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The stability and performance of photovoltaic (PV) modules can be assessed by outdoor testing where external conditions such as illumination and
module temperature are measured at regular time intervals along with the jV-curve of the module. However, the fluctuation and seasonal variation
of external conditions can make it difficult to trace changes such as degradation in PV-module properties (at e.g. standard test conditions). This
contribution demonstrates the use of multiple linear regressions (MLR) to overcome these difficulties. The data gathered over large periods is
condensed into a set of few predictors, that reproduce the jV parameters at infrequently encountered conditions that are required for comparison.
Furthermore, the parameters of a physical device model are calculated directly from MLR-predictors, validating our procedure two-fold, by applying
the MLR-method to simulated data, replicating the original input parameters, and comparing monthly parameter averages between the MLR-
method and a known parameter extraction method. © 2023 The Author(s). Published on behalf of The Japan Society of Applied Physics by IOP
Publishing Ltd

1. Introduction

The current–voltage curve (I–V curve) reveals the most
significant properties of photovoltaic (PV) devices. From this
curve, the I–V parameters describing the device such as open
circuit voltage (Voc), short circuit current (Isc) and the
maximum power point (Pmpp) are extracted, which are used
to obtain the performance with respect to the input power.1,2)

Moreover, this curve can be fitted to device models such as the
one diode model (ODM) to extract parameters, which help
describe properties of the devices such as the saturation current
density ( j0) and ideality factor (n). This fitting of course
involves iterations, which might become impractical for large
amounts of data, due to the required computing power.
Multiple models have been developed mainly to predict the

maximum power point (Pmpp) or the maximum power output
of PV devices.3–5) These models have been developed either
by using analytical and numerical device models such as ODM
or heuristically by data mining and observation. Statistical
tools also employed for machine learning such as multiple
linear regressions (MLR) can be used to predict PV cell or
module parameters. These models have various applications
from which energy forecasting stands out, where the model is
essentially a black-box with coefficients derived by fitting
datasets, which do not necessarily relate to a distinct physical
model of the device. Such is the case for our own MLR model,
which has been presented in a previous publication.6)

However, we have previously shown that the MLR equation
for the open circuit voltage could be employed to obtain
physical properties from the predictors extracted after the fit
without analyzing single I–V curves,7) enabling the condensa-
tion of a large amount of information in arbitrary timeframes to
a single “snapshot” of the status of the PV device.
In this work, we validate the use of an MLR model for Voc to

obtain the diode parameters. The well-known “Isc–Voc method”
for extraction of the saturation current ( j0) and ideality factor (n)
was used as a reference for the extraction of the same

parameters using the MLR predictors. The extraction of the
activation energy (Ea) is validated by comparison to the
extracted values of Ea via simple linear Voc extrapolation to
zero Kelvin and via quantum efficiency measurements.

2. Theory and methodologies

2.1. One diode model
Equation (1), derived from the ODM,8–10) describes the
behavior of the open circuit voltage dependent on the short
circuit current density (Jsc), the ideality factor (n), the
temperature (T) and the saturation current density ( j0)
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where “k” is Boltzmann´s constant and “q” is the elementary
charge.
2.2. Diode parameter extraction
The ideality factor and saturation current can be extracted
from PV data in multiple ways other than by fitting the jV
curve.11–13) However, the Voc–Isc method was chosen for its
simplicity and its connection to the ODM.14) Considering
Eq. (1), the ideality factor and the saturation current density
can be extracted by plotting Voc as function of the natural
logarithm of Jsc. Using Eq. (2) the ideality factor can be
calculated using the slope

n q
dV dln J

kT
. 2oc sc( ) ( )/

=

From the aforementioned plot, the saturation current can also
be extracted using the intercept when Voc equals zero
[Eq. (3)]

j J . 3V0 sc 0oc∣ ( )= 

2.3. MLR model
This work applies a MLR model, which has been presented
in a previous contribution.15) The model is based on
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equations representing the I–V parameters (Isc, Voc, Pmpp, and
Impp) as functions of irradiance (x1) and temperature (x2).
Each of these equations [Eqs. (5) to (8)] are defined with four
coefficients or predictors, which are obtained for each PV
device via fitting of the “training” dataset. In this work, the
mean squared error was used to guide the fitting algorithm

