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Method for the Manual Analysis of Moiré Structures in STM
images
Sebastian Günther,*[a] Patrick Zeller,[b, e] Bernhard Böller,[c, d] and Joost Wintterlin*[c, d]

Dedicated to Prof. R. Jürgen Behm on the occasion of his 70th birthday

A method is presented to manually determine the lattice
parameters of commensurate hexagonal moiré structures
resolved by STM. It solves the problem that lattice parameters
of moiré structures usually cannot be determined by inspection
of an STM image, so that computer-based analyses are required.
The lattice vector of a commensurate moiré structure is a sum
of integer multiples both of the two basis vectors of the
substrate and of the adsorbed layer. The method extracts the

two factors with respect to the adsorbed layer from an analysis
of the Fourier transform of an STM image. These two factors are
related to the two factors with respect to the substrate layer.
Using the cell augmentation method, six possible moiré
structures are identified by algebra. When the orientation and
lattice constant of the substrate are roughly known, this
information is usually sufficient to determine a unique moiré
structure and its lattice parameters.

1. Introduction

When two 2D lattices are superimposed that slightly differ in
their lattice constants and/or are rotated with respect to each
other, a moiré structure results. On single crystal surfaces the
effect has been known for more than 40 years[1–4] and the
number of reported examples has strongly grown in recent
years. Moiré structures have been observed, e.g., for adsorbed
close-packed monolayers of noble gas atoms[3,5,6] and of C60

[7]

and CO molecules.[8,9] For epitaxially grown graphene on metal
surfaces they even are a general observation.[10–21] Moiré

structures have also been reported for epitaxial layers of other
2D materials such as h-BN,[22] surface oxides[2,23] and sulfides,[24]

and they have been found for heteroepitaxial metal films,[25]

misoriented graphite surfaces[26] and for surface
reconstructions.[1,27]

Which moiré structure is formed in a particular case
depends on the interactions within the adsorbed layer and
between the adsorbed layer and the surface underneath, and
there have been efforts by theory, based on considerations
about the nature of the interactions, to predict which moiré
structure may result.[28–35]

A more basic question, which is independent of the specific
interactions, is how the lattice parameters of a moiré structure
depend on the symmetry and on the lattice constants of the
two superimposed lattices and on their relative rotational angle,
and how one can classify the structure. This question has also
been addressed by theory. The analyses were mostly focused
on commensurate moiré structures, i. e., on those cases where
the moiré lattice vectors can be written as sums of integer
multiples of the lattice vectors of the substrate and also of the
adsorbed layer. For commensurate moiré structures formed by
two hexagonal lattices, Tkatchenko introduced the so-called
hexagonal number sequence 1, 3, 4, 7, …[35] The numbers
represent the factors by which the unit cell of the adsorbed
layer can be enlarged in such a way that an integer number of
hexagonally arranged particles can be filled in. In this way a
series of moiré structures can be constructed that can exist for
hexagonal systems. Hermann presented a treatment, which was
not restricted to hexagonal systems, in which he analyzed the
2x2ð Þ matrix M that relates the unit vectors of the substrate
lattice to the unit vectors of the moiré lattice.[36,37] Depending
on the symmetry of the system and on the ratio of the lattice
constants of the adsorbed layer and the substrate layer and on
the rotational angle, one can calculate the matrix elements and
generate possible moiré structures. In publications by two of us,
moiré structures were treated in analogy to an acoustic beat of
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two different frequencies, and a Fourier series representation of
the two superimposed lattices was used.[38,39] By means of the
convolution theorem of Fourier transformation, explicit equa-
tions for the moiré beating frequencies were derived. The
frequencies can be classified in acoustic terms; first order moiré
structures result from the beating of fundamental tones, and
higher-order structures from the beating of overtones. Artaud
et al. demonstrated that the unit cell of a moiré structure may
contain more than one beating.[40] Later, it was shown that such
cases can be treated by the so-called cell augmentation
method, by which the difficult handling of higher-order
structures is replaced by a first-order treatment.[39]

In principle, all of these theoretical works dealt with the
question which moiré structures result when one varies the
ratios of the lattice constants of the two superimposed lattices
and the relative rotational angles. By contrast, in an experiment,
where one deals with a given moiré structure, one has to solve,
in a sense, a reverse problem. We here consider experiments by
scanning tunneling microscopy (STM) that has provided most of
the data. An STM image of a moiré structure typically shows an
atomic fine structure from the adsorbed layer that is modulated
by a long-wave pattern from the moiré structure, and one has
to find out which lattice constant and rotational angle of the
adsorbed layer with respect to the substrate can generate the
observed moiré pattern. If successful, such an analysis can give
very precise lattice parameters of the adsorbed layer, a result of
the property of moiré structures to amplify differences between
the two involved lattices.

However, the direct analysis of a moiré pattern in an STM
image, simply by counting the number of atomic features in a
unit cell of the moiré pattern and measuring the angles, is
problematic. The quality of STM data, even when there are only
moderate interferences from noise, tip changes, thermal drift,
and piezo creep, is usually not sufficient for discriminating
between the many different moiré structures possible. From a
direct analysis it is also difficult to say whether the moiré
modulation seen in an STM image actually reflects a translation-
ally symmetric structure or whether it is only apparently
translationally symmetric, and the actual lattice is a multiple of
it or even incommensurate. Moreover, there is the fundamental
problem that the STM does not “see” the lattice of the substrate
underneath the adsorbed layer. Separate reference experiments
have to be performed, causing an uncertainty in the relative
orientations of the two lattices. The errors depend on the
experiment, but even when they are low, a unique set of exact
lattice parameters of the moiré structure with respect to the
substrate can often not be extracted. Some of these problems
can be resolved when the Fourier transform is used instead of
the real-space image.[40] In particular, the precision is enhanced
by an averaging effect of the Fourier transformation. However,
the problem with the uncertainty about the substrate lattice
persists.

More sophisticated methods for analyzing moiré structures
in STM data are therefore required. One solution has been
provided by the so-called commensurability plots.[38,39] Such
plots are 3D functions on the x/f plane (x is the ratio of the
lattice constants of the two lattices and f is the rotational

angle), which are a measure of the deviations of the solutions
from commensurability. At the zeros of the plots commensurate
moiré structures exist. There is an infinite number of zeros, but
if one can constrain, using the experimental data, the range of x
and f values, a unique solution can often be found. However,
one has to draw a complicated 3D function, and for higher-
order moiré structures the equations can only be solved
numerically. Recently, Le Ster et al. have made a software
package available, also based on the convolution theorem of
Fourier transformation, by which one can analyze STM images
of graphene overlayers on arbitrary supports.[41] (The program
does not discriminate between commensurate and incommen-
surate structures.) In any case, calculations on a computer are
required.

Here, we present a method for solving commensurate,
hexagonal moiré structures in STM images that is much simpler.
It only requires a Fourier transformation, a standard tool in STM
image processing software, and a pocket calculator. We
demonstrate its application for moiré structures of CO mole-
cules on a Co(0001) surface that previously have been analyzed
by means of the commensurability plot method. We also
investigate the limits of the method, and for a graphene
structure on Ir(111) we show that some accuracy is required to
avoid wrong conclusions.

