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Abstract

Silicon-based anodes with lithium ions as charge carriers have the highest predicted

theoretical specific capacity of 3579 mA h g−1 (for Li15Si4). Contemporary elec-

trodes do not achieve this theoretical value largely because conventional produc-

tion paradigms rely on the mixing of weakly coordinated components. In this paper,

a semiconductive triazine-based graphdiyne polymer network is grown around silicon

nanoparticles directly on the current collector, a copper sheet. The porous, semicon-

ducting organic framework (1) adheres to the current collector on which it grows via

cooperative van der Waals interactions, (2) acts effectively as conductor for electri-

cal charges and binder of silicon nanoparticles via conjugated, covalent bonds, and (3)

enables selective transport of electrolyte and Li-ions throughpores of defined size. The

resulting anode showsextraordinarily high capacity at the theoretical limit of fully lithi-

ated silicon. Finally, we combine our anodes in proof-of-concept battery assemblies

using a conventional layered Ni-rich oxide cathode.

Key Points:

∙ We present a Si-based anode with superior-performance close to the limits of theo-

retical capacities with an advantage of factor ×10 over any hitherto produced, com-

mercial electrode system.

∙ Ourelectrodes sustain physical bendingwithout surface reconstructionor crack for-

mation, and heat shocks without loss of capacity and overall cycling performance.

∙ The critical, novelty that enables the extraordinary performance increase and dura-

bility of our anodes is a class of semi-conducting porous organic polymers that

replaces all conventional additives in battery ink formulations.
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INTRODUCTION

Cheap, high-performance, and safe energy storage solutions are

needed to address the increasing demand for portable electronics and

the transition to electric mobility. Lithium-ion batteries have replaced

conventional secondary battery technology (like nickel-cadmium and

nickel-metal hydride batteries) due to their high energy densities and

stable capacity retention in the charged state.1 Lithium metal anodes

were quickly replaced by lithium-intercalated graphitic materials in

order to avoid the formation of dendrites that resulted in short circuit-

ing of the two electrodes. However, while lithium-graphite intercalates

are safer and more stable, they have only a tenth of the energy den-

sity of lithiummetal.2 Silicon is a good activematerial for Li-ion anodes

because it has a superior theoretical specific capacity of 3579mAhg−1

(or 8340mAh cm−3) for Li15Si4, and––unlike some transitionmetals––

it is not toxic and abundant.Moreover, its alloying reactionwith lithium

triggered at 0.3 V versus Li+/Li, prevents the formation of lithium

around the anode during charging––a detrimental process observed

for graphite-based Li-ion batteries known as “lithium plating”––and

allows the use of Si electrodes under harsher conditions.3 The large

number of lithium atoms that silicon can store, however, induces

large volume changes during charge/discharge cycling (> 300%).3 The

mechanical stress induced by these drastic volume changes leads to

the pulverization of the silicon active material, loss of contact of the

electrode filmwith the current collector, and loss of overall mechanical

integrity of thewhole electrode. Repeated cycles of expansion and con-

traction of silicon expose pristine silicon surfaces and induce the refor-

mationof solid electrolyte interfaces (SEIs). This process contributes to

the gradual consumption of lithiumand electrolyte, and it limits the dif-

fusion of charge carriers through the expanding SEI.3–7 It is difficult to

counter these detrimental mechanical and chemical changes to silicon-

based electrodes because conventional methods of electrode assem-

bly rely on themixing ofmultiple components that are held together by

weak, dispersive forces.

In laboratory settings, some strategies were developed to address

the inherent flaws of these multicomponent assemblies. For exam-

ple, shaping silicon into hierarchical, nanosized, or porous structures

buffers some of its dramatic volume expansion during lithiation.7 On

the downside, nanostructured silicon is susceptible to restructuring

during battery operation, and its larger specific surface promotes reac-

tions with the electrolyte to formmore of SEI. In other approaches, sil-

icon particles are encapsulated in a carboneous matrix,8 or they are

coated with metal oxides.9 However, encapsulation of silicon requires

supplementary components that do notmeaningfully contribute to the

capacity of the electrode and might necessitate the addition of agents

that enhance electrical conductivity. Such modifications of the active

material prior to electrode assembly have proven too time-consuming,

low yielding, and expensive and, hence, none of these methods have

found their way into commercial processes to date.

