
Journal of Power Sources Advances 7 (2021) 100042
Contents lists available at ScienceDirect

Journal of Power Sources Advances

journal homepage: www.journals.elsevier.com/journal-of-power-sources-advances
Impact of catalyst layer morphology on the operation of high temperature
PEM fuel cells

N. Bevilacqua a, T. Asset b, M.A. Schmid a, H. Mark€otter c,d, I. Manke c, P. Atanassov b, R. Zeis a,*

a Karlsruhe Institute of Technology (KIT) Helmholtz Institute Ulm (HIU), Helmholtzstraße 11, 89081, Ulm, Germany
b Department of Chemical and Biomolecular Engineering National Fuel Cell Research Center University of California, Irvine, CA, 92697, USA
c Helmholtz-Zentrum Berlin für Materialien und Energie (HZB), Hahn-Meitner-Platz 1, 14109, Berlin, Germany
d Bundesanstalt für Materialforschung und -prüfung (BAM), Unter den Eichen 87, 12205, Berlin, Germany
A R T I C L E I N F O

Keywords:
High-temperature polymer electrolyte
membrane fuel cell
Platinum-free catalyst
Mass transport
Oxygen reduction reaction
Distribution of relaxation times analysis
Electrochemical impedance spectroscopy
* Corresponding author. Institute of Technology
E-mail address: roswitha.zeis@kit.edu (R. Zeis).

https://doi.org/10.1016/j.powera.2020.100042
Received 31 July 2020; Received in revised form 1
2666-2485/© 2020 The Authors. Published by Else
nc-nd/4.0/).
A B S T R A C T

Electrochemical impedance spectroscopy (EIS) is a well-established method to analyze a polymer electrolyte
membrane fuel cell (PEMFC). However, without further data processing, the impedance spectrum yields only
qualitative insight into the mechanism and individual contribution of transport, kinetics, and ohmic losses to the
overall fuel cell limitations. The distribution of relaxation times (DRT) method allows quantifying each of these
polarization losses and evaluates their contribution to a given electrocatalyst's depreciated performances. We
coupled this method with a detailed morphology study to investigate the impact of the 3D-structure on the
processes occurring inside a high-temperature polymer electrolyte membrane fuel cell (HT-PEMFC). We tested a
platinum catalyst (Pt/C), a platinum-cobalt alloy catalyst (Pt3Co/C), and a platinum group metal-free iron-ni-
trogen-carbon (Fe–N–C) catalyst. We found that the hampered mass transport in the latter is mainly responsible
for its low performance in the MEA (along with its decreased intrinsic performances for the ORR reaction). The
better performance of the alloy catalyst can be explained by both improved mass transport and a lower ORR
resistance. Furthermore, single-cell tests show that the catalyst layer morphology influences the distribution of
phosphoric acid during conditioning.
1. Introduction

PEMFCs have been extensively researched over the last years [1,2].
They hold promises to become a clean and compact electricity source for
stationary to mobile applications. However, to achieve this goal, several
challenges should be resolved. They range from managing the water at
high current densities to the need for high purity gases, as impurities
significantly affect the PEMFC performance, increasing their operating
costs [3,4]. Operating PEMFCs above 120 �C overcomes many of these
disadvantages as it eliminates liquid water from the system, therefore
simplifying the water management, which reduces the complexity of the
system.

Furthermore, the electrode kinetics are to be potentially faster. This
effect is slightly compromised by the change in Gibbs free energy, which
decreases linearly with increasing temperature. The elevated tempera-
tures enable the system to run on steam reformates, as impurities (e.g. CO
up to 3% in the anode gas stream) do not drastically impact the cell
performance [5,6].
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High-temperature PEMFCs (HT-PEMFCs) are usually operated at
160 �C. The proton conductivity of the conventional membrane,
Nafion®, is reduced due to insufficient membrane hydration, induced by
the absence of liquid water. Thus, HT-PEMFCs utilize a different proton-
conducting membrane, namely phosphoric acid (H3PO4)-doped poly-
benzimidazole (PBI). In the catalyst layer, the liquid phosphoric acid
conducts the protons to the reaction sites. Thus, the distribution of
phosphoric acid inside the catalyst layer is vital for the triple-phase
boundary and is key for the performance of the cell. Although various
groups studied this issue in the past decade, it still requires a better un-
derstanding to achieve dynamic control of the triple-phase boundary
[7–11]. The performance of the cell is further influenced by the catalytic
activity of the cathode catalyst, where the oxygen reduction reaction
(ORR) occurs. To improve its rate, platinum electrocatalysts (e.g.
carbon-supported Pt nanoparticles, the state-of-the-art PEMFC cathode
electrocatalyst) are often replaced by platinum-alloys, aiming to increase
the ORR intrinsic activity through the strain-ligand and/or coarsening
effects to reduce thereby the amount of the expensive platinum inside a
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fuel cell [12–15]. Alloying platinum with 3d transition metal, such as
nickel or cobalt, has proven to deliver the most significant improvement.
For example, the Pt3Co particles exhibit a Pt-rich surface layer with a
reduced interatomic distance, which results in a modification of the Pt
electronic structure and, thus, a decreased binding strength of the oxygen
intermediate onto the catalytic surface. Furthermore, the non-noble part
of the catalyst leaches out during operation, creating a rough catalyst
surface. All these increase the reaction rate and the performance of the
cell [15,16].