I A x B x x C x D 4sc 1 1 2 2MLR ( )= + + +a a a a

V A x B x x C x Dln ln 5oc 1 1 2 2MLR ( ) ( ) ( )= + + +b b b b

P A x B x x C x Dln 6mpp 1 1 2 2MLR
( ) ( )= + + +g g g g

I A x B x x C x D . 7mpp 1 1 2 2MLR mpp mpp mpp mpp ( )= + + +a a a a

The rest of the I–V parameters (Vmpp, FF) can be calculated
from these equations using the known equations:

V P I 8mpp mpp mpp ( )/=

FF P V I . 9mpp oc sc( ) ( )*/=

A variation of Eq. (6) was used to increase the correlation
coefficient R2. The influence of the Rs increases for larger
irradiances, which limits the logarithmic behavior otherwise
present due to the Voc logarithmic behavior. For this scenario,
it is better to employ a variation of Eq. (6), which does not
have the influence of the logarithm as seen in Eq. (10). For
our calculation in this work, both MLR equations for the
Pmpp were employed. Nevertheless, only the equation
yielding better correlation to the data was employed for the
prediction. This was done for each fitting, for each interval
bin

P A x B x x C x D . 10mpp 1 1 2 2MLR
( )* = + + +g g g g

3. Experimental

Different modules were installed and measured outdoors at
an angle of 35° degrees on a flat rooftop and south oriented in
Berlin (52°25′53.4″N 13°31′27.6″E), where two different
technologies (CIGS and Si) were used. The CIGS module
was self-fabricated using a sequential rapid thermal

process16) with a bandgap of about 1.0 eV and a size of
30 × 30 cm2, whereas the c-Si module was bought from a
panel distributor with a similar size. The main results are
shown for the CIGS module as it presented more interesting
features. Nevertheless, results on the c-Si module are
provided in the Appendix (Fig. A·1.). The CIGS module
was monolithically interconnected using a picosecond laser
(1064 nm) for the P1 back contact (Molybdenum) isolation
pattern and stylus scribing for the back-front contact inter-
connection pattern (P2, the top contact consists of ZnO:Al),
and the active area definition pattern (P3), respectively. After
edge deletion and manual bonding of contact ribbons, the
modules were encapsulated using a cover glass (3 mm thick)
and a polyolefin elastomer encapsulant.
The results in this work include more than 60 000 data

points measured in the years 2020 and 2021. These measure-
ments were performed using an MPP tracker and I–V
measurement system provided by the University of
Ljubljana (i.e. LPVO-MS2x16) similarly to a previous
contribution.6) The system performs an I–V scan measure-
ment every 2 min; Isc and Voc are extracted via extrapolation
of the I–V curves, and the MPP through an interpolation with
the spline method. Irradiance (Si-01TC sensor) and module
temperature (DS18B20 sensor glued to the module backside
glass) are recorded simultaneously with the I–V scan. While
not being scanned the module is kept at MPP. The specified
sensor uncertainties are ±5Wm−2 ± 2.5% (for a vertical light
beam at 1000Wm−2) and 0.5% (between −10 and +85 °C),
respectively. A mixture of SQL, python and excel were used
for the processing of the data. To facilitate the processing of
data and to keep a constant number of days in each cohort
during the time series evaluation, each month represents a bin
of thirty consecutive days. This means that, even though the
graph includes mainly the data obtained in a specific month,
it might include a few days from a different month.