In this work, we present a departure from the current “blend-and-

bake” paradigm of electrode manufacture. In a one-pot process, we

embed silicon nanoparticles (Si NPs) in a covalently linked, porous,

semiconducting polymer matrix whose growth is initiated and tem-

plated by the current collector (Cu) itself. The covalent bonds of the

organic matrix contribute to a superior mechanical and chemical resis-

tance of our electrode films. The overall π-conjugated backbone of the
triazine-based graphdiyne (TzG) polymer enables the transport of elec-

trons from the active material to the current collector. Since the poly-

merization is promoted by the reactive metal surface of the current

collector, the resulting polymer/silicon composite (TzG/Si) adheres

strongly to it.10 In summary, the covalent polymer matrix acts at the

same time as (1) a strong binder, (2) an electrical conductor, and (3)

a semipermeable membrane that enables transport of ions and elec-

trolyte but prevents the migration of homogeneously dispersed silicon

nanoparticles even under harsh conditions. This facile method yields

silicon-based anodes (TzG/Si@Cu) of superior performance that suffer

little mechanical and electrochemical deterioration from the inherent

volume expansion of silicon during lithiation-delithiation and that dras-

tically limit the detrimental loss of lithium and electrolyte at the SEI.

RESULTS AND DISCUSSION

Electrodes of TzG/Si@Cu are prepared by dissolving the organic

monomer 2,4,6-tris(4-ethynylphenyl)-1,3,5-triazine and dispersing Si

NPs in pyridine in a 25%:75% weight ratio, respectively. The reac-

tion mixture is then transferred onto a copper foil (Figure 1a,d; Sec-

tion S1, Schemes S1 and S2). Residual Cu(II) and Cu(I) species on

the untreated copper surface initiate the polymerization via a Glaser-

type oxidative coupling reaction.11–13 The polymerization is driven to

completion, and the pyridine is removed by evaporation.10 13C cross-

polarization/magic-angle-spinning solid-state NMR (Figure 1b) shows

the characteristic signals of a triazine-based graphdiyne polymer;10

the triazine carbon at ∼170 ppm and the diyne-bridges at 75–85 ppm.

An additional signal seen at ∼30 ppm is attributed to O2SiMe2 sur-

face groups originating from the preparation of these commercially

available Si NPs. This is corroborated by 29Si single-pulse-magic-

angle-spinning solid-state NMR (Figure S1) and Fourier transform

infrared spectra (Figure S2).14–16 The Raman spectrum of TzG/Si@Cu

(Figure1c) shows stretching bands of diyneC≡Cat2209 cm−1, triazine

C = N at 1411 cm−1, phenyl C = C at 1604 cm−1, and crystalline Si-Si

bonds at 518 cm−1.10,17,18

X-ray photoelectron spectroscopy (XPS) performed on c-axis ori-

ented layers of TzG/Si@Cu shows all expected carbon environments

in the C 1s region that are observed for the neat TzG polymer

(Figure S3a).10 In addition, Si 2p spectra show the presence of surface

silicon oxide, SiOx (∼34%) and neat silicon (66%) (Figure S3b), com-

pared to as-received Si NPs that contain 21% of SiOx and 79% of Si(0)

environments (Figure S3d).19–22 In summary, spectroscopic analysis

confirms the formation of a covalent, conjugated, triazine-based poly-

mer network around chemically unchanged Si NPs.

