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Abstract. This work presents the Opt-ID software developed by the Rosalind Franklin
Institute (RFI) and Diamond Light Source (DLS) in collaboration with Helmholtz-Zentrum
Berlin (HZB). Opt-ID allows for efficient simulation of synchrotron Insertion Devices (ID)
and the B fields produced by a given arrangement of candidate magnets. It provides an
optimization framework built on the Artificial Immune System (AIS) algorithm for swapping
and adjusting magnets within an ID to observe how these changes would affect the magnetic
field of a real-world device, guiding ID builders in the steps they should take during ID
tuning. Code for Opt-ID is provided open-source under the Apache-2.0 License on Github:
https://github.com/rosalindfranklininstitute/Opt-ID
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1. Introduction

Optimizing an Insertion Device (ID) is a delicate and time-consuming process that is necessary
to reach the exacting tolerances required by synchrotron storage rings and beamline science
applications. Due to minor imperfections of permanent magnets commonly used to construct
undulators, careful ordering and arrangement of magnets is needed to ensure the ID can produce
light with the highest achievable brilliance. Determining an optimal ordering for a set of magnets
is a complex and labour-intensive process where an initial ordering of magnets is assembled, then
modified through iterative refinement guided by measurements of the B field produced by the
device. To handle the extremely large combinatorial search space, many ID groups use simulation
driven optimization to search for a strong initial magnet ordering to begin assembly, often based
on well established methods such as Simulated Annealing (SA) [7, 9] and Genetic Algorithms
(GA) [5].

This work presents Opt-ID, a novel software framework written in Python that applies state-
of-the-art optimization and simulation techniques to efficiently search for well-performing magnet
configurations. Opt-ID leverages the AIS algorithm [15, 8, 11], which dynamically balances wide
exploration of the search space against focused exploitation of well-performing regions, and is
built on prior work on SA sort code written in Fortran 77. Along with searching for a strong
initial magnet configuration in-simulation, Opt-ID incorporates real-world field measurements
to guide construction through iterative phases of trajectory shimming and re-measurement,
narrowing the reality-gap and reducing the number of physical alterations that need to be
performed to tune an ID. Changes to the device B field are efficiently calculated using lookup-
tables, enabling Opt-ID to iterate through a greater number of candidate magnet orderings
within a fixed computation budget. Opt-ID and AIS scale robustly across distributed and
heterogeneous compute resources, further increasing its efficacy at exploring the search space.

At DLS, a modern 3rd generation synchrotron, Opt-ID has been used to efficiently sort and
shim IDs of various designs including PPM, hybrid CPMU, and APPLE-II undulators.

2. Tuning IDs

When optimizing IDs the goal is to maximize the brilliance of the emitted light. Brilliance
(equation 1) is a function of the rate at which photons are emitted over time, the angular
divergence of the photon beam, the cross-sectional area of the electron beam, and how tightly
grouped the emitted wavelengths are around the target wavelength [14, 10].

brilliance =
photons

second ·mrad2 ·mm2 · 0.1%BW
(1)

Some terms in the brilliance equation are more feasible to tune than others when optimizing
an ID. Photon rate is largely controlled by the number of periods in the ID meaning to increase
brilliance more periods need to be added, leading to a longer device. Minimizing the angular
divergence of the photon beam increases brilliance by ensuring that more photons make it
downrange to the target. As the velocity of the electron beam approaches the speed of light,
the upper-bound on angular divergence is decreased due to relativistic effect which pushes the
directional profile for photon emission towards a Dirac distribution. Shrinking the cross-sectional
area of the electron beam focuses the aperture in the XZ-plane where photons are being emitted
along the length of the device. Lastly, consistency of oscillations in B field along the ID controls
the purity of the emitted wavelengths in the photon beam.