Further alternatives for conventional platinum catalysts are carbo-
naceous materials doped with atomically dispersed catalyst sites, often
referred to as iron-nitrogen-carbon (Fe–N–C), which present the advan-
tage being free of expensive and rare platinum group metals (PGMs). The
electrode structure of the PGM-free catalyst has been thoroughly inves-
tigated by several groups [17–21]. They consist of a carbonaceous
structure, composed of graphitic and amorphous domains with various
types of moieties, either metal-free (e.g. pyridinic nitrogen, pyrrolic ni-
trogen, graphitic nitrogen, etc.) or M-Nx, the activity of which greatly
depends on their coordination and their position in the carbon network.
It is, however, often accepted that the M-N-C electrocatalysts should be
designed while considering the M�N4 moieties as the primary catalytic
site for the ORR in PEMFCs, as they are usually found in-plane, in the
mesopores and thus easily accessible, even in a solid electrolyte [22], by
opposition to sites (e.g. Fe–N2þ2, N–Fe–N2þ2) which are present in the
micropores and thus, exhibit low accessibility [21,23–26]. Notably, the
oxygen diffusion in this type of catalyst is inhibited. Increased back-
pressure significantly boosts the performance of the cell, which indicates
a mass transport issue [27]. During their operation in an HT-PEMFC, the
reactants and reaction products need to be transported to and from the
in-plane defects and, thus, navigate through the Fe–N–C complex network
of meso (2–50 nm) and microporosities (<2 nm), hence requiring those
defects to be in contact with the proton carrier, the viscous H3PO4. This
process can be expected to inhibit the utilization of the catalyst sites,
especially when considering that in conventional PEMFCs, Nafion® mi-
celles with an average micelle size of 30 nm will also prevent proton
transport in the smallest porosities [28]. This specific aspect is expected
to be far less of a limitation when addressing PGM-group electrocatalysts,
as the nanoparticles, ranging from 2 to 3 nm for pure-Pt and Pt-alloys to
several dozens of nm for complex nanostructures, (e.g. Pt-based hollow
nanoparticles [29], nanoframes [30], octahedra [31]) are far less likely to
anchor/nucleate in the smallest porosities and are thus readily available
for the reaction, exhibiting a lower transport resistance. However, the
catalyst layer morphology plays a role in mass transport (MT) and Oxy-
gen reduction reaction (ORR). Therefore it decisively influences the
performance of the cell.

MT also includes the transport of protons to the reaction sites. Thus,
the reaction sites need to be in contact with phosphoric acid to contribute
to cell performance. An ideal wetting of the carbon support would
include the smallest porosities, no flooding, and a thin film over the
whole carbon support to optimize MT to the active sites. The proton
conduction in the cathode is visible in the DRT spectrum of a HT-PEMFC
[32]. Thus, different wetting behavior in catalysts with varying pore sizes
can be observed using DRT.

X-ray tomographic methods were applied to investigate water trans-
port in conventional PEMFCs to resolve MT phenomena in conventional
PEMFCs [33]. These methods have been optimized over the years, and
operando X-ray micro-computed tomography has been used to under-
stand the water transport in Fe–N–C catalysts [34,35]. As the resolution
of these techniques is insufficient to resolve the phosphoric acid distri-
bution in nanometer-scaled pores of HT-PEMFC catalyst layers, operando
X-ray micro-computed tomography is limited to a larger scale transport
ways, such as cracks in the layered structure [36].