For comparison, we have prepared three different types of elec-

trode systems via the same one-pot method described above but with

varying compositions to carefully test the effects of individual compo-

nents: (1) growing a film of TzG on Cu, we obtain TzG@Cu, (2) growing

TzG in the presence of Si NPs, we get TzG/Si@Cu (in ratio 25/75 wt%),
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NATURAL SCIENCES 3 of 9

F IGURE 1 Micro- andmacroscopic characterization of the chemical make-up of TzG/Si@Cu (TzG/Si = 25/75wt%) electrodes. (a) Synthetic
pathway for the triazine-based graphdiyne (TzG) polymer. Spectroscopic characterization showing the corresponding (b) 13C
cross-polarization/magic-angle-spinning (CP/MAS) solid-state NMR spectrum of the TzG/Si polymer composite, and (c) the Raman spectrumwith
fluorescence background collected with a 532 nm laser. (d) Schematic of the TzG/Si@Cu electrode. Scanning electronmicroscopy (SEM) images
showing (e) the top-view surfacemorphology and (f) the cross-sectionmorphology of TzG/Si@Cu films. (g) Low-resolution transmission electron
microscopy (TEM) images and energy-filteredmapping images showing the homogenous distribution of carbon and silicon environments, and (h)
high-resolution TEM images showing Si NPs fully enclosed by TzG polymer

and (3) TzG/Si/CB@Cu (in ratio 20/60/20wt%) is produced by growing

TzG around Si NPs and a conventional electronically conductive addi-

tive, carbon black (CB) (Section S1.5).

Scanning electron microscopy (SEM) images reveal the morphology

of pristine TzG/Si@Cu electrodes. The material grown on the copper

support adopts a porous, sponge-like, and homogeneous morphology

as seen top-down (Figure 1e) and from cross-sections of the electrode

film (Figure 1f). Cross-sectional SEM imaging at lower magnifications

shows filmsofTzG/Siwith a thicknessof∼25μmthat adherewell to the

Cu substrate with no apparent gaps (Figure S4). More detailed trans-

mission electron microscopy (TEM) energy-filtered mapping on TzG/Si

films shows a homogenous distribution of carbon and silicon on the

nanometer level (Figure 1g). On the nanoscale, the electrode film con-

sists of Si NPs homogenously embedded in an organic polymer matrix

of TzG. Residual Cu nanoparticles (less than 1 wt%) can be seen within

the polymer matrix that stem from the TzG polymerization process

(Figure 1h; a comparison of TEM images of TzG@Cu and pristine Si NPs

can be found in Figure S5).10 Overall, individual Si NPs are enclosed by
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4 of 9 ONE-POT SYNTHESISOFHIGH-CAPACITY SILICONANODES

TABLE 1 Relativemolar concentrations of elements as determined by peak integration using X-ray photoelectron spectroscopy (XPS) data
recorded at 1486.6 eV for TzG/Si@Cu electrodes at various stages of de-/lithiation cycled at a constant current of 0.32mA cm−2 (i.e., C/8 for the
capacity of Si, within 0.01–1.2 V vs. Li+/Li)

Sample Stage during cycling C (%) Si (%) N (%) O (%) Li (%) F (%) P (%)

TzG/Si@Cu Pristine 21.38 38.24 2.32 38.06 0.00 0.00 0.00

TzG/Si@Cu First lithiation 22.20 2.22 0.27 29.08 27.31 16.98 1.94

TzG/Si@Cu First delithiation 29.19 1.62 0.17 28.78 20.74 18.41 1.08

TzG/Si@Cu 100th delithiation 44.48 0.78 0.53 29.85 16.09 7.68 0.60

Note: Calculated based on XPS C 1s, Si 2p N 1s, O 1s, Li 1s, F 1s, and P 2p spectra.

the conjugated, polymer and held cooperatively as a film on the current

collector.

We have shown previously that neat, unmodified triazine-

based graphdiyne polymers are narrow band-gap semiconductors

(Eg,elec = 1.84 eV and conductivity of 1.2 μS cm−1 at RT)withmoderate

porosities (N2 BET surface area of 124m
2 g−1 at 77 K).10,23 Hence, the

composite TzG/Si on Cu foil (TzG/Si@Cu) has a promising combination

of chemical, electrical, and structural features for electrochemical

energy storage applications.