In practice, maximum device length, electron beam energy, and lower-bounds on angular
divergence and cross-sectional area will all be constant when optimizing an ID for a given
synchrotron facility. Magnet geometry, material, ideal field vectors, and device arrangement
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are determined through an initial design and optimization procedure such that the ideal device
has the desired properties such as photon wavelength and polarization. Magnet geometry is
chosen to balance the desired effect on the device B field against the engineering and logistical
constraints of needing to be able to clamp magnets in accurate positions and orientations within
device girders.

Maximizing brilliance with these external constraints, a chosen ID design, and a set of
precisely manufactured candidate magnets, therefore simplifies to considering how to best
compensate for the manufacturing tolerances and deviations of each magnet during the assembly
procedure.

2.1. Initial Sorting

Assembly begins by constructing a rough device from a random or hand selected configuration
of magnets, or one chosen by sorting an initial magnet arrangement in simulation. The latter
approach is often realized based on optimization strategies such as SA [13, 7, 9], GA [12, 5], or
in the case of this work by using AIS [15, 8, 11].

After the rough device has been assembled, the B field is measured at regular intervals along
the centre-line of the device and used to visualize the suitability of the current arrangement.
At DLS and in common with many ID labs, a three-axis Hall probe mounted on a linear rail
running parallel to the ID is used for magnetic field mapping and a copper flipping coil is used
for field integral measurements [2]. The Hall probe and flipping coil are controlled with Igor Pro
[18] using software supplied by ESRF [4, 6].

2.2. Trajectory Shimming

From an initial magnet sort the electron trajectories produced by the ID are tuned to remove
undesirable drifts and deflections (figure 1) by using the measured B field data to select a
number of modifications that are predicted to best correct the observed trajectory errors. These
modifications are applied to the device and it is re-measured using the Hall probe. This process
then repeats until builders are satisfied that any major trajectory drifts or deflections have been
compensated for as best as possible.

Figure 1: The effect of a trajectory shimming iteration on electron trajectories in a CPMU ID.
A small number of carefully selected modifications can have a significant impact on correcting
trajectory errors.
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In each iteration only a small number of modifications are made (approximately 5 per iteration
at DLS). This ensures both a fast turn-around on each iteration between re-measurements, and
also mitigates the compounding effects of the reality-gap, where predictions about the effect a
given modification will have become less accurate as increasing numbers of modifications are
applied in-simulation before the field is re-measured.

3. Magnet Imperfections

To search for well-performing configurations, the effects of magnet errors on the device B field
need to be characterized. At DLS and in Opt-ID magnets are characterized by their size and
measured field vectors compared to the idealized size and field vector for a perfect magnet of
that type. Magnet suppliers used by DLS usually achieve dimensional tolerance within ±40
microns and angular magnetic field tolerance within approximately ±1◦. Even at this precision
significant error will accumulate along the length of an ID and its many magnet elements.

SWAP

FLIPEXCHANGE

Figure 2: Different magnet operations used during sorting and trajectory shimming shown on
the geometry of a 32 period hybrid CPMU ID. Compatible magnets can be swapped with one
another within the device, exchanged with an unused spare magnet, or flipped in-place within
a magnet slot.

To compensate for the deviances of each magnet element and control their combined effects
on field error there are several ways that IDs can be modified to mitigate the accumulated error
along the length of an ID:

Swap operations to the ID are performed by selecting two slots in the device for the same
type of magnet and swapping their currently selected magnets with one another. If the two
slots that are selected refer to different major field directions, i.e. vertical up and down slots
or horizontal front and back slots then magnet elements are flipped as appropriate so that their
major field axis aligns with the new slot.

Exchange operations are similar to swaps except only one slot is chosen from the device,
and the second magnet that will be exchanged is chosen from a set of unused spares of the same
type. Due to the potential for magnet elements to become damaged or to have unacceptably
large error in their manufactured tolerances ID builders at DLS typically order ≈ 20% − 50%
more magnets of each type than are required by the design to allow for exchanges to be made
during tuning.