2. Results and Discussion

2.1. Setup of the Required Equations

A moiré structure – examples are shown in Figures 1a and 1b –
is defined by a lattice vector~Lmoiré that can be written as a sum
of multiples of the basis vectors~a1;sub and ~a2;sub of the substrate

~Lmoiré ¼ m~a1;sub þ n~a2;sub, (1)

and at the same time as a sum of multiples of the basis vectors
~a1;ad and~a2;ad of the adsorbed layer

~Lmoiré ¼ r~a1;ad þ s~a2;ad: (2)

In order that the moiré structure is commensurate all four
factors, m, n, r, and s, in eqs. (1) and (2) have to be integers. We
here only treat the superposition of hexagonal lattices, so that
the resulting moiré structure is also hexagonal. The two basis
vectors ~a1 and ~a2, both of the substrate and of the adsorbed
layer, we define such that they include angles of 120° (Fig-
ure 1c). Figure 1c also shows the angle f by which the lattice of
the adsorbed layer is rotated with respect to the substrate, and
the angles Fsub and Fad by which the moiré lattice is rotated
with respect to the lattices of the substrate and adsorbed layer,
respectively. In the following we write eqs. (1) and (2) in the
short forms

~Lmoiré ¼ m; nð Þ; (1’)
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~Lmoiré ¼ ðr; sÞ: (2’)

The problem we want to solve here is to obtain the integer
factors m, n, r, and s from an analysis of a moiré structure in an
STM image. When these factors have been identified all lattice
parameters of the commensurate moiré structure can be
determined.

Most of the required equations have already been derived
in two previous publications.[38,39] By using the cartesian
coordinate system indicated in Figure 1c, the substrate basis

vectors can be written as ~a1;sub ¼ asub

1

0

 !

and

~a2;sub ¼ asub

� 1=2
ffiffiffi
3
p

=2

 !

: Insertion into eq. (1) gives

~Lmoiré ¼ asub

m � n=2

n
ffiffiffi
3
p

=2

 !

: (1’’)

Figure 1. Commensurate moiré structures formed by two hexagonal lattices. a) Structure with m=7, n=1, r=8, s=1, corresponding to a “simple” cell and a
shorter lattice constant of the adsorbed layer (green) than of the substrate (dark grey) (x>1). b) Structure with m= � 2, n=3, r= � 1, s=3, also a simple cell,
but with a longer lattice constant of the adsorbed layer (blue) than of the substrate (dark grey) (x<1). c) Lattice vectors and angles of the structure of
Figure 1b.~Lmoiré is a moiré lattice vector,~a1;sub and~a2;sub are the basis vectors of the substrate, and~a1;ad and~a2;ad are the basis vectors of the adsorbed layer. d)
Reciprocal lattice vectors of the structure in Figure 1b.~Kmoiré is the reciprocal lattice vector of the moiré structure, and 1; 0ð Þ* sub and 1; 0ð Þ*ad are the reciprocal
basis vectors of the substrate and adsorbed layer, respectively. The vectors are rotated by 30° with respect to the corresponding real-space vectors of
Figure 1c, but the relative angles f, Fsub, and Fad are unchanged.
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~Lmoiré can also be expressed by its length Lmoiré and rotational

angle Fsub, ~Lmoiré ¼ Lmoiré

cos Fsubð Þ

sin Fsubð Þ

 !

¼ l asub

cos Fsubð Þ

sin Fsubð Þ

 !

,

where l is the length of ~Lmoiré in units of the substrate lattice
constant asub. Equating this expression with ~Lmoiré from eq. (1’’)
leads to two equations, which, solved for m and n, give

m ¼
1
ffiffiffi
3
p lsin Fsubð Þ þ lcos Fsubð Þ, (3)

n ¼
2
ffiffiffi
3
p lsin Fsubð Þ: (4)

The equations for r and s are obtained equivalently, taking
into account that the coordinate system has to be rotated by f.
The results are

r ¼
1
ffiffiffi
3
p lxsin Fsub � fð Þ þ lxcos Fsub � fð Þ, (5)

s ¼
2
ffiffiffi
3
p lxsin Fsub � fð Þ: (6)

The equations contain the additional parameter x, defined
as the ratio of the lattice constants of the substrate and the
adsorbed layer, x ¼ asub=aad.

It has also been shown that a first order moiré structure,
which results from a convolution of two Fourier expansions that
only contain first order coefficients, fulfills the condition[38]

~Kmoiré ¼ 1; 0ð Þ* ad � 1; 0ð Þ* sub: (7)

Equation (7) defines a triangle in reciprocal space (Fig-
ure 1d) that is formed by ~Kmoiré, a reciprocal lattice vector of the
moiré structure, by 1; 0ð Þ*ad, a reciprocal basis vector of the
adsorbed layer, and by 1; 0ð Þ*sub, a reciprocal basis vector of the
substrate. Applying the cosine theorem to this triangle leads to
two equations that relate l and Fsub to f and x:

l ¼
1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ x2 � 2xcos fð Þ

p , (8)

and

Fsub ¼ arccos
xcos fð Þ � 1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ x2 � 2xcos fð Þ

p

" #

for f � 0�;

Fsub ¼ � arccos
xcos fð Þ � 1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ x2 � 2xcos fð Þ

p

" #

for f < 0�: (9)

The equations are valid for x > 1 (Figure 1a) as well as for
x ¼ 1 and x < 1 (Figure 1b), all three of which cases occur in
physical systems. For example, epitaxially grown graphene on
transition metals mostly has a shorter lattice constant than the

substrate (x > 1), whereas the case x=1 is realized by twisted
bilayer graphene, and an example for x < 1 is a close-packed
layer of CO molecules on Co(0001). In eq. (9) a case distinction
is made, according to which Fsub changes sign for a positive or
negative f. We here define f � 0� as an anti-clockwise rotation
[Figures 1a and 1b], and f < 0� as a clockwise rotation.
Inserting eqs. (8) and (9) into eqs. (3) to (6) gives four functions
m x;fð Þ, n x;fð Þ, r x;fð Þ, and s x;fð Þ that in previous analyses
have been used to generate the so-called first-order commen-
surability plots.[38,39]

Here we instead make use of the fact that the factors m and
n from the substrate lattice are related in a systematic way to
the factors r and s from the lattice of the adsorbed layer. The
relations follow from an analysis of eqs. (3) to (6). For this
purpose, first the case f � 0� is considered and addition
theorems are applied to the sine and cosine terms containing
Fsub � fð Þ in eqs. (5) and (6). Then all sin Fsubð Þ terms are
replaced by sin Fsubð Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 � cos2 Fsubð Þ

p
, and l is inserted

from eq. (8) and cos Fsubð Þ from eq. (9). The results are

m ¼
1
ffiffiffi
3
p l2xsin fð Þ þ l2xcos fð Þ � l2, (10)

n ¼
2
ffiffiffi
3
p l2xsin fð Þ, (11)

r ¼
1
ffiffiffi
3
p l2xsin fð Þ þ l2x2 � l2xcos fð Þ, (12)

s ¼
2
ffiffiffi
3
p l2xsin fð Þ: (13)

