak intensity is shifted towards the upper critical
field for decreasing temperature, suggesting a major contribu-
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TABLE I. Parameters resulting from the fits and the root-mean-square deviations for field scans in Fig. 4(a) and temperature scans in
Fig. 4(b). For the s-wave fit, we used the value �(0) = 1.76 kBTc, and for the s+s wave the two values of the superconducting gaps were
�1(0) = 1.76 kBTc and �2(0) = 0.7 kBTc, with weights w1 = 0.65 and w2 = 0.35 as given by the heat capacity data in [10]. In all cases, we
fixed c = 0.42.

s-wave: field scans at constant temperature

T (mK) η ε RMSD (10−8)

40 1.17(4) 0.78(5) 3.23
130 1.01(2) 0.74(4) 1.83
250 0.80(2) 0.82(9) 2.26
350 0.75(4) 1.0(1) 1.24

(s + s)-wave: field scans at constant temperature

T (mK) η ε RMSD (10−8)

40 1.17(4) 0.78(5) 3.23
130 1.08(2) 0.74(4) 1.87
250 1.00(3) 0.8(1) 2.39
350 1.01(6) 1.1(1) 1.34

s-wave: temperature scans at constant field

B (T) η ε RMSD (10−8)

0.8 0.7(2) 2(1) 1.19
1.6 1.5(5) 1.8(5) 2.72

(s + s)-wave: temperature scans at constant field

B (T) η ε RMSD (10−8)

0.8 1.5(6) 0.6(4) 1.45
1.6 1.10(3) 0.8(2) 2.11

tion from PPE close to Bc2, before entering the FFLO state,
which then decreases the intensity abruptly.

FIG. 5. B-T phase diagram for superconductivity in CeCu2Si2

with B ‖ c. The different colors highlight the BCS region and where
the Pauli paramagnetism is dominant at low temperatures and high
fields and the FFLO region appearing close to the upper critical field
at low temperatures. The dashed line indicates the limit of the FFLO
region proposed by NMR studies [5]. Arrows show the field- and
temperature scans covered by the SANS experiments. Shaded points
show the highest field or temperature at which the vortex lattice was
visible in each scan. The black line represents the upper critical field
Bc2 as a function of temperature for B ‖ c with the green-solid points
representing experimental data obtained by ac susceptibility [5].

In our material, the flux lattice remains close to regular
hexagonal for all fields [Fig. 2(b)] and no square to hexagonal
transition is observed. This might be explained by a destabil-
isation of the square lattice due to Pauli paramagnetic effects
[35], but more likely is the effect of an s-wave pairing as is
discussed in Ref. [18]. In addition to these considerations,
our measurements indicate a fully gapped s-wave model or
preferably s + s multigap behavior, which is also supported
by heat capacity measurements [10,11]. For that reason we
propose that CeCu2Si2 is a two-band s-wave superconductor.

In conclusion, we have performed small-angle neutron
scattering measurements on the vortex lattice in CeCu2Si2

applying a magnetic field at various temperatures below Tc

and concluded that our results are consistent with two-band
s + s-wave superconductivity. Pauli paramagnetic effects are
clearly observed in the field dependence of the form factor,
and we have proposed a model to fit these results. The de-
crease in the VL signal intensity immediately below Bc2 at low
temperatures could be a further indication of the existence of
the FFLO state in this heavy-fermion superconductor.

VII. METHODS

The S-type sample used here is the same as that used
in Ref. [2], with volume 6 × 6 × 8 mm3 and a total mass
of 2.014 g. It has a critical temperature of Tc ≈ 0.6 K and
an upper critical field Bc2(0) ≈ 2.2 T [2]. Its low resistivity
indicates a high-quality sample with electron mean free path
longer than the superconducting coherence length (see Sup-
plemental Material [24] for details).
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Our neutron measurements were carried out in several ex-
periments at the D33 instrument of the Institut Laue-Langevin
(ILL) [36,37], and the SANS-I instrument at the Swiss spalla-
tion neutron source SINQ, Paul Scherrer Institute (PSI). In the
Supplemental Material [24], details are given of the individual
experiments and the different data symbols used for results
from each.

The vortex lattice was prepared by cooling the sample
through Tc to base temperature, while oscillating the field
value by ∼±1% of the desired final value, which was held
constant after cooling; this improves the perfection of the VL.
After that, the sample and the cryomagnet could be rotated
together about two perpendicular axes passing through the
sample: ω about the vertical axis or φ about the horizontal
axis perpendicular to the field. As the angle between the
incoming neutron beam and the magnetic field was varied,
the VL planes passed through the Bragg condition, giving a
“rocking curve” of intensity of a diffraction spot, as shown in
Fig. 1. Background data were measured with either T > Tc or

B > Bc2 at the same rotation angles, and subtracted to give VL
diffraction patterns, such as that shown in the inset of Fig. 1.
Integrated intensities for the VL Bragg peaks were extracted
from the rocking curve data using a Bayesian analysis proce-
dure implemented in GRASP [38,39].
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