Several electrochemical impedance spectroscopy (EIS) studies on HT-
PEMFCs were discussed in the literature [6,37–40]. They all found that
hampered mass transport (MT) is responsible for severe polarization
losses of the cell. To separate and quantify the different processes
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occurring inside the HT-PEMFC (i.e. reactant transport through the
membrane or the porous network, charge transfer, etc.), we implemented
the distribution of relaxation times (DRT) method, hence increasing our
understanding of the cell's limitations. DRT has also been applied to
analyze impedance spectra of other electrochemical systems such as solid
oxide fuel cells by Schichlein et al. [41] and lithium-ion batteries [42].
Cuicci and Chen [43] developed a model to investigate the impedance
spectra of PEMFCs, and Heinzmann et al. evaluated a conventional
PEMFC [44]. A comprehensive overview of the development and appli-
cation of the DRT method is presented by Dierickx et al. [45].

In our study, we allocated characteristic peaks of the spectrum to
specific processes in a HT-PEMFC by varying the operating parameters of
the cell. A typical fingerprint pattern is found for HT-PEMFCs equipped
with various catalysts, which allows a direct comparison between cells
[46]. Yezerska et al. [47] applied DRT analysis to artificially corroded
catalysts to identify side-reactions. The spectrum of a low-temperature
PEMFC shows unique characteristics different from those of a
HT-PEMFC [44]. They mainly relate to the different morphology of the
catalyst layer (i.e. higher thickness, PTFE as a binder instead of Nafion®)
and the presence of phosphoric acid [32]. In this work, single-cell tests
were performedwithMEAs using various electrocatalysts. They belong to
different groups: state-of-the-art Pt/C, Pt3Co/C, and Fe–N–C. The cells
exhibit a substantial performance gap, which could be explained by
analyzing the impedance spectra coupled with DRT analysis. Further-
more, the results were linked to the morphology and the pore size dis-
tribution of the catalyst layers.

2. Experimental

2.1. Synthesis of the Fe–N–C catalyst

The Fe–N–C electrocatalysts were synthesized using the sacrificial
support method (SSM). Namely, the precursors (i.e. Fe(NO3)3�9H2O and
Nicarbazin, from Sigma, LM-150, from Cabot, Ox-50, from Evonik and
home-made St€ober Spheres) were mixed by wet impregnation overnight,
before drying at 45 �C, a ball-milling (30min, 45 Hz) and pyrolysis at
975 �C, for 45min, under 7% H2. The pyrolyzed material was ball-milled
(30min, 45 Hz) and etched in HF for four days to remove the silica (LM-
150, Ox-50, and St€ober Spheres). Following the etching, the material was
washed to neutral pH, dried, and pyrolyzed a second time, at 950 �C for
30min, under 10% NH3. The resulting electrocatalyst was ball-milled
(1 h, 45 Hz) and used for the following characterizations.

2.2. Gas diffusion electrode fabrication

The fabrication process of the GDE influences catalyst distribution
and needs to be optimized to obtain optimum performance [48,49].
Catalyst ink was prepared by mixing catalyst powder (Pt: 20 wt-% on
Vulcan XC-72, Heraeus®; Pt3Co: 30wt-% on carbon black (undisclosed
details), Tanaka; Fe–N–C: see above), IPA, and deionized water. The
weight ratio of catalyst powder, IPA, and deionized water was 1:16:16. A
60wt-% PTFE dispersion (TF 5060 GZ, 3M™ Dyneon™) was added as a
binder (7 wt-% of the dry electrode), and the dispersion was stirred for
2 h using a magnetic stirrer with a stir bar. The ink was subsequently
spray-coated layer by layer onto a commercially available gas diffusion
layer with a microporous coating (H2315–C2, Freudenberg®) at a tem-
perature of 80 �C to dry the solvents during the coating process. The ink
was sprayed using an airbrush system at an exuding pressure of 2 bar. The
metal loading amounts to 1 mgPt cm�2 in the Pt catalyst and 1 mgM cm�2

(M¼metal) in the case of the Pt3Co catalyst. The Fe–N–C catalyst loading
was 3mg cm�2 (number represents the total weight of the catalyst).
Catalyst loading was determined by weighing the dry gas diffusion
electrode (GDE) after spray-coating. A more in-depth explanation of the
GDE fabrication process was provided by Mack et al. [50,51]. The GDEs
were cut into squares with a surface area of 4 cm2 and laid on top of a
stainless steel bipolar plate with serpentine gas flow channels with a