By squaring eq. (8) one can write 1 ¼ l2 1þ x2 � 2xcos fð Þ½ �

and subtract this expression from r

r � 1 ¼
1
ffiffiffi
3
p l2xsin fð Þ þ l2xcos fð Þ � l2: (14)

When one then compares eq. (10) with eq. (14) and eq. (11)
with eq. (13) one finds that the results are identical, i. e.

m ¼ r � 1, (15)

n ¼ s: (16)

For the case f < 0� some terms in eqs. (10) to (14) change
signs, but the results, eqs. (15) and (16), are identical. These
relations between m, n, r, and s apply to simple cells, i. e., to
cases where the long-wave moiré modulation seen in an STM
image reflects a translationally symmetric structure. However, it
is often observed that the long-wave modulation does not
reflect an actual translationally symmetric structure. This does
not necessarily mean an incommensurate structure. More
frequent is the case that the moiré structure is still commensu-
rate but that the actual unit cell is larger than the simple cell by
an integer multiple.[40,42,43] In hexagonal systems the possible
enhancement factors are given by the hexagonal number
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sequence 1, 3, 4, 7, …[35] The lattice vector of a tripled structure
is

ffiffiffi
3
p

times longer than of a simple cell and rotated by 30°, and
for the case of a 4 times larger cell it is by a factor of 2 longer
and aligned.

For these larger cells the relations between m, n, r, and s
change.[39] One can see this, for the tripled structure, by
constructing the

ffiffiffi
3
p

times longer and 30° rotated moiré lattice
vector by adding two vectors of the simple periodicity, namely
m; nð Þ and the 60° rotated vector m � n;mð Þ (for the derivation
of the rotated vectors see below, Table 2):

~Lmoiré ¼ m; nð Þ þ m � n;mð Þ ¼ 2m � n;mþ nð Þ ¼ ð ~m; ~nÞ, (17)

which leads to two new factors ~m and ~n. Correspondingly, for
the moiré vector expressed in the unit vectors of the adsorbate
layer, one obtains two new factors ~r and ~s

~Lmoiré ¼ r; sð Þ þ r � s; rð Þ ¼ 2r � s; r þ sð Þ ¼ ð~r;~sÞ: (18)

By inserting m ¼ r � 1 [eq. (15)] and n ¼ s [eq. (16)] into
eq. (17) and using the results for ~r and ~s from eq. (18) one
obtains the relations between these new multiplication factors:

~m ¼ 2m � n ¼ 2 r � 1ð Þ � s ¼ 2r � sð Þ � 2 ¼ ~r � 2, (19)

~n ¼ mþ n ¼ r � 1ð Þ þ s ¼ r þ sð Þ � 1 ¼ ~s � 1: (20)

For the quadrupled cell the moiré vector of the simple
periodicity m; nð Þ has to be doubled:

~Lmoiré ¼ 2 m; nð Þ ¼ 2m; 2nð Þ ¼ ð ~m; ~nÞ, (21)

~Lmoiré ¼ 2 r; sð Þ ¼ 2r; 2sð Þ ¼ ð~r;~sÞ, (22)

which, with eqs. (15) and (16), gives

~m ¼ 2m ¼ 2 r � 1ð Þ ¼ 2r � 2 ¼ ~r � 2; (23)

~n ¼ 2n ¼ 2s ¼ ~s: (24)

Larger cells may be treated correspondingly. Eqs. (15), (16),
(19), (20), (23), and (24) are collected in Table 1 where we have
renamed the factors ~m, ~n; ~r, and ~s to factors without tilde. The
table will be used below for converting ~Lmoiré ¼ ðr; sÞ into
~Lmoiré ¼ ðm; nÞ.

For the analysis we furthermore need moiré lattice vectors
that are rotated by multiples of 60° with respect to~Lmoiré. These

vectors are obtained by applying a rotation matrix with angles
of 60°, 120°, etc. to ~Lmoiré. The results, both expressed in unit
vectors of the adsorbed layer lattice and of the substrate lattice
vectors, are listed in Table 2.

The basic idea of the method presented here is to extract r
and s from the Fourier transform of an STM image, and then to
evaluate m and n by means of Table 1. When the factors m, n, r,
and s have been determined in this way, the full set of lattice
parameters of the moiré structure can be constructed. These
parameters include the length of ~Lmoiré in units of the lattice
constants of the substrate and of the adsorbed layer:

Lmoiré=asub ¼ l ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ n2 � mn
p

, (25)

Lmoiré=aad ¼ lx ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ s2 � rs
p

: (26)

These two equations can be derived by applying basic
vector algebra to ~Lmoiré.

[38] The parameter x ¼ asub=aad, the ratio
of the lattice constants of the substrate and the adsorbed layer,
can be evaluated with the results of eqs. (25) and (26)

x ¼
Lmoiré=aad

Lmoiré=asub
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ s2 � rs
p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ n2 � mn
p : (27)

The square of x gives the coverage V, defined as the
number of unit cells of the lattice of the adsorbed layer with
respect to the unit cells of the substrate lattice:

V ¼ x2: (28)

A further lattice parameter is the angle Fsub by which the
moiré structure is rotated with respect to the substrate lattice
(Figure 1c):

Fsub ¼ arccos
m � n

2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ n2 � mn
p

� �

for n > 0,

Fsub ¼ � arccos
m � n

2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ n2 � mn
p

� �

for n < 0,

Fsub ¼ 0 for n ¼ 0 and m > 0,

Fsub ¼ � 180� for n ¼ 0 and m < 0: (29)

The equations have also been derived previously (except for
the case discrimination).[39] The corresponding result for Fad,

Table 1. Moiré lattice vectors for the simple cell and for the cells enlarged
by factors of 3 and 4.

Augmentation
factor

~Lmoiré expressed in the unit
vectors of the adsorbed
layer

~Lmoiré expressed in the
unit vectors of the sub-
strate

1 ðr; sÞ m; nð Þ ¼ ðr � 1; sÞ
3 ðr; sÞ m; nð Þ ¼ ðr � 2; s � 1Þ
4 ðr; sÞ m; nð Þ ¼ ðr � 2; sÞ

Table 2. Rotated moiré vectors obtained by applying a rotation matrix to
~Lmoiré with the indicated angles.

Rotation
angle

~Lmoiré expressed in the unit
vectors of the adsorbed layer

~Lmoiré expressed in the unit
vectors of the substrate

0° ðr; sÞ m; nð Þ

60° r � s; rð Þ m � n;mð Þ

120° � s; r � sð Þ � n;m � nð Þ

180° � r; � sð Þ � m; � nð Þ

240° � r þ s; � rð Þ � mþ n; � mð Þ

300° s; � r þ sð Þ n; � mþ nð Þ
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the rotational angle between the moiré lattice and the lattice of
the adsorbed layer (Figure 1c), is

Fad ¼ arccos
r � s

2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ s2 � rs
p

� �

for s > 0,

Fad ¼ � arccos
r � s

2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ s2 � rs
p

� �

for s < 0,

Fad ¼ 0 for s ¼ 0 and r > 0,

Fsub ¼ � 180
� for s ¼ 0 and r < 0: (30)

Finally, the angle f by which the adsorbed layer is rotated
with respect to the substrate lattice is obtained by taking the
difference of Fsub and Fad (Figure 1c)

f ¼ Fsub � Fad: (31)

2.2. Recipe for the Application of the Method and Examples

By applying the above equations and working with the Fourier
transforms we derive a recipe by which one can manually
analyze commensurate hexagonal moiré structures in STM data.
We demonstrate its application by means of four examples.