Flip operations are generally achieved by a 180◦ rotation around the major field axis of the
magnet element. This has the effect of reversing the two minor field axes of the magnet while
maintaining the major field axis, steering the direction of its errors (figure 3). Unlike swap
and exchange operations that can be applied to any magnet candidate and device slots of the
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same magnet type, flip operations require special care to ensure that symmetries in the magnet
geometry are respected.

X

Z

S

X

Z

S

X

Z

S

Z
S

X

180’ 180’

180’180’

Vertical Vertical

Horizontal Horizontal

Figure 3: Applying flip operations to magnet elements over their symmetries. Top: Vertical
magnets with major fields aligned to the Z-axis. Bottom: Horizontal magnets with major fields
aligned to the S-axis

Figure 4 highlights the constraints imposed by magnet geometry and holder design. Both
vertically and horizontally aligned PPM magnets can be flipped about their major field axes by
180◦ while maintaining their respective geometries (figure 4b). For APPLE-II magnets however,
due to the asymmetry of the square-cut corners, applying a flip operation about the Z-axis for
vertically aligned magnets would result in the square-cut corners being on the incorrect sides,
preventing it from fitting in the holder (figure 4a).

(a) APPLE-II type magnet in its holder (b) PPM type magnet in its holder

Figure 4: Magnet geometry and mounting methods effect which symmetries and flip
configurations are available for differently aligned magnets. Left: The square-cut corners used
for clamping the magnet means it only has symmetry about the S-axis, preventing magnets with
a vertical major field axis from being flipped. Right: The magnet geometry is symmetric about
both the Z and S axes, allowing magnets with both horizontal and vertical major field axes to
be flipped through 180◦.

4. Search Space Complexity

The search space of all possible magnet orderings and flip states is prohibitively large to cover
with a brute-force approach. Further, it is extremely sparse with small islands of well-performing
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magnet orderings surrounded by vast gulfs of poorly performing configurations.

Table 1: Search space for a PPM type ID composed of horizontal (HH) and vertical (VV)
magnets, with two accompanying kicker magnets (HE and VE) at the ends of both girders.

Magnet Type Candidates Slots Complexity

HH 576 402 ≈ 101025

VV 576 402 ≈ 101025

HE 24 4 255024
VE 24 4 255024

Table 1 shows the search space complexity for each magnet type of a 100-period PPM device
composed of four types of magnet. The complexity of the marginal search space for each magnet
type can be modelled as: Choose S magnets from C candidates without replacement, where
permutation of selection matters, including both flipped and un-flipped variations on each slot.
Equation 2 models complexity of the full ID as the product of the marginal complexities over
the set of magnet types T .

102056 ≈
∏
t∈T

Ct!

(Ct − St)!
2St (2)

Even for comparatively small areas of the of the search space such as the marginal HE and
VE orderings based on only 24 candidates and 4 slots each, the joint search space of both HE
and VE together already explodes to 65 billion possible configurations. For the full search space
the problem quickly becomes intractable on the order of 102056 configurations.

5. Artificial Immune Systems

a

b

A B C D E E A D C B D B E C A

A B C D E A B C D E E A D C B E A D C B D B E C AA B C D E

A B C D E E A D C B D B E C A

c A C B D E A B D C E D A E C B E A D B C C B E D AE B C D A

D A C E B C A D B E C E B D A

d A C B D E A B D C E D A C E B C A D B E A E B D CE B C D A

Initial Population

Clone Children

Mutate Children

Rank Population

A B C D E E A D C B D B E C AA C B D EA B D C E D A C E B C A D B EA E B D C E B C D A

A B C D ED A C E Be Reduce Population

f Return to step (a) ... ... ...

worstbest

(bold are swapped)

A B D C E

A E B D C

Figure 5: An iteration of AIS optimization on a population of candidate orderings. Candidates
are visualized as a small permutation of 5 characters A-E without duplicates. Bold characters
highlight where mutations to the orderings have been applied.