Fig. 1. Performance evaluation by all applied techniques of three investigated catalysts types. a) HFR-corrected polarization curves displaying the cell voltage U versus
the applied current density j. b) distribution of relaxation times spectra. The frequency f is plotted versus the distribution function γ. c) Nyquist plots (real part Z0(f) vs.
imaginary part Z’‘(f)) of electrochemical impedance at the same operating conditions (λH2¼ 1.8, λO2¼ 2.0, j¼ 100mA cm�2) for DRT and EIS. Apex frequency for the
largest semi-circle is indicated with the label in the respective color. (For interpretation of the references to color in this figure legend, the reader is referred to the Web
version of this article.)
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width and depth of 1mm each. The torque applied to eight screws was 2
Nm. They were fit into place by a PTFE gasket with a thickness of 220 μm
to ensure that no gas is leaking and preventing cross-over. A PBI mem-
brane (Dapozol®M40, Danish Power Systems) was doped for 14–28 days
in concentrated phosphoric acid (85%, Normapur, VWR Chemicals) and
sandwiched between the gas diffusion electrodes. In each cell, the anode
was a standard Pt electrode with a loading of 1mgPt cm�2. This excess of
anode loading was used to ensure that no operational limitations origi-
nate from the anode and ensure that the cathodic processes can be
resolved without interference.
2.3. Cell operation

The conditioning of the assembled cells was achieved by heating
them to 160 �C in a nitrogen atmosphere using heat pads and subse-
quently supplying them with hydrogen (λH2¼ 1.8) and air (λAir¼ 2.0) at
ambient pressure (λ¼ stoichiometry). A current of 100mA cm�2 was
applied during the conditioning to ensure water production, which di-
lutes the phosphoric acid to facilitate proper acid distribution and to keep
the cell voltage at a non-corrosive potential. During activation, polari-
zation curves and impedance spectra were recorded after 2 h and every
24 h. After 120 h, each cell reached (or has already reached) a steady cell
voltage, and the activation was finished. After conditioning, operation
parameters were changed to monitor the response of the fuel cell. The
parameters were in all cases varied at least 30min before recording an
impedance spectrum and a polarization curve to give the system enough
time to equilibrate and to ensure that the EIS captures only steady-state
phenomena. Where specified, oxygen was chosen as the cathode reactant
3

gas. The stoichiometry on the cathode side was varied between λ¼ 2.0,
5.0, and 10.0 for both air and oxygen. The hydrogen stoichiometry was
always kept constant at λH2¼ 1.8.

2.4. Electrochemical impedance spectroscopy

Impedance spectra were recorded after an equilibration period of
30min using a Zahner Zennium (Zahner Elektrik) workstation connected
to a Zahner Power Pack 211, which supplied the current. The frequency
range over which the data was collected was 100 kHz to 50mHz, at a rate
of 10 points per decade and 6 repetitions for each point. This range
successfully captures all frequencies at which fast processes such as the
hydrogen oxidation reaction and proton transport, and slow processes
such as oxygen diffusion and the oxygen reduction reaction occur.

2.5. Distribution of relaxation times analysis

The resulting impedance spectra were further analyzed using the
distribution of relaxation times analysis with the open-source toolbox
DRTtools [52]. Quantification of each process's contribution to the
overall impedance of the cell was achieved by calculating the area under
each peak. The attribution of each peak to a process inside the fuel cell
has been accomplished byWeiβ et al. [37]. The slowest processes (within
the frequency range until 50mHz as mentioned earlier) is attributed to
oxygen mass transport (MT) and typically range from 1Hz to 15Hz. For
Pt and Pt3Co catalysts, MT is characterized by one peak that is usually
higher than the other peaks. The oxygen reduction reaction (ORR) results
in two peaks between 15 Hz and 150Hz, and typically above 150Hz, the
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high frequency (HF) area is found, which includes the hydrogen oxida-
tion reaction and proton transport in the catalyst layer. The frequency
range of a DRT spectrum might shift due to pressure fluctuations or if the
time constants of the internal processes vary. The frequency ranges
mentioned above are not rigid borders, the latter being described by the
peaks in the spectrum more than the values mentioned hereinto. Thus,
each cell is rather classified by a fingerprint pattern. DRT spectra of
HT-PEMFC are described in more detail in the literature [32,37,46].
2.6. Morphology characterization

To investigate the three-dimensional structure of the catalysts, high-
resolution sorption measurements (3Flex, Micromeritics®) and high-
resolution focussed ion beam scanning electron microscopy (FIB-SEM)
tomography were conducted [53]. The nitrogen sorption was used to
characterize the pores with a diameter below 100 nm. The device was
equipped with a special micropore port and a 0.1 Torr pressure trans-
ducer. The samples were outgassed at 160 �C for 4 h. Classical macro-
scopic theories typically lead to an underestimation of pore sizes in
micropores and mesopores [54]. To account for the inaccuracy of BET at
low pore diameters, the differential pore surface area was calculated
using the Non-Local Density Functional Theory (NLDFT) method with the
assumption of cylindrical pore shape. The NLDFT describes the sorption
behavior of fluids in the vicinity of curved walls, such as in micropores,
on a molecular level and is hence more accurate than macroscopic ap-
proaches [55,56]. The NLDFT method used in this work is built into the
analysis software 3Flex® of the Micromeritics® device.