The first two examples are from experiments on Co(0001)
which were performed in CO atmospheres at pressures
between 100 and 800 mbar and at a sample temperature of
300 K.[9] Under these conditions the adsorbed CO molecules
form hexagonal, close-packed monolayers on the cobalt sur-
face. The van-der-Waals diameter of CO is larger than the lattice
constant of the Co(0001) surface of 2.507 Å, which leads to a
mismatch of the CO lattice with the lattice of the Co(0001)
surface. In addition, the CO layer is rotated with respect to the
substrate, giving rise to several moiré structures.

2.2.1. Moiré Structure of CO Molecules on Co(0001) Formed at
800mbar (Example 1)

We start with Figure 2a, an STM image recorded at 800 mbar.
The hexagonal pattern is the moiré structure, and the fine
structure is caused by the CO molecules. Previously, the
structure has been analyzed by means of the commensurability
plot method.[9] Here we use it to establish the recipe. It consists
of seven steps:

(1) On the Fourier transform of the STM image draw a
hexagonal grid, using the innermost spots from the moiré
structure as reference points. Check whether the spots from the
adsorbate lattice fall on the intersection points of this grid. If this
is the case, the grid defines the reciprocal lattice of a
commensurate moiré structure. The analysis depends on the
quality of the Fourier transform. It may therefore be required to
cut off nonlinearities at the edges of the real-space image from
piezo creep. Removing possible line noise that enhances the

diffuse background in the Fourier transform may be helpful. To
simplify frequency determination, it may also be appropriate to
correct for STM-typical distortions from thermal drift or small
variations in the x and y calibration factors. In the present case,
where hexagonal systems are treated, the Fourier transform can
be corrected such that it displays precise hexagonal symmetry.

The Fourier transform of Figure 2a is shown in Figure 2b.
The six most intense spots (marked by the blue circles) close to
the origin reflect the main frequencies from the moiré structure,
and the six spots marked by the red circles further outside
reflect the frequencies from the CO lattice. Using the innermost
moiré spots as reference points the hexagonal grid of thin lines
is drawn. One can see that the spots from the CO lattice are not
on the intersection points of the grid, and also many of the
higher-order spots from the moiré lattice do not fall on the
intersection points. The condition from step (1) is thus not
fulfilled.

(2) If this condition is not fulfilled, shrink the grid by a factor
of 3, 4, 7, and so forth (a factor from the hexagonal number
sequence),[35] until the spots from the atomic fine structure fall on
the intersection points of such a smaller grid. When this has been
achieved, the grid defines the reciprocal lattice of a commensurate
moiré structure. This step is identical to the cell augmentation
method introduced in Ref. [39]. A good hint for a tripled or
quadrupled cell is when, on the grid from the simple cell, spots
appear in the centers of the triangles or at the centers of the
triangle edges of the grid, respectively.

In the example, Figure 2c shows the same Fourier transform
as Figure 2b, but overlaid by a 3 times smaller grid that is
rotated by 30°. One can see that now the spots from the CO
lattice and also all other spots pretty exactly fall on intersection
points. This grid therefore represents the actual reciprocal
lattice from the moiré structure. It is by a factor of 3 smaller
than the lattice constructed from the most intense moiré spots,
so that, in real space, the actual moiré unit cell is by a factor of
3 larger than the apparent, simple cells in the STM image.

(3) With the reciprocal moiré lattice identified in this way,
determine the factors r and s by transforming the reciprocal lattice
vectors of the moiré structure into a real-space vector
~Lmoiré ¼ ðr; sÞ. When one ~Lmoiré vector has been identified create
five additional vectors by rotating ~Lmoiré ¼ ðr; sÞ by multiples of
60°, using the ðr; sÞ column of Table 2. Because of the hexagonal
symmetry, these six vectors are equivalent descriptions of the
moiré structure.

In the example we use one quadrant of the Fourier
transform (Figure 2d) to illustrate this step. The figure shows
two lattice vectors from the just obtained reciprocal moiré

lattice, ~K
1
moiré and ~K

2
moiré, and two reciprocal lattice vectors from

the CO layer, 1; 0ð Þ*ad and 0; 1ð Þ*ad. The included angles of both
pairs of vectors are 60° because 120° was used for the basis
vectors in real space. Using the grid constructed in step (2), one
can express the reciprocal CO vectors by sums of multiples of
the reciprocal moiré vectors:
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1; 0ð Þ* ad ¼ 6 ~K
1
moiré � 2 ~K

2
moiré

and 0; 1ð Þ* ad ¼ 2 ~K
1
moiréþ 4 ~K

2
moiré:

(32)

Solving these two equations for~K
1
moiré and~K

2
moiré gives

~K
1
moiré ¼

2
14 1; 0ð Þ* ad þ

1
14 0; 1ð Þ* ad

and ~K
2
moiré ¼ �

1
14 1; 0ð Þ* ad þ

3
14 0; 1ð Þ* ad,

(33)

which can be combined to a single equation by using the
matrix M

ad
*

~K
1
moiré

~K
2
moiré

0

@

1

A ¼ M*
ad

1; 0ð Þ* ad

0; 1ð Þ* ad

 !

, where M*
ad
¼

2
14

1
14

�
1
14

3
14

0

@

1

A: (33’)

The reciprocal space matrix M
ad
* is then inverted and

transposed to give the real-space matrix M
ad

by using mij* , the

matrix elements of M
ad
* , and the determinant M

ad
*

�
�
�
�

�
�
�
�:

M
ad
¼

m*22
M*
�
�
�

�
�
�
�

m*21
M*
�
�
�

�
�
�

�
m*12
M*
�
�
�

�
�
�

m*11
M*
�
�
�

�
�
�

0

B
B
B
B
@

1

C
C
C
C
A
¼

6 2

� 2 4

 !