Opt-ID uses the AIS algorithm [15, 8, 11] to optimize a population of magnet orderings in
search of well-performing candidates. Figure 5 shows an overview of an iteration of AIS acting on
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a small population of three ranked candidate orderings (shown as permutations on the characters
A-E without duplicates) (a). For each candidate magnet ordering xi in the ranked population
compute N,M = Hi (xi), and (b) generate N clones x′i,1 . . . x

′
i,N and (c) mutate them M times

each. The original population combined with the new mutated candidates are then ranked by
an objective function (d) and the top-k are selected to form the population for the next AIS
iteration (e).

The heuristic N,M = Hi (xi) is chosen such that best performing candidates are cloned
wider and mutated shallowly to focus more computation into exploring well-performing regions
of the search space, while candidates with poorer performance are cloned narrowly and mutated
deeply in the hope this will allow them to traverse sparse regions of the search space to where
they may find better performing regions. Thus balancing wide exploration of the search space
against targeted exploitation of regions that are believed to contain strong solutions.

5.1. Comparison to Other Optimization Methods

There are many approaches to tackling optimization on large and sparse search spaces often
based on SA [13, 7, 9] or GA [12, 5] methods, each with their own caveats. GA require careful
design of mutations to ensure combinatorial constraints of the search space are respected (such as
using each magnet in only one slot at a time), and SA based methods can struggle to sufficiently
explore well-performing regions of the search space once they are identified before moving on to
potentially less advantageous regions.

SA can be interpreted as taking a (or many independent) random walk through the search
space. At each iteration a candidate mutation is proposed, and is accepted or rejected randomly.
Often the probability of accepting a candidate is adjusted globally over the length of the
optimization process according to a “cooling” schedule such that early in the optimization
mutations are largely accepted, giving wide coverage of the search space, and towards the end of
the optimization mutations are largely rejected providing stable convergence to at least a local
optimum.

Design of the cooling schedule has a significant impact on the convergence of the SA algorithm
and the quality of its proposed solutions. The schedule must be tuned to each optimization
problem which is often an expensive and non-trivial meta-optimization. Further, as the schedule
cools it becomes decreasingly likely a suggested mutation will be accepted, leading to redundant
and wasted computation in the later parts of the optimization. In AIS the design of the heuristic
for balancing clones vs mutations for each candidate has a similar impact on the quality of
convergence but tends to be significantly more robust to poor tuning given the amount of
information that is shared across the population at each iteration.

Figure 6 shows an equal computation comparison between AIS and SA when performing the
initial sort optimization of a 113 period CPMU device. Because the computation is dominated
by evaluating the objective function this is also an equal time comparison. Both algorithms
used a population size of 24 and performed an equivalent number of mutation operations over
the run. AIS used generic un-tuned hyper-parameters for controlling the exploration that have
shown to be robust in many conditions, while for SA time was spent tuning hyper-parameters
and the best performing run is reported.

AIS is able to rapidly and stably converge to a strong solution and exhibits good performance
across the population due to the ranking and filtering phase at each iteration. SA, which does
not communicate information across the population, shows higher variance and at several points
during the run spends significant time in regions that perform worse than previously identified
solutions. After 1000 iterations both algorithms are still steadily improving the quality of their
solutions, however it is clear that AIS has converged faster and more stably towards a stronger
set of candidates.
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Figure 6: Equal computation/time comparison of AIS vs SA when performing the initial sort
optimization of a 113 period CPMU device. Both algorithms used a population size of 24 and
performed an equivalent number of mutations over the run. Dashed lines show the fitness of the
best candidate in the population at each iteration while the solid lines and error bars show the
mean and standard deviation across the population.

5.2. Distributed Optimization

Both SA and AIS can benefit greatly from executing in distributed compute environments
allowing for more magnet orderings to be simulated and compared, increasing the likelihood
of discovering well-performing regions of the search space. While scaling SA is trivial due to its
embarrassingly parallel nature, AIS requires periodically communicating the local populations
of each node.