FIB-SEM images of the Pt catalyst and the Pt3Co catalyst were
recorded at Helmholtz-Zentrum Berlin (Zeiss Crossbeam 340 gallium FIB
with a Gemini column). The edge length of each voxel amounts to 5 nm in
all dimensions, the electrons were accelerated with a voltage of 3 kV, and
the secondary electrons were detected. The ablation was achieved with a
FIB current of 700 pA. The images were translated into a pore network
representing the void phase of the porous carbon flakes, and the pore size
distribution was analyzed with a watershed-based algorithm using a code
written by Gostick [57]. The pore size distribution was created using the
open-source pore network modeling software OpenPNM [58]. A more
detailed explanation of this process can be found in the literature [7,8].

3. Results and discussion

3.1. Normal operation

To understand the connection between all three applied techniques,
Fig. 1 presents a comparison of the polarization curves (a), the DRT
spectra (b), and the Nyquist plots of all three investigated catalysts (c).
Fig. 1a shows the polarization curves of the cells operated with hydrogen
(λH2¼ 1.8) and oxygen (λO2¼ 2.0) as fuel gases. The Pt3Co alloy catalyst
(red) performs better than the standard Pt catalyst, in agreement with the
literature [12–15]. The Fe–N–C performs worse than the PGM-containing
catalysts. Without further characterization, it is impossible to determine
the cause of the performance differences between the three catalysts.
However, the first assumption would be to assess them to the lower
intrinsic activity of the Fe–N–C electrocatalysts. The ohmic regions of the
Table 1
Resistances obtained from DRT analysis of the three investigated catalysts
operating with oxygen at 100mA cm�2 and power density at 200mA cm�2 after
conditioning. The maximum power density has not been reached for these cells at
1000mA cm�2.

Pt/C Pt3Co/C Fe–N–C

Mass transport resistance/mΩ 88.7 26.5 243.7
Oxygen reduction reaction resistance/mΩ 24.2 11.8 61.9
High frequency resistance/mΩ 13.4 13.3 18.4
Power density @ 200mA cm¡2/mW cm¡2 35.3 37.5 23.9
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HT-PEMFC typically occur at current densities (j) higher than
400mA cm�2, at which the mass transport already affects the perfor-
mance of the cell. Hence, the ohmic region is expected to be influenced
by membrane resistance and oxygen mass transport inside the cell. In our
setup for HT-PEMFCs, no typical logarithmic decline of the polarization
curve can be observed, even at 2000mA cm�2. Thus, substantial mass
transport limitation cannot be excluded solely by the polarization curve.

To determine the exact cause of the performance differences, EIS and
subsequent DRT analysis of the impedance spectra was performed. The
impedance shown in Fig. 1c displays an increased mid to low frequency
resistance for the Fe–N–C catalyst (blue). The cell employing the Pt3Co
catalyst (red) shows a decreased mid to low frequency resistance
compared to the standard Pt cell (black). Minor differences of the high-
frequency onset (Z" (f)¼ 0) originate from variations in the membrane
resistance. The high-frequency region of the EIS shows similarities be-
tween all three catalysts, as it originates from proton conduction in the
catalyst layer and the anode, which is the same electrode (1mgPt cm�2)
in all cases.

The DRT spectrum (Fig. 1b) exhibits the fingerprint pattern
mentioned above for the commercial PGM catalysts with porous carbon
powder-based substrates. The pattern for the Pt catalyst (black) shows
one dominant mass transport peak at low frequencies (1–15 Hz), fol-
lowed by two oxygen reduction reaction peaks at medium frequencies
(15–150Hz) and several peaks at higher frequencies (>150Hz). The
shape and allocation of this pattern to the various fuel cell processes are
found in greater detail in the literature [32,37]. The same fingerprint is
observed in the Pt3Co catalyst (red). However, the mass transport peak is
narrower, and the second ORR peak is shifted toward higher frequencies
(up to 500Hz). This shift is caused by faster reaction kinetics and is
consistent with the observed ORR performance of this catalyst [12–15].
As mentioned earlier, a change of frequencies in the DRT can occur by
varying time constants of the respective process. The DRT spectrum of
the Fe–N–C shows similar features as the standard cell. We, therefore,
assume that the processes occurring in both cells do not differ signifi-
cantly. The Pt3Co system outperforms the standard Pt catalyst, which
translates into a smaller Nyquist plot with a higher apex frequency. The
apex frequency indicates that the process which is limiting the perfor-
mance the most (oxygen mass transport) is faster. This fact is confirmed
by the more accurate DRT method, in which the MT peak of Pt3Co/C
occurs at a higher frequency. DRT analysis further shows that the higher
performance originates from both the facilitated mass transport (ca. 30%
decrease vs. Pt/C) and the improved ORR kinetics (ca. 50% vs. Pt/C) of
the alloyed system. The improved MT is surprising at first glance since
both platinum-based nanoparticles are supported on carbon black. The
improvement might arise from a different morphology of the supports
(i.e. Vulcan XC72 for Pt/C vs. undisclosed carbon black support for
Pt3Co/C). This discrepancy is to be further elaborated in Section 3.2.