: (34)

The first line of M
ad

is one of the six solutions for r and s

that determine the real space moiré vector with respect to the
lattice vectors of the adsorbed layer, ~Lmoiré ¼ ðr; sÞ= (6,2). The
set of six equivalent solutions is obtained by applying the 60°
vector rotations of Table 2, giving ~Lmoiré ¼ ðr; sÞ= (6,2), (4,6),
(-2,4), (-6,–2), (-4,–6), and (2,–4). One could as well have chosen

Figure 2. Analysis of a CO moiré structure on Co(0001) at 800 mbar CO. a) STM image, showing the long-wave modulation from the moiré structure; T=300 K,
tunneling tunneling voltage Vt= � 1.5 V, tunneling current It=0.7 nA, image size 170 Å×170 Å. b) Fourier transform of (a). The main spots from the moiré
structure are marked by blue circles, and the spots from the CO lattice are marked by red circles. The grid of fine lines is constructed from the positions of the
innermost spots of the moiré structure. (Here and in the following figures, the left halves of the Fourier transforms are constructed by inversion symmetry
from the right halves.) c) Same Fourier transform as (b) but with a three times finer grid. d) One quadrant of (c).~K

1
moiré and~K

1
moiré are the basis vectors of the

reciprocal moiré lattice, and 1; 0ð Þ*ad and 0; 1ð Þ*ad are the basis vectors of the reciprocal CO lattice. 1; 0ð Þ* sub is the approximate position of a reciprocal basis
vector of the Co(0001) substrate; f is the rotational angle of the CO lattice with respect to the substrate lattice. The green area indicates the estimated error
margins. (e) Model of the

ffiffiffiffiffi
43
p

x
ffiffiffiffiffi
43
p� �

R7:6� structure. Red dots indicate the positions of the CO molecules; the orange diamond is a unit cell of the moiré
structure, and the light blue diamond is a simple cell. (Differently from ref. [9], the Fourier transform has been corrected for some small drift such that the
symmetry is exactly hexagonal.) Adapted with permission from B. Böller, P. Zeller, S. Günther, J. Wintterlin, ACS Catal. 2020, 10, 12156-12166 (Ref. [9]).
Copyright (2020) American Chemical Society.
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the second line of M
ad

in eq. (34) as it is one of the six solutions.

One could also have started, on the grid in Figure 2d, with a

pair of ~K
1
moiré and ~K

2
moiré vectors rotated by a multiple of 60° with

respect to the indicated pair, and would have obtained the
same six solutions.

(4) Then evaluate the moiré vector~Lmoiré ¼ ðm; nÞ with respect
to the lattice vectors of the substrate for each of the six rotated
vectors~Lmoiré ¼ ðr; sÞ obtained in step (3). This is done by means of
Table 1 according to the respective augmentation factor. Since
the transformations in Table 1 are no rotations these six pairs of
vectors are not symmetrically equivalent. They belong to six
different moiré structures that are mathematically valid solutions
of the system of equations above.

In the example, the augmentation factor was 3, so that we
obtain, using m; nð Þ ¼ ðr � 2; s � 1Þ from Table 1,
~Lmoiré ¼ m; nð Þ= (4,1), (2,5), (� 4,3), (� 8,� 3), (� 6,� 7), (0,� 5).

(5) Calculate the lattice parameters of the six obtained moiré
structures. Useful values are the length of ~Lmoiré in units of the
lattice constant of the substrate [eq. (25)] and of the adsorbate
[eq. (26)], the ratio of the lattice constants of the substrate and
the adsorbate x [eq. (27)], and the coverage V [eq. (28)]. Further
useful values are the rotational angle Fsub of the moiré lattice
with respect to the substrate lattice [eq. (29], the rotational angle
Fad of the moiré lattice with respect to the lattice of the adsorbed
layer [eq. (30)], and f, the rotational angle of the adsorbed layer
with respect to the substrate [eq. (31)].

Table 3 shows the results for the present example. One can
see that the six solutions, which are all mathematically valid,
vary widely in their lattice parameters. (This is except for
Lmoiré=aad, which is the same for all six solutions, and for the Fad

values, which only differ by multiples of 60°. These exceptions
result from the fact that these lattice parameters only contain
the adsorbed layer to which nothing else than rotational
operations were applied.)

(6) To decide which of the six mathematical solutions
describes the physical system obtain information about the
orientation and the lattice constant of the substrate. As the
substrate lattice is mostly not directly visible in the same STM
image, this information has to come from separate experiments.
Because of the characteristics of STM data this step may be
connected with considerable uncertainties. For example, for some
STM designs such as the beetle-type scanner, the orientation of

the STM frames with respect to the lattice directions of the sample
may vary from experiment to experiment. However, even with
considerable error ranges the physically correct moiré structure
can often be uniquely identified.

In the CO-on-Co(0001) study, the substrate orientation
could approximately be determined from experiments at lower
CO pressures where simple (non-moiré) structures were
observed.[9] Figure 3a shows an STM image recorded at
10� 8 mbar of CO. The hexagonal pattern is the well known
ffiffiffi
3
p

x
ffiffiffi
3
p� �

R30� structure of CO; Figure 3b is the corresponding
Fourier transform. It shows six sharp spots from the
ffiffiffi
3
p

x
ffiffiffi
3
p� �

R30� structure that define the reciprocal lattice
vectors of the overlayer. Combinations of these two vectors
give the reciprocal basis vectors 1; 0ð Þ*sub and 0; 1ð Þ*sub of the
cobalt substrate. 1; 0ð Þ*sub is then transferred to Figure 2d
(blue), and the error margins of the length and rotational angle
with respect to the vectors from the adsorbed layer are marked
(green area). For the length we estimate an error margin of
�7%, and for the angle of �7°. The relatively high error in f is
caused by the use of a beetle-type STM in this study, by which
the usual errors in determining angles in STM data are
enhanced by the varying positions of the scanner with respect
to the sample.

However, when one inspects Table 3 one can immediately
sort out five of the six solutions. Despite the error margins, it is
clear from Figure 2d that 1; 0ð Þ*ad is shorter than 1; 0ð Þ*sub, so
that x < 1. Solutions 1, 2, and 6 can therefore be sorted out
because they all have x > 1. It is also clear from Figure 2d that
f is negative from which solutions 3 and 4, which have f > 0,
can be sorted out. Solution 5, with ðm; nÞ= (� 6,� 7), is thus
identified as the correct moiré structure, a result that would
tolerate even higher errors in the lattice constant and
orientation of the substrate lattice. If the substrate lattice were
completely unknown, one could at least sort out solutions 1, 2,
and 6 because they all have V > 1 which is unphysical for
adsorbed CO on Co(0001). (Instead of using the equations from
Table 1 one can also solve the structure by a graphical analysis
of Figure 2d; see Supporting Information.)

(7) Finally, to label the moiré structure by the matrix notation
and to draw a model, take the vector~Lmoiré ¼ m; nð Þ identified as
the correct solution in step (6) and rotate it five times by multiples
of 60°, using the m; nð Þ column in Table 2. Of the six obtained
vectors, any tuple of vectors with an included angle of 120°

Table 3. Lattice parameters of the six solutions for the moiré structure formed by CO on Co(0001) at p(CO)=800 mbar and T=300 K.