In the following (Section S2.1), we discuss the electric and elec-

trochemical performance of TzG-based electrodes and the effects of

the TzG polymer on the formation of the SEI. For the three electrode

systems TzG/Si@Cu, TzG/Si/CB@Cu, and TzG@Cu, (1) we compared

the bulk conductivities of the unlithiated, “as-synthesized” electrodes

(Figure S6), (2) we recorded cyclic voltammetry curves (Figure S7),

and (3) we performed ex-situ XPS measurements probing the elec-

trode surfaces to a depth of approx. 10 nm after a number of de-

/lithiation cycles (Figure 2a; Figures S8, S9, S10, and S13; Table S1;

details of the XPS spectra fittingmethod are described in Section S1.7).

During the first lithiation of the TzG/Si@Cu electrode, the resulting

composition of the film presents a content with up to 43.9 mol% of

cumulative Li, F, and P elements (Table 1). Furthermore, after the first

cycle of lithiation and delithiation, we observe that the initial Si 2p sig-

nal of the pristine electrode decreases dramatically in intensity from

40.8 mol% to a value close to zero (Table 1). The fitting of C 1s, F 1s,

and Li 1s spectra (Figure S10) indicates the formation of the SEI dur-

ing the first lithiation, resulting in the variations of surface elemen-

tal concentration mentioned above. Note though that even after the

100th delithiation event, we detect a signal of Si(0) in the Si 2p region

(Figure 2a, iv, Table 1). This finding suggests that SEI formation is com-

pleted at an early stage, and that SEI thickness does not increase dra-

matically throughout cycling.24,25 XPS data from the Si 2p region of

TzG/Si@Cu electrodes cycled at C/8 (Figure 2a) show the emergence

of newSi 2p peaks corresponding to LixSi, SiOxFy, and LixSiOy after the

first-cycle lithiation.19–22 The presence of SiOxFy presumably results

from the non-Faradic reaction between the remaining LiPF6 and the

SiOx on the surface of the Si NPs, during the opening of the cell for

ex-situ measurement.19 The environments of LixSi and LixSiOy orig-

inate from the electrochemical alloying reaction of silicon and SiOx

with the lithium ions in the electrolyte, as further corroborated by

emerging signals in the F 1s and Li 1s regions (Figure S10b,c).20,22

Pristine and delithiated samples of TzG/Si@Cu all show peaks corre-

sponding to Si(0) and SiOx, indicating a fully reversible de-/lithiation

process.

Ex-situ TEM and SEM imaging of TzG/Si@Cu electrodes at different

cycling stages (Figure 2b–d) reveal that prior to cycling, the TzG poly-

mer acts as a binder that joins Si NPs into a porous TzG/Si composite

(1). After the first lithiation, individual particles of increased size can

be discerned that correspond to lithiated and volumetrically expanded

domains of LixSi, all embedded in a fabric of polymer and SEI (2). After

the first delithiation, the size of the spherical Si domains decreases (3),

and after the 100th-cycle delithiation, all that can be said is that the

TzG/Si composite showsnodiscernible large cracksor deformations (4)

(cosupported by Figures S11 and S12).