The DRT spectrum of the Fe–N–C (blue) catalyst clearly shows a
similar fingerprint as the PGM-containing catalysts. Thus, the processes
occurring inside this type of catalyst can be assumed to be identical, and
the time scales do overlap. Further, the change of the peaks in the DRT
spectrum during conditioning (see Fig. S1) indicates that the mass
transport regime for this type of catalyst occurs at 1–100 Hz. The peaks
describing the oxygen reduction reaction occur at 100–600Hz. A
distinction of the DRT spectrum of the Fe–N–C catalyst is that the low-
frequency region of the DRT Fe–N–C catalyst spectrum exhibits multi-
ple peaks, indicating a change of the mass transport process inside the
cell. The EIS also does not show a semi-circle at low frequencies, which is
why the DRT method fits more than one peak to describe the MT. The
low-frequency resistance is dominating for all three catalysts, but this
effect is exacerbated for the Fe–N–C catalyst. That indicates that for many
catalyst sites, the H3PO4 and oxygen have difficulties accessing them
(e.g., in micropores or other small porosities), such as the Fe–N2þ2 or
Fe–N2 sites. This explanation confirms the statement in the introduction
that catalyst sites in the micropores are detrimental due to their poor
accessibility. Compared to Pt/C and Pt3Co/C, the distribution of catalyst



Fig. 2. (a) Differential pore surface area from all three catalyst powders obtained from the sorption measurements. (b) Sample 3D X-ray micro-computed tomogram of
the catalyst showing the micrometer scale of the catalyst layer. (c) SEM image of the highlighted portion, showing one carbon flake (nanometer scale). The region of
interest for FIB-SEM imaging is shown in red. (c) The pore size distribution of nanoscale pores diameters obtained by extracting a pore network from FIB-SEM data
[57]. The Pt catalyst is shown in black, the Pt3Co catalyst is colored in red. (For interpretation of the references to color in this figure legend, the reader is referred to
the Web version of this article.)
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sites in Fe–N–C [21,23] aggravates the negative influence of a suboptimal
impregnation of the electrode by phosphoric acid. As mentioned in the
introduction, the Pt and Pt3Co nanoparticles (2–3 nm) are less likely to
anchor or nucleate inside micropores and exhibit much higher accessi-
bility than the micropores sites in Fe–N–C electrocatalysts. The
high-frequency resistance of the Fe–N–C catalyst is increased as well,
according to both the cell voltage decreases at 100mA cm�2 and the
EIS/DRT signals, further indicating depreciated kinetics vs. Pt and
Pt3Co/C. Overall, the hampered mass transport and kinetics for Fe–N–C
translates into additional peaks in the DRT spectrum. The quantitative
results of the DRT spectrum recorded during regular operation are shown
in Table 1. The mentioned limitations, the mass transport and ORR
charge transfer resistances, are, for Fe–N–C, increased by a factor of ca.
2.5 vs. Pt/C.

3.2. Catalyst layer morphology

Fig. 2a shows the differential pore surface area in the catalyst pow-
ders obtained with sorption experiments from 2 nm–93 nm pore diam-
eter. All three catalysts exhibit a hierarchical pore structure with pores
below and above 20 nm in diameter and a minimum at 20 nm. The Pt
catalyst has the highest fraction of pore surface area below 20 nm (67%
of the total surface area) compared to Pt3Co (44%) and Fe–N–C (61%).
We expect slower oxygen diffusion in smaller pores. The DRT analysis
confirms that substantially fewer small pores (below 20 nm) of the Pt3Co
catalyst benefit the fuel cell performance by reducing the mass transport
resistance, as discussed in Section 3.1. This result further indicates that
the catalytic particles located in the smallest pores participate in the
reaction, as they contribute to the EIS. Consequently, H3PO4 invades
5

these small pores and establishes the triple-phase boundary also in these
regions.