Figure 7 shows a high level overview of distributed AIS, where each parallel node of the
computation starts by making one or more optimization iterations to its local population (figure
5) before all-to-all communicating to one another so that each node has the global population.
Nodes then independently form a consensus by ranking their copy of global population, before
finally each node takes a non-overlapping subset of the ranked population such that each gets a
fair balance of the best performing candidates.

1 2 3 4 5 6

1 2 34 5 6

Per node 
populations

Per node mutations

All-to-all ranking

Balanced 
redistribution

Node 1 Node 2 Node 3

Figure 7: Distributed AIS communicating local populations of candidates between nodes and
redistributing the top-k candidates fairly to keep all nodes operating in well-performing but
diverse regions of the search space.

Distributed AIS has the effect of keeping all nodes working on areas of the search space
that are likely to contain or be adjacent to well-performing magnet orderings throughout the
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optimization process. This is preferable to distributed SA using many independent random
walks over the search space, where it is likely that nodes will spend a lot of their time with local
populations containing many poorly performing candidates.

6. Efficiently Computing B Fields

Computing high-fidelity B fields is vital to closing the reality-gap between simulation and real-
world measurement of IDs. However, for large IDs containing many hundreds or thousands of
magnet elements re-simulating the full field after each mutation would be prohibitively expensive,
limiting the number of candidate orderings that can be explored.

Without considering the non-linear field contributions of the ID (such as iron poles in hybrid
CPMU devices), Opt-ID assumes unit-permeability of the magnets, allowing the full ID B field
to be approximated by the element-wise sum of independent fields for each magnet sampled over
the same lattice of world-space coordinates (figure 8).

The lattice of coordinates used by Opt-ID is user defined, but in-general chosen to be a
tightly focused, 3× 3 Cartesian grid centred and extruded along the path of the electron beam
with a small step size of 0.1mm in the X- and Z-axes. The step size along the S-axis is the
most vital parameter for achieving high-fidelity optimization of the device field, chosen such
that a constant number of samples is taken for each magnet element along the device with good
resolution. Commonly a step size of 1/20th of the period length is used at DLS.

(a) B field

X

S
Z

Mi[0,2,0]

Mi[0,2,1]

Mi[0,2,2]

Mi[0,2,3]
Mi[1,2,3]

Mi[2,2,3]

Mi[2,1,3]

Mi[2,0,3]

xx  xy  xz
yx  yy  yz
zx  zy  zz

Mi[0,2,0] =

(b) Lookup-table lattice of matrices

Figure 8: Sampling lattices used to evaluate B fields efficiently. Left: A cross section view of the
ZS-plane showing the B field of a simulated PPM device with a 1mm gap. Along the centre-line
the red arrow shows location of the sampling lattice, while the outlines of the inner edges of the
magnets are shown in white. Right: An orthogonal sampling lattice of affine matrices.

Given the current device and its approximated B field, applying a mutation simplifies to
subtracting the field contribution of the magnet currently in a device slot and adding the field
of a new magnet in a given orientation. This in-place update of the field can introduce some
variance over many iterative modifications due to floating point error, but this can be mitigated
by periodically re-summing over the full ID to place an upper-bound on the accumulated error.

Opt-ID further accelerates simulating the per-magnet B fields using lookup-tables for each
magnet slot within the device. Consider Bc,i as the field of a given candidate magnet c placed in
the ith slot of the device sampled over a regular lattice of world-space coordinates, as a tensor
with shape (X,Z, S, 3) that is dependent on the major field vector of the candidate magnet Fc

which contains some error. Rather than directly simulating Bc,i on-the-fly, Opt-ID pre-computes
a lookup-table Mi for the ith slot as a matrix-valued lattice with shape (X,Z, S, 3, 3) where the
elements are affine scale + rotation matrices that transform the candidate field vectors Fc into the
B field vector for each location on the sampling lattice through broadcast matrix multiplication
Bc,i = Fc

⊗
Mi. The matrix elements of Mi are computed by stacking orthogonal-basis fields
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BX,i, BZ,i, and BS,i along their trailing axis (figure 8b, lower right), where the basis fields are
simulated assuming an ideal magnet is placed in slot i with major field vector aligned to the
basis with unit magnitude.