ðm; nÞ ðr; sÞ Lmoiré=asub Lmoiré=aad x V Fsub Fad f

1 (4,1) (6,2)
ffiffiffiffiffi
13
p ffiffiffiffiffi

28
p

1.468 2.15 +13.9° +19.1° � 5.2°

2 (2,5) (4,6)
ffiffiffiffiffi
19
p ffiffiffiffiffi

28
p

1.214 1.47 +96.6° +79.1° +17.5°

3 (� 4,3) (� 2,4)
ffiffiffiffiffi
37
p ffiffiffiffiffi

28
p

0.870 0.76 +154.7° +139.1° +15.6°

4 (� 8,� 3) (� 6,� 2)
ffiffiffiffiffi
49
p ffiffiffiffiffi

28
p

0.756 0.57 � 158.2° � 160.9° +2.7°

5 (� 6,� 7) (� 4,� 6)
ffiffiffiffiffi
43
p ffiffiffiffiffi

28
p

0.807 0.65 � 112.4° � 100.9° � 11.5°

6 (0,� 5) (2,� 4)
ffiffiffiffiffi
25
p ffiffiffiffiffi

28
p

1.058 1.12 � 60.0° � 40.9° � 19.1°
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provides a valid set of matrix elements m and n for the matrix
M

sub
. To label the structure by the matrix M

ad
rotate the vector

~Lmoiré ¼ r; sð Þ concurrently with~Lmoiré ¼ m; nð Þ to obtain the matrix
elements r and s. The parameters required for Wood’s nomencla-
ture are already contained in the set of values generated in step
(5), namely Lmoiré=asub and Fsub.

For the example treated here, the results of the rotations of
~Lmoiré ¼ m; nð Þ= (� 6,� 7) are given in Table 4. To label the
structure with the matrix notation, one could, e.g., set up the
substrate matrix M

sub
with the matrix elements taken from the

0°/120° vector tuple

M
sub
¼
� 6 � 7

7 1

 !

: (35)

For the construction of the corresponding adsorbate layer
matrix M

ad
it has to be observed that one has to use the vector

tuple with the same rotation angles, i. e.,

M
ad
¼
� 4 � 6

6 2

 !

: (36)

Any other tuple of vectors from Table 4 with included
angles of 120° also gives valid M

sub
and M

ad
matrices. [Two

asides: Firstly, the relation m; nð Þ ¼ ðr � 2; s � 1Þ (Table 1),
which we have used for the analysis of the current case of a
tripled cell, only holds for the 0°-rotated pair of vectors
~Lmoiré ¼ m; nð Þ and~Lmoiré ¼ r; sð Þ (Table 4). For the rotated, other
pairs of vectors the relations between m and n on the one side
and r and s on the other change. In general form, these
relations can be obtained by inserting the equations from
Table 1 into Table 2. For example, for a rotation by 60° and a
tripled structure, one obtains m0 ¼ r0 � 1 and n0 ¼ s0 � 2. The
resulting structures are all identical. Secondly, one could take
into account that the Co(0001) substrate as an hcp(0001)
surface has only threefold rather than sixfold rotationally
symmetry when the bulk is included; the same holds for the
(111) surfaces of fcc metals. The six obtained solutions (Table 4)
are then no longer equivalent but split into two groups with
different energies.]

To label the structure by Wood’s nomenclature one uses the
entries Lmoiré=asub ¼

ffiffiffiffiffi
43
p

and Fsub = � 112.4° for the identified
solution 5 from Table 3 (actually, one uses the angle Fsub with
respect to the closest multiple of 60°, in this case � 120°). The
result is a

ffiffiffiffiffi
43
p

x
ffiffiffiffiffi
43
p� �

R7:6� structure. A structure model is
indicated in Figure 2e.

The lattice parameters finally obtained are the same as
those obtained by means of the commensurability plot method
in ref.[9] However, what is achieved by the method presented
here is to solve the structure just by means a calculator (to
evaluate the lattice parameters in Table 3).

Figure 3. STM experiment on Co(0001) at 1×10� 8 mbar CO. (a) STM image, showing the hexagonal pattern of the
ffiffiffi
3
p

x
ffiffiffi
3
p� �

R30� structure of adsorbed CO
molecules. T=300 K, Vt= � 1.0 V, It=0.7 nA, 150 Å×150 Å. (b) Fourier transform of (a) showing the spots from the

ffiffiffi
3
p

x
ffiffiffi
3
p� �

R30� structure and the
corresponding reciprocal lattice vectors. The blue vectors are the reciprocal basis vectors 1; 0ð Þ* sub and 0; 1ð Þ* sub of the substrate constructed from the
reciprocal lattice vectors of the

ffiffiffi
3
p

x
ffiffiffi
3
p� �

R30� structure. Adapted with permission from B. Böller, P. Zeller, S. Günther, J. Wintterlin, ACS Catal. 2020, 10,
12156–12166 (Ref. [9]). Copyright (2020) American Chemical Society.

Table 4. Moiré lattice vectors, obtained by rotating the vectors from
solution 5 in Table 3, ~Lmoiré= m; nð Þ= (� 6,� 7) and ~Lmoiré = r; sð Þ= (� 4,� 6),
by multiples of 60°, using the construction rules of Table 2.

Rotation angle ~Lmoiré ¼ m; nð Þ ~Lmoiré ¼ r; sð Þ

0° (� 6,� 7) (� 4,� 6)
60° (1,� 6) (2,� 4)
120° (7,1) (6,2)
180° (6,7) (4,6)
240° (� 1,6) (� 2,4)
300° (� 7,� 1) (� 6,� 2)
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2.2.2. Moiré Structure of CO Molecules on Co(0001) Formed at
100mbar (Example 2)

As a second example we investigate a moiré structure from an
STM image recorded at a CO pressure of 100 mbar (Figure 4a).
The noise level in this experiment is higher, not an unusual
problem in in situ STM experiments where the high gas
pressure often affects the stability of the tunneling tip. In the SI
of Ref. [9] the Fourier transform of the image has already been
analyzed in detail, so that we can start here with the results of
this part (which corresponds to the first three steps of the
recipe).

It was shown that the grid from a single cell again does not
reproduce the spots from the CO lattice [step (1)]. A fourfold
increase was necessary [step (2)]. The Fourier transform does

not show any frequencies from this larger periodicity, in
contrast to the first example where weak intermediate spots at
higher-order

ffiffiffi
3
p

positions already indicate that the actual unit
cell is three times larger than suggested by the main moiré
spots (Figure 2b). However, we point out that the augmentation
step does not rely on the existence of such intermediate spots
from the moiré structure but is based on spot positions, in
particular of those from the atomic fine structure, with respect
to the grid. Like in the first example, the reciprocal moiré lattice
vectors defined by the grid led to a matrix in reciprocal space
[step (3)]. By inversion and transposing, the real space matrix

M
ad
¼

5 � 1

1 6

 !

(37)

Figure 4. Analysis of a CO moiré structure on Co(0001) at 100 mbar CO. a) STM image of the moiré structure. T=300 K, Vt= +1.5 V, It=0.7 nA, 80 Å×80 Å.
b) One quadrant of the Fourier transform with a four times smaller grid than from the simple cell. All vectors are labelled equivalently to Figure 2d. c) Model
of the 7 x 7ð ÞR21:8� structure. Color code is the same as in Figure 2e. (Differently from Ref. [9], the Fourier transform has been corrected for some small drift
such that the symmetry is exactly hexagonal.) Adapted with permission from B. Böller, P. Zeller, S. Günther, J. Wintterlin, ACS Catal. 2020, 10, 12156–12166
(Ref. [9]). Copyright (2020) American Chemical Society.
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was obtained.[9] The first line of M
ad

is one of the solutions for

~Lmoiré ¼ ðr; sÞ, expressed in units of the lattice vectors of the
adsorbed layer, i. e., ðr; sÞ= (5,� 1). ~Lmoiré ¼ ðr; sÞ is then rotated
by 60°, 120°, etc. by means of Table 2, giving six solutions,
ðr; sÞ= (5,� 1), (6,5), (1,6), (� 5,1), (� 6,� 5), (� 1,� 6).