4. Results

4.1. I–V parameter analysis
A comparison between outdoor measurements and the MLR
estimated values of open circuit voltage at different irradiances
and temperatures is shown in Fig. 1. Following the international

Fig. 1. Voc comparison between outdoor measurements available at different irradiances and temperatures (±2% each combination) in April 2021 and MLR-
estimated values for the same month.
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standard IEC61853-1,17) power matrices have been used for the
power rating of different PV module technologies using indoor
as well as outdoor data.18–22) However, the presented matrices
show values of outdoor measured values of Voc for different
irradiances (1000, 800, 600, 400, 200Wm−2) and module
temperatures (25 °C, 10 °C, 40 °C, 55 °C, 65 °C), where each
value represents the mean of all the data contained in a bin for
the given combination of irradiance and temperature. Each
matrix contains 25 bins of data. The bins were obtained by
filtering the data around the aforementioned external conditions
with a tolerance of ±2%. The mean value from each of the bins
is represented in a colored map. For the MLR-estimated values,
each “bin” is the calculated value using Eq. (5) for each of the
25 combinations presented in the matrix, where no filtering is
needed, and therefore, no tolerance, is specified. The matrices in
Fig. 1 show the lack of data in many matrix points (represented
in white color) in the month of April, whereas the MLR shows
a full matrix as anticipated. For the data gathered and evaluated
in this work, all months presented insufficient data in some of
the bins to construct the whole power matrix, which can be
filled by employing the MLR.
Figure 2 is an example of a monthly data set (04.06.2020 to

03.07.2020) filtered by temperature to improve visualization.
The empty bins of 10 °C and 65 °C (black and purple,
respectively), which have no data, can be filled with the MLR.
Thus, the MLR can be used as a tool to observe the behavior of
the I–V parameters when the data is insufficient for adequate
statistical correlation. Consequently, MLR can be used to close
the gaps in data, which provides a broader overlook of device
performance. The IEC methodology provides a combination of
interpolation or extrapolation procedures depending on the
targeted external conditions,17,23) which can be avoided using
the MLR as it only requires one fitting procedure per data frame.
To evaluate the accuracy of a time series evaluation, the

mean absolute percentage error (MAPE) was calculated for
each bin (monthly) of outdoor data and each of the I–V
parameters from a CIGS module. Figure 3 shows the MAPE
of the MLR-estimated values (YMLR) with respect to the
measured average values (Ymeas) per month over a year of the
CIGS module, which was below 5% (black solid line) for all
parameters. For the most part, the errors in our calculation are
within the tolerances of the irradiance and temperature

measurements. Stronger deviations can be seen only in the
months of January and March due to higher uncertainty in the
measurements possibly related to the location and surround-
ings of the outdoor installation, where issues such as snow,
soiling, reflections or shading are possible. Therefore, the
MLR has been verified for the evaluation of PV devices over
time, where the error is similar to the uncertainty of the
measurements of irradiance and temperature.
Thus, the evaluation of the I–V parameters (Voc, Isc, Pmpp,

Vmpp, Impp and FF) can be done for different irradiances and
temperatures conditions over different intervals of time with
excellent accuracy. For the employed data sets, an error
below 5% was found, mostly below 2%. This can be
especially useful to evaluate degradation of the I–V para-
meters at lower and higher irradiances
Figure 4 shows the time series of monthly average values

of the Isc, Voc, Pmpp and FF measured outdoors at 400Wm−2

and 25 °C (in black) and the MLR-estimated of the same I–V
parameters (in red) at the same conditions for the CIGS
module. The irradiance and temperature constraints were
chosen such that it is more likely to find measured data
throughout the whole year under these conditions. For the
measured values, the filter tolerance was the same as in
Fig. 1. It can be seen in Fig. 4 that the MLR-estimated values
are follow very closely the absolute values of the measured
averages, and therefore, the general trends for all I–V
parameters, which opens the possibility for evaluation of
the behavior of I–V parameters over time. It can be seen that
for the months of December 2021 and January and June of
2021 no data around the evaluation constraint was observed.
However, due to the results presented in the previous section,
the MLR closes these gaps allowing a more appropriate
description of the electrical changes of the modules at
different specific irradiance and temperature conditions,
even when specific data is not available. Consequently,
MLR helps closing the gaps of missing data to have a
more continuous and time dependent evaluation of PV
devices.
Moreover, using the MLR approach it is possible to