Opt-ID currently uses a stretched-wire approximation of rectangular magnet elements, with
limited support for some complex geometry such as the square-cut corners commonly featured on
APPLE-II type magnets. An open area of development within Opt-ID is allowing for multiple
back-end magnetostatic solvers such as Radia [3] and the development of novel GPU based
solvers.

7. Objective Functions

In order to perform optimization over a population of candidate magnet orderings it is necessary
to evaluate each ordering such that they can be compared and ranked. Designing objective
functions that are robust and provide a meaningful landscape on the search space to optimize
over is vital to achieving good stability and strong solutions [1].

Early in the development of Opt-ID while drawing from an existing SA based implementation,
a multi-objective loss function was used which balanced multiple statistics about the candidate
orderings B field, the projected electron trajectories through the field, and the estimated phase-
error [16, 17] of those trajectories. Trajectories can be evaluated efficiently in Opt-ID by
integrating along the S-axis of the a B field lattice using the trapezoidal rule. This can then
extend to approximating the phase-error by performing a straight line fit over the trajectories
and summarizing the peak locations of each oscillation.

(a) B field (b) Error

Figure 9: Cross sectional view of the ZS-plane for a simulated hybrid CPMU device with a 1mm
gap. Left: The B field. Right: B field error shown in a blue −→ red colour denoting reduced
−→ increased field strength compared to the ideal field produced by perfect magnets. Along
the top and bottom the outlines of the inner edges of the magnets and iron poles are shown in
white (left) and black (right)

Achieving the delicate balance between multiple objectives required manual tuning which
varied when simulating different designs and lengths of ID, often leading to poor optimization
performance and a confusing user experience. Through experimentation it was found that a
much simpler approach was to directly consider the divergence of the B field produced by the
candidate magnet orderings compared to the field that would be produced by an ideal device
containing magnets all with uniform field strengths and perfect alignment (figure 9). In practice,
Opt-ID uses the RMSE of the candidate B field, while continued development of robust objective
functions that incorporate domain knowledge is an open area of research (section 10).

8. Tuning IDs with Opt-ID

Opt-ID has been designed to fit around and accelerate the build methodology used at DLS. At
a high-level, use of Opt-ID falls into two main phases (figure 10). First, an initial setup phase
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is performed, ingesting the specification and design of the ID along with measured field vectors
characterizing the manufacturing errors of each candidate magnet. From these inputs, lookup-
tables are computed for each slot in the device along with the construction of data-structures
for representing the candidates that remain constant during the optimization process.

Generate 
Magnet 

Lists

ID Setup

Lookup 
Generator

Field 
Vectors

Lookup 
Tables

Magnet 
Lists

ID JSON

Initial Opt-ID Setup

Magnet 
Sort

Trajectory 
Shimming 

Sort

Lookup 
Tables

Magnet 
ListsID JSON

Build ID & 
Measure Magnet

Order
Magnet
Order

Magnet Sorting & Trajectory Shimming

Figure 10: Tuning an ID with Opt-ID falls into two main phases. Left: An initial setup phase,
where data structures are created and lookup-tables for the magnet slots computed. Right:
Followed by an iterative sorting, shimming, and re-measurement phase.

In the second phase, Opt-ID is used to optimize the magnet ordering. This starts with an
initial sort operation performed entirely in-simulation to discover a good initial ordering for the
ID build team to assemble. From the rough assembled device, the real-world B field is measured
and this data is used to more accurately predict how subsequent magnet modifications will alter
the full field of the device.