We briefly work through the next steps of the recipe that
have not been applied in Ref. [9]. In step (4), from each of the
six vectors ~Lmoiré ¼ ðr; sÞ a vector ~Lmoiré ¼ ðm; nÞ is generated by
the transformation m; nð Þ ¼ ðr � 2; sÞ (the equation from Ta-
ble 1 for the quadrupled cell), giving ðm; nÞ= (3,� 1), (4,5),
(� 1,6), (� 7.1), (� 8,–5), (� 3,� 6). With m, n, r, and s determined,
step (5) is applied to evaluate the full set of lattice parameters
for the six solutions. The results are listed in Table 5.

To decide which of these six solutions describes the present
system [step (6)], we again add the reciprocal substrate vector
1; 0ð Þ*sub that was determined in Figure 3b to Figure 4b. From
the rough length and orientation of 1; 0ð Þ*sub one reads out
x < 1 and a negative f. Solutions 1, 2, and 6 can therefore be
sorted out because they all have x > 1, and solutions 3 and 4
can be sorted out because both have f > 0. Solution 5 is thus
identified as the correct structure. The evaluated coverage of
V=0.63 is consistent with the fact that in the first example,
where the CO pressure is higher, a higher coverage, V=0.65, is
evaluated.

For the labelling step (7) ~Lmoiré ¼ m; nð Þ is rotated by the
equations in Table 2 to give ðm; nÞ= (� 8,� 5), (� 3,� 8), (5,� 3),
(8,5), (3,8), (� 5,3). Then, from these six vectors an arbitrary tuple
of 120° rotated vectors is chosen to construct M

sub
for the

matrix notation, for example

M
sub
¼
� 8 � 5

5 � 3

 !

: (38)

The corresponding adsorbate matrix M
ad

is

M
ad
¼
� 6 � 5

5 � 1

 !

: (39)

In Wood’s nomenclature the structure is labelled using the
entries for Lmoiré=asub ¼

ffiffiffiffiffi
49
p

and Φsub= � 141.8°. The result is a
7 x 7ð ÞR21:8� structure. A structure model is shown in Fig-
ure 4c.

Again, the structure is the same as the one previously
obtained by the commensurability plot method.[9] The example
shows that the recipe leads to a unique result despite the
enhanced noise level in the STM image and despite the fact
that the Fourier transform does not show the spots from the 4
times larger unit cell.

2.2.3. Moiré Structure of CO Molecules on Co(0001) Formed in a
2 :1 H2/CO Mixture at 950 mbar (Example 3)

The experiment was part of a study of the cobalt-catalyzed
Fischer-Tropsch synthesis and was therefore performed with a
mixture of H2 and CO.[9] However, at the temperature of 300 K
in this experiment, only CO is adsorbed on the Co(0001) surface
– the adsorption of hydrogen is blocked –, so that the moiré
structure in Figure 5a is exclusively formed by CO molecules.
The signal is somewhat noisy but, as we have seen above, this
does not necessarily cause problems. However, in this case, the
moiré structure additionally displays some disorder. This is
illustrated by the yellow lines in Figure 5b marking ordered
rows of moiré unit cells. One can see that at many positions the
lines are interrupted and displaced with respect to each other,
indicating dislocations in the moiré structure.

In the analysis of the Fourier transform of this image, one
finds that the positions of the spots cannot be described by a
grid from a simple cell, like in the first two examples [step (1)].
Hence, the cell augmentation method has to be applied [step
(2)]. It gives an acceptable result for a grid from a three times
larger cell (Figure 5c), but in this case the grid from a four times
larger cell describes the positions of most spots not much
worse (Figure 5d). It would not be justified excluding this
second possibility on the basis of these data. This ambiguity
probably has to do with the dislocations seen in the real-space
data that, in reciprocal space, lead to a less well-defined spot
pattern in the Fourier transformation.

The subsequent analysis of the two possible grids that
represent two different reciprocal moiré lattices is as above.
Because no new aspects are introduced in this part we work

Table 5. Lattice parameters of the six solutions for the moiré structure formed by CO on Co(0001) at p(CO)=100 mbar and T=300 K.

ðm; nÞ ðr; sÞ Lmoiré=asub Lmoiré=aad x V Fsub Fad f

1 (3,� 1) (5,� 1)
ffiffiffiffiffi
13
p ffiffiffiffiffi

31
p

1.544 2.38 � 13.9° � 8.9° � 5.0°

2 (4,5) (6,5)
ffiffiffiffiffi
21
p ffiffiffiffiffi

31
p

1.215 1.48 +70.9° +51.1° +19.8°

3 (� 1,6) (1,6)
ffiffiffiffiffi
43
p ffiffiffiffiffi

31
p

0.849 0.72 +127.6° +111.1° +16.5°

4 (� 7,1) (� 5,1)
ffiffiffiffiffi
57
p ffiffiffiffiffi

31
p

0.737 0.54 +173.4° +171.1° +2.4°

5 (� 8,� 5) (� 6,� 5)
ffiffiffiffiffi
49
p ffiffiffiffiffi

31
p

0.795 0.63 � 141.8° � 128.9° � 12.8°

6 (� 3,� 6) (� 1,� 6)
ffiffiffiffiffi
27
p ffiffiffiffiffi

31
p

1.072 1.15 � 90.0° � 68.9° � 21.1°
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Figure 5. Analysis of a CO moiré structure on Co(0001) in a 2 :1 H2/CO mixture at 950 mbar. a) STM image of the moiré structure. T=300 K, Vt= +0.3 V,
It=0.7 nA, 95 Å×95 Å. The apparent stripe pattern from the upper left to the bottom right is caused by an asymmetric tip. b) Same STM image, with yellow
lines indicating ordered rows of moiré unit cells. c) Fourier transform of (a) with superimposed grid from a tripled moiré unit cell. d) Same Fourier transform
with superimposed grid from a quadrupled moiré unit cell. e) Model of the

ffiffiffiffiffi
61
p

x
ffiffiffiffiffi
61
p� �

R26:3� structure. Color code like in Figure 2e. (Differently from
Ref. [9], the Fourier transform has been corrected for some small drift such that the symmetry is exactly hexagonal.) Adapted with permission from B. Böller, P.
Zeller, S. Günther, J. Wintterlin, ACS Catal. 2020, 10, 12156–12166 (Ref. [9]). Copyright (2020) American Chemical Society.
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through the remaining steps (3) to (7) in the Supporting
Information. The critical step (6), in which one has to decide
about the physically correct structure, does not cause further
ambiguities in both cases, and two clear solutions for moiré
structures are obtained. The solution for the three times larger
cell is a

ffiffiffiffiffi
43
p

x
ffiffiffiffiffi
43
p� �

R7:6� structure. The solution for the four
times larger cell is a

ffiffiffiffiffi
61
p

x
ffiffiffiffiffi
61
p� �

R26:3� structure. Figure 5e
shows a structure model of the latter. Both structures are the
same as those obtained by the commensurability plot
method.[9]