perceive that the changes in the Pmpp are seemingly related
to small changes in the Voc and a strong degradation of the
FF. However, as both FF and Voc depend on the recombina-
tion mechanism in the absorber as well as parasitic resis-
tances, a model, that can also extract diode parameters, is
useful.
4.2. Diode parameter analysis
As we have shown in a previous contribution,7) our MLR
model shows a high correlation between the estimated and
synthesized values of Voc using the ODM. In this work, we
provide a methodology for extraction of diode parameters
using the MLR model and show the possibility of time series
evaluation of said parameters using one year of empirical
data measured outdoors in a CIGS module. For the valida-
tion, we use two approaches; fitting data synthesized using
the ODM and replicating the input diode parameters, and
using empirical data measured outdoors and comparing the
results to well-stablished methods for diode parameter
extractions.
4.2.1. Monthly evaluation of j0 and n. The values of the
j0 and “n” were calculated after fitting the monthly data to the
MLR Eq. (5), from which the four predictors per period were

Fig. 2. Outdoor measured values (for visualization) filtered for different
irradiance and temperatures and drawn together with the MLR projection
lines for the same conditions.
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obtained. For the ideality factor, Eq. (11) was employed

n
q

kx
A B x . 11

2
2( ) ( )= +b b

For j0, Eq. (12) was employed

j j e , 12N

C x D
A B x

0

2

2 ( )=
- -

+
b b

b b

where jN represents a reference value obtained from the
predictors of Eq. (6) when x1 equals 1. Further information on
the origin of Eqs. (11) and (12) is provided in the Appendix.
The first validation of the methodology was performed

using analytically synthesized datasets from a PV device
model (ODM) and reproducing the original input parameters.
For the reproduction of the input parameters, the formulas
provided were applied to the extracted coefficients from
fitting Voc matrices generated with the ODM from various
irradiances and temperature (as in Fig. 1). Three scenarios
were compared, ideal (n = 1.0, Rs = 0 Ωcm2; Rp =
1E6 Ωcm2), semi-ideal (n = 1.0, Rp = 1 Ωcm2; Rp = 1300
Ωcm2) and slightly shunted (n = 1.7, Rs = 2.4 Ωcm2;
Rp = 580 Ωcm2) cases. Figure 5 depicts the results from
this comparison, showing very high correlation. Statistically,
as we have shown in a previous contribution,7) the worsening
of the Rs and Rp generate lower correlations in the MLR. For
this comparison the MAPE (as in Fig. 3) between the input
and worst case scenario was below 5% for the ideality factor.

For j0 the error was about 50%, however, it is evident that the
estimations are in the same order of magnitude, which is a
very good approximation. The full comparison between input
and MLR-estimated diode parameters for the three scenarios
is presented in the Appendix.
The second validation was done using outdoor-measured

data from actual PV modules. For the extraction of the diode
parameters (i.e. j0 and n), the well stablished “Voc–Isc
method” was employed.14) In addition, in order to increase
the accuracy of the said method, an algorithm, that optimizes
the statistical correlation (R2) by reducing the ranges of
irradiance in the data bin, was developed and implemented
(an example is provided in the Appendix in Fig. A·2.).
Figure 6 shows the comparison of the two extraction

methods for the ideality factor and the saturation current
density, where the “Voc–Isc method” and the “MLR model
method” (at 25 °C) are represented with black and red
markers, respectively. It can be seen that for both parameters,
both methodologies have a good correlation in their absolute
values as well as in their trends. These values are close to the
expected values of CIGS,24,25) which verifies the possibility
of extracting the ideality factor and the saturation current
density.
Interestingly, the degradation shown in Fig. 4 (seemingly

after January) cannot be seen in Fig. 6, which suggests that
the degradation observed after the month of February (Fig. 4)
is probably not due to degradation of the diode. However,
over the whole year, a very slight upward trend (worsening)

Fig. 3. Monthly MAPE of the MLR with respect to the mean outdoor-measured values of Isc, Voc, FF, and Pmpp.

Fig. 4. Monthly evaluation of I–V parameters Isc, Voc, Pmpp and FF.