A comprehensive discussion of these findings is presented in Sec-

tion S2.2. For now, we conclude that: (1) the alloying reaction between

lithium and Si NPs takes place unhindered, hence, the TzG polymer

matrix allows lithium to diffuse, (2) the conductivity enhancing additive

in TzG/Si/CB@Cu has no positive effect on the performance of TzG-

based electrodes cycled at a low C-rate of C/8, hence, the initial, mod-

est conductivity of undoped TzG is no impediment for its use in elec-

trodes; and (3) the TzG polymer does not participate in the detrimental

depletion of lithium or electrolyte on its own, and SEI formation occurs

exclusively in the presence of Si NPs. It is particularly surprising that

TzG-based electrodes perform as well as they do, given their low con-

ductivity in the pristine, unlithiated state. While an in-depth study of

the electrical conductivity of lithiated TzG/Si@Cu is out of the scope of

this work, XPS results for TzG@Cu suggest that the first lithiation cycle

leads to n-doping of the TzG polymer by N 1s signal shifting to higher

binding energy (Figure S8),26–28 analogous to lithiated graphite,29,30

and, hence, to an increase in its conductivity above and beyond the

effect achieved by the conducting additive in TzG/Si/CB@Cu. Electro-

chemical impedance spectroscopy of the TzG/Si@Cu half-cell at differ-

ent stagesofdischargeatC/8corroborated the increasedelectroncon-

ductivity after n-doping (Figure S14) compared to the pristine state.10

We subjected the TzG/Si@Cu electrode to de-/lithiation cycling at

C/8 in a half-cell setup recording specific capacity (Figure 3a,b). In

the first lithiation cycle, we observe the formation of the SEI at a

comparatively low Coulombic efficiency (CE) value of ∼70%, mean-

ing that the surface of Si NPs is readily accessible for lithium and for

the electrolyte via the pore channels of the TzG polymer. Similar CEs

have been reported for nanosized silicon particles with a large exter-

nal surface area. Microsized silicon particles with a smaller ratio of

exposed surfaces show higher initial CE values but suffer from limited
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F IGURE 2 Characterization of TzG/Si@Cu electrodes using (a) X-ray photoelectron spectroscopy (XPS) data from the Si 2p region, (b)
transmission electronmicroscopy (TEM), and (c, d) scanning electronmicroscopy (SEM) at different magnification. Data are presented for
TzG/Si@Cu electrodes in the pristine state (i), after the first lithiation (ii), after the first delithiation (iii), and after the 100th delithiation (iv). Cycling
was performed using constant current mode at C/8within a voltage range of 0.01–1.2 V versus Li+/Li

lithiation capacities and poor cycling performance.31 In the third cycle,

the CE rises above 97% and steadily improves up to 99.5%, which

means that SEI formation is completed early on. The specific capacity

observed during the first lithiation exceeds the theoretical value for

Li15Si4 (3579 mA h g−1) due to the formation of the SEI.32–34 Start-

ing with the second cycle, no excess capacity is recorded and, hence,

the newly formed SEI does not contribute to the measured discharge

capacity. The recorded specific lithiation capacity in the second cycle

is ∼3500 mA h g−1, and it remains at a record high in subsequent

cycles (e.g., ∼3450 mA h g−1 in the fifth cycle). In comparison, the

TzG/Si/CB@Cuelectrode prepared togetherwithCBdoes not perform

better than the additive-free electrode (Figure S15). Taking the specific

lithiation capacity in the second cycle as a baseline, TzG/Si@Cu retains

81.0%of its specific capacity after 50 cycles (2862mAhg−1) and69.1%

after 100 cycles (2443 mA h g−1). Conversions of these values to areal

and volumetric capacities can be found in Figure S16.

For comparison, we prepared two electrodes using conventional

binders and CB additive, PVdF/Si/CB@Cu and PAA/Si/CB@Cu
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6 of 9 ONE-POT SYNTHESISOFHIGH-CAPACITY SILICONANODES

F IGURE 3 (a) Specific capacities normalized to Si mass and Coulombic efficiencies (CEs) versus cycle number, and (b) potential versus specific
capacity curves for consecutive de-/lithiation cycles: half-cell performance data of the TzG/Si@Cu electrodes. Galvanostatic charge-discharge
cycling with potential limitation (GCPL) uses constant current mode at C/8within a voltage range of 0.01–1.2 V versus Li+/Li. (c) Half-cell
performance data of the electrodes TzG/Si@Cu (in red) and TzG/Si/CB@Cu (in black) compared to electrodes using conventional components
PAA/Si/CB@Cu (in blue) and PVdF/Si/CB@Cu (in green): specific capacities normalized to Si mass/CE versus cycle number. All electrodes were
cycled at C/2.5, including the initial two precycles at C/20within a voltage range of 0.01–1.2 V versus Li+/Li. TzG/Si@Cu electrodes were prepared
with a composition of TzG 25wt%/Si 75wt% (mass loading 0.7050mg cm−2). TzG/Si/CB@Cu electrodes were preparedwith a composition of TzG
20wt%/Si 60wt%/CB 20wt% (mass loading 0.7589mg cm−2). PAA/Si/CB@Cu electrodes were prepared from a slurry with a composition of PAA
20wt%/Si 60wt%/CB 20wt% (mass loading 0.6782mg cm−2). PVdF/Si/CB@Cu electrodes were prepared from a slurry with a composition of
PVdF 20wt%/Si 60wt%/CB 20wt% (mass loading 0.5184mg cm−2)

(Figure 3c).21,35 These conventional formulations allow a total Si

mass loading of up to 60% without compromising the performance

of the electrode, compared to 75% of Si in the TzG/Si@Cu system.