Finding conclusive arguments for or against one of the two
structures is difficult. The first solution, the
ffiffiffiffiffi
43
p

x
ffiffiffiffiffi
43
p� �

R7:6� structure, is the same structure determined
in the 800 mbar experiment, but with a positive rotational angle
of the CO layer (f) instead of a negative one. As one obtains
the

ffiffiffiffiffi
43
p

x
ffiffiffiffiffi
43
p� �

R7:6� structure by reflecting the
ffiffiffiffiffi
43
p

x
ffiffiffiffiffi
43
p� �

R7:6� structures at the
ffiffiffi
3
p

direction of the Co-
(0001) surface, the direction of a mirror plane of the Co(0001)
substrate, the two rotated structures are energetically identical.
This is consistent with the fact that larger-scale STM images of
other CO moiré structures on Co(0001) often show domains
with positive and negative rotations.[9] The observation of a
mirror-image structure at a similar (partial) pressure could
therefore be expected and may speak for a
ffiffiffiffiffi
43
p

x
ffiffiffiffiffi
43
p� �

R7:6� structure. On the other hand, what may
speak for the

ffiffiffiffiffi
61
p

x
ffiffiffiffiffi
61
p� �

R26:3� structure is that the calcu-
lated CO coverage of this structure, V=0.64, is exactly between
the coverages of V=0.63 and 0.65 observed at the lower
(100 mbar) and higher CO pressure (800 mbar), respectively, in
the two above examples.

We are presenting this example as it points to a limit of the
method when the moiré structure lacks long-range order.

2.2.4. Moiré Structure of a Graphene Layer on Ir(111)
(Example 4)

In this example one of the structures formed by graphene
monolayers on Ir(111) is investigated.[18,39] Figure 6a shows the
STM image of a well-ordered moiré structure, and Figure 6b
shows the Fourier transform with marked spots from the moiré
lattice (blue circles) and from the fine structure of carbon atoms
(red circles).

In Figure 6d the grid constructed from the positions of the
moiré spots is superimposed on the Fourier transform (for
clarity, only the main axes of the grid are shown). At first sight it
appears that in this case step (1) already gives the reciprocal
lattice of the moiré structure, i. e., a moiré structure formed by
simple cells. It also appears that the moiré structure is aligned
to the atomic lattice of the graphene. The further analysis
would then be particularly simple and could directly be done
by inspection of Figure 6d. From the threefold positions of the
spots from the atomic structure with respect to the moiré spots
one could at once write down the matrix of the adsorbed layer

M
ad
¼

3 0

0 3

 !

: (40)

However, this conclusion would be incorrect. Close inspec-
tion of Figure 6d shows that the spots from the atomic fine
structure are not exactly on the grid but slightly displaced.
Moreover, these displacements are not random – as one would
expect from experimental errors – but, as shown by the arrows,
systematic in the same rotational direction. This rotation is
obviously real, meaning that the graphene layer is rotated by a
small angle with respect to the moiré lattice. The moiré
structure is therefore not formed by simple cells. Applying the
cell augmentation method in such a case, where displacements
of spots from the grid are very small but not caused by
experimental errors, would no longer make sense. The resulting
cell would be exceedingly large (larger than the STM image),
and the structure is more reasonably classified as incommensu-
rate.

Actually, one can see the incommensurability also in the
real-space STM image (Figure 6c). The black arrows mark cells

that in a true M
ad
¼

3 0

0 3

 !

structure would be equivalent.

One can see that the cells are, in fact, not translationally
symmetric but that their appearance changes from arrow
position to arrow position. On the other hand, an

M
ad
¼

3 0

0 3

 !

unit cell (white in Figure 6c) is still a good

description of the local arrangement of atoms, so that the term
“ 3 x 3ð Þ motif” has been used previously.[39]

The example shows that some care has to be taken when
the Fourier transform of a moiré structure is analyzed. Small but
systematic deviations of spots from a grid may point to an
incommensurate structure. The analysis of such structures is
beyond of what the method presented here can achieve.

3. Conclusions

Commensurate hexagonal moiré structures in STM images can
be analyzed by a manual method, without the use of a
computer. The method consists of seven steps.

In step (1) a grid is constructed from the first-order spots of
the moiré structure in the Fourier transform of the STM image.
If the spots from the atomic fine structure do not fall on the
intersection points of this grid, finer grids are constructed in
step (2). The finally reached grid defines the reciprocal lattice of
the moiré structure. In step (3) a real-space lattice vector of the
moiré structure is constructed, expressed in units of the basis
vectors of the adsorbed layer. In step (4) the moiré lattice vector
is transformed into a form in which it is expressed in units of
the basis vectors of the substrate lattice. This leads to six
possible solutions for moiré structures. In step (5) one calculates
for each solution the lattice parameters, in particular the ratio
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of the lattice constant of the substrate and adsorbed layer and
the rotational angle of the adsorbed layer with respect to the
substrate. When information about the orientation and lattice
constant of the substrate is available from reference measure-
ments, a unique solution can be identified [step (6)]. The
method automatically provides the parameters required for
labelling the moiré structure by the matrix notation and by
Wood’s nomenclature [step (7)].

In the examples investigated, the results of the method
were relatively robust with respect to errors in the orientation
of the substrate, and an enhanced noise level did not prevent
finding a unique solution. The method reached a limit in an
example in which the moiré structure displayed poor long-
range order. Some care was required to exclude an incom-
mensurate structure.

Hexagonal moiré structures are a widespread phenomenon
that has been observed for many combinations of adsorption
layers and surfaces. The method presented here allows
researchers to analyze such structures in STM data without
having to perform numerical computations. The method is
simple and nevertheless rigorous. It also, in a sense, acts
forward, in contrast to trial-and-error approaches where one
basically draws two hexagonal lattices and then varies the
lattice constants and rotational angle until the superimposed
pattern matches the structure resolved by STM. Such time-
consuming approaches are avoided. Finally, we point out that
the lattice parameters of a moiré structure of a physical system
are a direct consequence of the underlying interactions. In turn,
when precise lattice parameters have been obtained from an

Figure 6. Analysis of an STM image of a graphene monolayer on Ir(111). a) STM image of the moiré structure. Vt= +0.25 V, It=30 nA, 30 Å×25 Å. b) Fourier
transform of (a). The main spots from the moiré structure are marked by blue circles, and the spots from the graphene lattice are marked by red circles. c) STM

image with marked 3 x 3ð Þ “motif” of the incommensurate structure (white). Black arrows mark positions that in a real M
ad
¼

3 0

0 3

 !

structure would be

identical. d) Fourier transform overlaid by the grid constructed on the innermost moiré spots. Arrows indicate the displacements of the spots of the graphene
layer from this grid. In this case the Fourier transform has not been corrected for drift. Adapted from P. Zeller, X. Ma, S. Günther, New. J. Phys. 2017, 19, 013015
(Ref. [39]).
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experiment, they can be used to extract improved values of
these interactions.
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