Fig. 5. Comparison between input and MLR extracted diode parameters
for different temperatures.
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of both the ideality factor and saturation current density can
be seen, which might suggest a slight diode degradation.
4.2.2. Monthly evaluation of the activation energy. In
addition to the ideality factor and the saturation current
density, the activation energy was also extracted from the
MLR coefficients after fitting and compared to a known
methodology, the Voc extrapolation to zero Kelvin
(“Ext”).26,27) Even with known methodologies, using outdoor
data to extract physical properties is not straightforward. To
be able to extract the Ea using the extrapolation approach, the
irradiance was filtered between 400 and 600Wm−2, the
module temperature was changed to Kelvin and the Voc was
divided by the number of cells to obtain the Voc per cell.
For the calculation of the activation energy from our MLR

model, Eq. (13) was used. However, in order to get accurate
results for modules, the measured Voc in the data was also
transformed into Voc per cell. Furthermore, similar to the
“extrapolation” approach, temperature was expressed in
Kelvin before the fitting process. The derivation of the Ea

from Eq. (5) is provided in the Appendix

E V x A x D0K ln . 13a oc 2 1( ) ( ) ( )= = = +b b

Figure 7 presents the comparison of the two methodologies.
The black boxes represent the extrapolation approach whereas
the red boxes represent the MLR approach. Additionally, as the
activation energy is expected to be close to the bandgap
(depending on the recombination mechanism26–28)), the value
of the optical bandgap, extracted from the derivative of the EQE
measured (i.e. Eg ≈ 1.0 eV) in similarly processed samples, is
represented with a solid black horizontal line. Thus, it can be
seen that, both methodologies provide similar values and
deviations which validate the usage of the model for activation
energy approximation. In addition, it is worth noticing that the
MLR can be used even when no sufficient data is obtained
outdoors (e.g. Nov-2020), which might cause larger deviations
in the calculation. Furthermore, Fig. 7 presents the accuracy of
the correlation of the MLR fit to the Voc data, shown with the
blue markers, where an accuracy of about 95% was found.
Thus, with the MLR model it could be possible to evaluate

changes in the Ea, in order to evaluate generation of barriers
or possible changes in recombination mechanisms, which is
unlikely to happen in CIGS. However, in spite of the good
correlation coefficient (R2) for Voc, the errors in determining

the Ea are significant, indicating that more careful filtering
could minimize the Ea estimation uncertainty. In the calcu-
lated data, the monthly variations of the Ea show no
significant changes around February 2021 in contrast to
what was shown in the I–V parameter evaluation. This,
together with the lack of changes in the other diode
parameters suggests that the degradation around said period
was not related to a degradation of the absorber material but
to a different component of the device.

5. Discussion

The possible reasons behind the apparent degradation of the
fill factor in the time series evaluation of I–V parameters
(Fig. 4) are unknown. However, using the MLR model in
addition to known methodologies, the degradation of the
absorber material was ruled out. Here, the capability of the
MLR to predict values at different conditions is used to
indirectly signal the possibility of either Rs or Rp degradation.
Using each of the temporal bins of the aforementioned time

series, the values of FF were calculated using the MLR
estimation in order to compare the behavior of the FF as a
function of irradiance in the evaluated CIGS module. The result
is shown in Fig. 8, where, by considering the curve from
September 2020 (black curve) to September 2021 (soft red
curve) for all irradiances, the degradation is evident. This was
shown already during our I–V parameter analysis for the
400Wm−2 case, however, it provides indirect evidence of
parasitic resistance degradation, as the trends of I–V parameters
at higher or lower irradiances may indicate a stronger influence
of the series or parallel resistance as shown in literature.29–31)

For instance, in Fig. 8, it appears to be a slight improvement in
the parasitic resistances from September 2020 to January 2021
probably due to the metastability of the CIGS module.
However, after January 2021, not only the absolute value of
FF is decreasing, but also the slope of the curve towards larger
irradiances is more pronounced which indicates a stronger Rs
influence. In the lower irradiance regime, where the Rp is more
significant, there also seems to be an improvement towards
winter 2020 and a worsening towards summer.
To support these conjectures, Fig. 9 shows the apparent

series (Roc) and apparent parallel (Rsh) resistances (calculated

(a)

(b)

Fig. 6. Monthly evaluation of diode parameters using the MLR model and
the Voc–Isc method for extraction of: (a) ideality factor, (b) saturation current
density.