Real-world measured field data is incorporated into the simulation by replacing the full
simulated B field (section 6) with the measured field. The per-magnet simulated field
contributions (computed from the lookup-tables) are then subtracted and added to the real-
world field data. Over a small number of modifications the accuracy of the predicted full device
fields is greater than that of the fields calculated fully in-simulation, becoming less reliable as
increasing numbers of modifications are applied and the reality-gap widens.

9. IDs Built with Opt-ID

Opt-ID has been used at DLS since the it’s inception in 2012, supporting the construction and
tuning of multiple ID designs. Table 2 highlights the different types of ID that have been built
using Opt-ID along with the approximate time it took to sort and shim each device.

J13 was the first device where the initial sort leveraged Opt-ID. At the time the code was
almost a direct port of a prior SA based sort code written in Fortran 77, although during this
period of development the lookup-table strategy for efficiently simulating device B fields was
implemented. I21 was the first device to use Opt-ID for trajectory shimming, incorporating real
world measurements of the device B field into the simulation to narrow the reality-gap. This
was important due to the number of magnet slots on I21 leading to an extremely large search
space.

Opt-ID has been developed as a “living” piece of software, tightly coupled to the needs of
the DLS ID build team, and initially highly focused on solving the immediate problems faced
when tuning the IDs being built at that time. Over the construction of multiple IDs of varied
design, the specification for what was needed from Opt-ID and the underlying design choices for
how IDs should be represented in code, and efficiently reasoned about have undergone significant
refinement. Current and future work on Opt-ID aims to continue formalizing these requirements
while making them increasingly agnostic to the specific build methodology used at DLS, making
Opt-ID more suitable for wider adoption.
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Table 2: IDs built with Opt-ID at DLS. Sort times shown as * indicate that sorting was done
over a longer period, either before Opt-ID was created or while it was being actively developed
to improve its capabilities.

Commissioned ID Type Period Magnets Sort Time Shim Time Shim Iterations Opt-ID Usage

1/2022 CPMU-3 / I24 Hybrid CPMU 17.6 mm 460 2 days 7 days 12 Sort & Shim
4/2021 CPMU-2 / I03 Hybrid CPMU 17.6 mm 460 2 days 15 days 34 Sort & Shim
3/2020 CPMU-1 / I24 Hybrid CPMU 17.6 mm 460 2 days 40 days 79 Sort & Shim
4/2017 J02 PPM 21 mm 770 4 days 20 days 23 Sort & Shim
9/2014 I21 APPLE-II 56 mm 1452 * 5 days 8 Sort & Shim
11/2013 J13 PPM 25 mm 434 * 16 days 9 Sort

3/2012 I09 PPM 27 mm 298 * 23 days 114
11/2008 I14 PPM 23 mm 340 * 21 days 24
2007 I11 PPM 22 mm 362 * 20 days 90

10. Conclusions

In this paper we have presented Opt-ID, a novel software framework that applies state-of-the-
art optimization and simulation techniques to efficiently search for well-performing ID magnet
configurations. Opt-ID has been used to successfully sort and trajectory shim multiple IDs
of varied design and lengths at DLS and features state-of-the-art combinatorial optimization
methods using the AIS algorithm, along with an efficient method for simulating changes to ID
B fields using pre-computed lookup-tables. There are several areas of focus for our continued
development of the Opt-ID software, namely:

Adding support for complex magnet geometries to improve the accuracy of simulated B fields,
narrowing the reality-gap between simulation and real-world field measurements. Supporting
the optimization of additional steps of the tuning process such as height shimming iron poles in
hybrid CPMU type IDs. Supporting arbitrary compute environments and leveraging GPUs and
heterogeneous compute resources. Supporting multiple back-end frameworks for simulating B
fields such as Radia [3]. And moving the optimization algorithms into a generic combinatorial
optimization framework that Opt-ID and other projects can build on-top of.

Opt-ID will continue to become a more generalized framework for simulating and tuning IDs
agnostic of the varying build methodologies used by teams at synchrotron and facilities around
the world allowing it to be more easily adopted into existing workflows.
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