Overall, the specific capacity of TzG/Si@Cu anodes exceeds that

of the best-performing multicomponent systems with and with-

out conductivity-enhancing additives that are reported to date

(Table S3).36–45 We tuned mass loading of TzG/Si@Cu electrodes

that lead to similar excellent performance (Table S2, Section S2.6,

and Figures S17–S19). For example, we were able to increase the Si

mass loading of the electrode beyond 1 mg cm−2 by two rounds of

polymerization on top of a TzG/Si@Cu electrode in the presence of

small quantities of Cu(OAc)2 as an additional source of Cu(II) species

(Section S1.6 and Table S2). The obtained electrodes show a stable

cycling performance and comparably high capacities as electrodes

obtained in a one-step growth process (Figure S19).

TzG is a thermally stable polymer with a decomposition onset

above 400◦C under air.10 Hence, we tested the performance of the

TzG/Si@Cu half-cell after a heat treatment of 80◦C for 6 h, above

temperatures experienced by Li-ion batteries in some industrial and

military settings. The overall performance of the TzG/Si@Cu half-cell

after the thermal-stress test remains at ∼3000 mA h g−1 in the sec-

ond cycle comparable to the performance of untreated electrodes. The

difference in overall capacity and capacity retention can be attributed

to partial decomposition of LiPF6 during the extended heat treat-

ment (Figure S20). As a proof of concept, we assembled a full cell

usingTzG/Si@Cuas the anode and the commercially available standard

 26986248, 2022, 3, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/ntls.20210105 by H

um
boldt-U

niversitat Z
u B

erlin, W
iley O

nline L
ibrary on [16/12/2022]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



NATURAL SCIENCES 7 of 9

NCM811 as the cathode (Figures S21 and S22). The NCM811 cath-

ode was selected over three commercial options (NCM532, NCM622,

and NCA) as the one with the highest specific capacity andmost stable

cycling performance. We believe that full-cell assemblies with better

CEs can be achieved using cathodes that (1) match the high capacity of

our anode better, and (2) have similar diffusion kinetics.

CONCLUSION

We present here a one-pot synthetic protocol that yields high-

performance silicon anodes within 1 h of reaction time. These anodes

consist of silicon nanoparticles that are fully encapsulated by a semi-

conducting, porous triazine-based graphdiyne (TzG) polymer that

grows directly on the Cu current collector. Cu foil plays three roles in

this paradigm-changing method of anode fabrication: it acts (1) as a

source of Cu species for a Glaser-type oxidative coupling polymeriza-

tion, (2) as templating substrate for the polymer film, and (3) as the cur-

rent collector of the electrode. The porous, semiconducting TzG poly-

mer acts (1) as a strong, flexible binder that envelops Si NPs with a

matrix of covalent bonds that can sustain the dramatic volume changes

of silicon in repeated de-/lithiation cycles and prevents detrimental

abrasion and reformation of the SEI, (2) as a facilitator of charge trans-

port along its π-conjugated polymer backbone, and (3) as a medium for

mass transport of lithium ions and electrolyte through its microporous

channels. The resulting anodes achieve stable electrochemical cycling

performance and an extraordinarily high capacity close to the theoret-

ical limit of electrochemical storage using silicon. The reported process

uses rawmaterials andmethods common in industrial electrodemanu-

facture and can be transferred and scaled up with ease. Half-cell elec-

trode assemblies in the off-state retain key performance parameters

even after thermal stress, and full-cell cycling tests using commercial

cathodes demonstrate the viability of this technology in commercial

applications.
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