Fig. 7. Monthly evaluation of the activation energy (Ea) extracted from the
MLR model and the “Voc extrapolation to 0 K” methods.
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from the I–V slopes at Voc and Jsc, respectively), where the
mean values per month are shown for various irradiances at
25 °C. Figure 9(a) depicts a slight worsening towards
September 2021 for the presented irradiances, which corre-
lates with our previous observations shown in Fig. 8.
However, Fig. 9(b) shows, in general, slight worsening after
the first three months and an improvement after that, which
does not correlate to our observations in the FF. Nevertheless,
this can be easily explained with the fact that the Rs can also
influence the low irradiance performance whenever the Rs is
significantly high, possibly due to the increasing influence of
bias-dependent current collection.32,33) The influence of the
Rp alone is better appreciated by looking at the Voc as a
function of irradiance, where it was found that the trend of
the Voc for lower irradiances did not change significantly after
one year (provided in the Appendix Fig. A·3.).

6. Conclusion

In this work, it was shown that periodical evaluation of PV
modules using MLR models for analysis of outdoor-measured

large databases is possible. This was verified comparing
different I–V parameters (e.g. Voc) at different external condi-
tions (irradiance and temperature) of MLR estimated values
against the measured values, the latter being filtered with a
tolerance of 2% for both conditions. Additionally, it was
shown that otherwise unavailable data in outdoor conditions
can be systematically generated using MLR to obtain a broader
understanding of the periodical development of PV devices at
different external conditions, which was used to close data
gaps in our periodical evaluation of I–V parameters.
Formulas derived from the MLR model of the Voc were

validated to extract diode parameters in two different ways.
First, the MLR method was applied to data sets synthesized
using the ODM and replicating the original input parameters
from said formulas with an error below 5% for the ideality
factor and a calculation for the j0 in the same order of
magnitude. Second, large data sets from outdoor-installed
CIGS modules were used, correlating known methodologies
to the newly developed MLR methodology, resulting in a
discrepancy of about 3.5% for the ideality factor with respect
to the stablished methodologies but with the advantage of
reduced complexity in large data set processing.
In addition, a monthly evaluation of the extracted ideality

factor, saturation current and activation energy was shown and
compared to the evaluation of the I–V parameters. By coupling
both evaluations, it was possible to discard the degradation of
the absorber. We have shown that in our I–V parameter
evaluation, a recovery of the FF towards winter in 2020 was
present, whereas a degradation towards summer was observed.
However, our results on the extracted diode parameters show
that the degradation was not due to degradation of the absorber
itself but was specially linked to the Rs, which was reassured by
the measurements of the apparent series resistance.
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Appendix

Supplementary. Calculations with the MLR
• Calculating j0

From the MLR equation for the open circuit voltage
[Eq. (5)], we realize that x1 is actually a ratio

x
P

P
, A 11

N
( · )=

where “P” is the illumination and “PN” is a reference value,
which renders the ratio “x1” dimensionless (e.g. PN =
1Wm−12). In addition, to make a connection to the Jsc
(Voc) plot, it is assumed that Jsc depends linearly on the
illumination as shown in equation

J j
P

P
A 2sc N

N
( · )=

where jN is the current density at the reference value of
irradiance

Fig. 8. Development of MLR-estimated FF at 25 °C and different
irradiances during one year.

(a)

(b)

Fig. 9. Monthly average of apparent (a) parallel (Rsh) and (b) series (Roc)
resistances for the evaluated outdoor-measured module at 25 °C and different
irradiances during one year.
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j J P . A 3N sc N( ) ( · )=

In the Jsc (Voc) plot we extrapolate to Voc = 0 and the
intercept with the y-axis is j0.