To further elucidate the difference between the Pt/C and Pt3Co/C,
which are of similar types (Pt deposited on a carbon powder support),
and obtain more information about pores between 100 nm and 250 nm, a
3D FIB-SEM image has been recorded. FIB-SEM images of Pt/C and
Pt3Co/C are shown in the supplementary information in Fig. S5. FIB-SEM
images of the Fe–N–C catalyst were previously published by Stariha et al.
[19]. The region of interest is shown in Fig. 2b and c. A sample 3D X-ray
micro-computed tomogram is shown in Fig. 2b to indicate the hierar-
chical pore structure. The porous support material exhibits pores in the
micrometer range, but the individual carbon flakes shown in Fig. 2c are
porous themselves and exhibit pores on the nanometer scale. One such
flake was ablated using FIB-SEM to create a 3D image of the nanometer
pore space. The resulting pore size distribution is shown in Fig. 2c. The
relative frequency analysis confirms the lower amount of small pores in
the Pt3Co catalyst layer. It exhibits more pores with a diameter greater
than 100 nm, in which we expect the oxygen diffusion to be faster. The
substrate of the Pt3Co catalyst contains 7% of pores larger than 150 nm in
diameter, compared to 1% for the support of the Pt catalyst.

Further, the mean pore size is ca. 83 nm for Pt3Co/C and ca. 61 nm for
Pt/C. The larger pores facilitate the transport of both the reactant gas and
the phosphoric acid. This improves oxygen diffusion by supplying the
reactive sites more effectively with oxygen and explains the decrease of
the MT in the DRT spectrum. The ORR resistance decrease is defined by
the higher intrinsic catalytic activity of Pt3Co vs. Pt (confirmed by RDE
measurements shown in Fig. S2 in the supplementary information) and
the improved mass transport, which increases the oxygen concentration
at the catalyst sites. Hence, the MT and the ORR correlate.



Fig. 3. HFR-corrected polarization curves (a–c) of all three catalysts taken
during the conditioning period of the cell, after 2 h (black), after 24 h (red), after
120 h (blue). All cells are conditioned at 100mA cm�2. U represents the cell
voltage, and j represents the applied current density. (For interpretation of the
references to color in this figure legend, the reader is referred to the Web version
of this article.)
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3.3. Conditioning of the fuel cells

The cells were conditioned over a period of 120 h. After 2 h and
subsequently every 24 h of operation, polarization curves and impedance
spectra were recorded. Fig. 3a–c shows the cell performance during
conditioning of the fuel cells at 100mA cm�2. For the sake of clarity, only
three data sets are presented: 2 h, 24 h, 120 h (a complete version of the
resistance evolutions is illustrated in Fig. 4). The standard Pt/C cell
reached its peak performance (peak performance¼within 3mV of the
cell performance after 120 h) after 72 h of operation, whereas the Pt3Co/
C cell conditioned faster. After 24 h, it already reached its peak perfor-
mance. The total cell voltage increase during conditioning is higher for
Pt/C compared to Pt3Co/C. Both cells show similar behavior, as the in-
crease at higher current densities is more pronounced while the phos-
phoric acid is still distributed within the pores. Initially, the amount of
catalyst particles is insufficient to maintain a high current density. This
issue results in an additional overpotential at high current density, which
is overcome once the acid is distributed more evenly. The Fe–N–C cata-
lyst shows the highest increase in performance. The increase at high
current density is especially noticeable, implying that the contribution of
the catalyst inside the smallest porosities gradually increases during
activation, as a result of their better impregnation by H3PO4. This
explanation is confirmed by Fig. 4, in which the MT resistance and the
ORR resistance of the fuel cells during conditioning are shown. The
Fe–N–C conditioning is not finished after 120 h of operation, which
further highlights the difficulty of phosphoric acid to perchlorate into the
catalyst layer. The graphs in Fig. 4 still decrease for both MT and ORR. In
the case of Pt/C, the conditioning is finished after 120 h. At this point, the
MT resistance and the ORR resistance reach a minimum, and the acti-
vation process is completed as the cell reached its maximum perfor-
mance. Similar values for conditioning time were reported in the
literature [59]. For Pt3Co/C, the conditioning was already finished after
24 h.

MT and ORR resistances remain at a constant low after this time, and
we assume that the distribution of phosphoric acid in the catalyst layer is
homogeneous. The variation, as mentioned earlier in pore sizes, can
explain this time discrepancy. The large pores facilitate a thorough
impregnation. The shape of the DRT spectrum (Fig. S1) confirms that the
nature of the internal processes does not change during conditioning of
the cells, with the sole exception of Pt3Co/C. The ORR peaks of the Pt3Co
catalyst show a peak growing at 100Hz–300Hz.We hypothesize that this
peak (allocated to the ORR) might arise due to a change in the surface
composition of the alloyed nanoparticles (i.e. switch from Pt3Co to
Pt3Co@Pt core@shell [60], Pt-skeleton [61] or Pt-hollow [29]), which
alters the nature of the ORR, especially concerning the time constant at
which the reaction is taking place. This process is described frequently in
the literature [62–65].

The impact of the morphology of the catalyst layer is still palpable
after the conditioning of the fuel cells. In the case of the Pt/C catalyst, the
MT resistance and the ORR resistance are both higher compared to the
Pt3Co/C catalyst. This observation indicates that the activity of platinum
particles in the nanometer-scaled pores is hampered by the poor H3PO4
distribution and the oxygen diffusion inside these pores. Additionally,
the shorter activation phase in the Pt3Co/C catalyst case also confirms
this. We hypothesize that the non-ideal acid distribution leads to dead
zones in the smallest nanometer-scale pores of the catalyst. The nano-
particles are there not in contact with phosphoric acid. Thus, they do not
participate in the performance of the fuel cell, even after conditioning.
Fig. 5 shows a schematic representation of the phosphoric acid distri-
bution before and after activation. The white background in Fig. 5 in-
dicates the smallest nanometer-scaled areas. For the Fe–N–C catalyst, the
Fe–N2þ2 catalyst sites are located dominantly in the nanometer-scaled
pores. The activity of these catalytic sites is crucial for high perfor-
mance, and thus, the impact of the morphology is even more substantial
in this type of catalyst. The light blue background indicates smaller
nanometer-scale pores (below 20 nm) in contact only after conditioning



Fig. 4. MT resistance (solid lines) and ORR resistance (dashed lines) for the catalysts during conditioning of the cells. The numbers are obtained from DRT analysis.

Fig. 5. Schematic representation of the pore space of all three investigated catalyst types during activation. The blue background indicates the phosphoric acid
distribution before the activation phase (dark blue) and after activation (light blue). The white background depicts areas in which no phosphoric acid transport is
expected. (For interpretation of the references to color in this figure legend, the reader is referred to the Web version of this article.)
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and in which catalytic sites are located in all three investigated catalysts.
These sites contribute to the cell's performance after conditioning, and
they exhibit a substantial MT resistance. The Pt/C catalyst structure in-
cludes more of these pores compared to the Pt3Co/C system. Thus, the
observed MT is higher in the Pt/C system. However, the performance gap
is not as significant as the gap of the Fe–N–C catalyst. As the Pt3Co/C
system exhibits few small nanometer-scale pores, the MT is the lowest.
The accelerated conditioning indicates that the wetting of these larger
pores with phosphoric acid is facilitated. We assume that more catalytic
particles can contribute to cell performance in addition to improved mass
transport. The extent to which each effect impacts the performance can
not be singled out. Whether an improved wetting in the small nanometer-
scale pores or the absence of nanometer-scale pores is more effective in
increasing the overall catalyst performance needs to be determined
further.

4. Conclusions

This study investigated three different types of HT-PEMFC cathode
catalyst: Pt/C, Pt3Co/C, Fe–N–C. Each catalyst was implemented intoMEA
7

and characterized by polarization curves, EIS, and DRT analysis. A typical
DRT fingerprint pattern is observed for each catalyst type. We found that
there is a significant performance gap between these types of catalysts,
which can be explained by (i) the intrinsic activity of each electrocatalyst
for the oxygen reduction reaction (i.e. Pt3Co> Pt> Fe–N–C) and (ii) the
morphology of the catalyst layer. The latter was determined by sorption
experiments and extracting a 3D pore network from FIB-SEM nano-
tomography measurements. The conditioning of the fuel cells highlights
the impact of themorphology, as the time needed to reach close-to-optimal
performances strongly correlates with the phosphoric acid distribution
inside the porous catalyst layer. An electrocatalyst with a large average
pore size (e.g. the Pt3Co catalyst with ca. 83 nm average pore size vs. ca.
68 nm for Pt) facilitates the acid distribution. It shortens the activation
period of the fuel cell. The Fe–N–C catalyst experiences the slowest con-
ditioning phase (>120 h), as it requires the H3PO4 to access not only its
small mesopores but also its micropores where part of its catalyst sites is
found. Through the use of DRT, we were able to deconvolve the contri-
bution of mass transport and ORR kinetics on a given electrocatalyst ac-
tivity in HT-PEMFC. Therefore, it is emphasizing the fact that mass-
transport plays a critical role in the design of such systems.
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