J j0 . A 4sc 0( ) ( · )=

Now we take the MLR, also set it to 0, and solve for ln(x1):

x
C x D

A B x
ln A 51

2

2
( ) ( · )=

- -
+

b b

b b

x
P

P

J

j

j

j

0
A 61

N

sc

N

0

N

( ) ( · )= = =

j j e . A 70 N

C x D

A B x
2

2 ( · )=
b b
b b

- -
+

That means we cannot calculate j0 from just the MLR
equation for the voltage, we also need the MLR equation for
the current density and set x1 = 1 to calculate jN [Eq. (A·8)].

j A B x C x D A 8N 2 2 ( · )= + + +a a a a

• Diode factor
The slope in the logarithmic Jsc (Voc) plot is defined by

Eq. (A·9)

dV

dln j

nkT

q
. A 9oc

sc( )
( · )=

The derivative of the MLR Eq. (5), results in Eq. (A·10):

dV

d x
A B x

ln
. A 10oc

1
2( )

( · )= +b b

To connect the two equations we assume that Jsc is
proportional to x1 [Eq. (A·1) and (A·2)] and x2 = T.

A B x . A 11

nkT

q

dV

d j

dV

d x

d x

d j

dV

d x

ln ln

ln

ln

ln 2

oc

sc

oc

1

1

sc

oc

1
( · )

( ) ( )
( )
( )

( )

= =

= = +b b

Solving for “n” we get Eq. (A·12)

n
A B x

kT q
. A 122( )

( · )
/

=
+b b

• Activation energy
In the Rau model8) we assume that

V
nkT

q

j

j
ln A 13oc

ph

0

⎜ ⎟
⎛
⎝

⎞
⎠

( · )»

with the mildly temperature dependent j0 described in
Eq. (A·14)

j j e . A 14
E
nkT0 00

A

( · )= -

Substituting Eq. (A·14) in Eq. (A·13) we obtain
Eq. (A·15), which now relates the Voc to the activation energy

V
nkT

q
j j

E

nkT
ln ln . A 15oc ph 00

A⎡
⎣

⎤
⎦

( ) ( ) ( · )= - +

For T = 0 and arbitrary, but sufficiently high illumination,
the Voc should be equal to the activation energy over the
elementary charge [Eq. (A·16)]

V
E

q
0K . A 16oc

A( ) ( · )=

Taking the MLR equation and setting T = x2 = 0,
Eq. (A·17) can be obtained

V A x D0K ln . A 17oc 1( ) ( ) ( · )= +b b

It follows that Ea in the MLR model is Eq. (A·18)

E

q
A x Dln . A 18A

1( ) ( · )= +b b

Note that in MLR, the activation energy depends on
irradiance (x1), whereas in Rau´s model it does not.
Therefore, the parameter Aß is an indication of how well
the device confirms to the ODM.
Supplementary. Extraction of diode characteristics,

Silicon module.
The MLR and the Voc–Isc method show very good

correlation of ideality factor also in c-Si modules.
Supplementary. Extraction of diode characteristics using

the Voc–Isc
Based on the Voc–Isc method,

14) we extract the ideality factor
from the slope and j0 from the intercept of a Voc–ln(Jsc) plot. To
optimize the extraction, an algorithm using python was developed,
where the irradiance is filtered to reduce the noise and increase
homoscedasticity, thus increasing the correlation coefficient R2.
Supplementary. Voc (MLR) for 25 °C and different

irradiances.
The Voc as a function of irradiances can indirectly show the

influence of the Rp by observing the trend around lower
irradiances. In this case, even though there is a change in the
absolute value of the Voc at lower irradiances, no strong change
can be seen in the trend after one year. A slight change can be
seen in the trend but only from September 2020 to January 2021
which would partially explain the improvement seen in FF.
Supplementary. Comparison between input and calcu-

lated diode parameters from synthetic data from the ODM.
• Ideal case

Jsc
[A] Voc [V]

FF
[%]

P_out
[W]

Eta
[%]

Rs
[Ωcm2]

Rp

[Ωcm2] Ideality
j0 [A
cm−2]

Eg

[eV]

0.037 0.6489 0.837 0.0202 20.23 0 1000 000 1 4.68E-13 1.1

Case Parameter 300 K 320 K 340 K 360 K

Ideal n_mlr 1.000 04 1.000 04 1.000 03 1.000 03
Ideal n_input 1.00 1.00 1.00 1.00
Ideal J_N [A cm−2] 3.73E-02 0.037 26 0.037 26 0.037 26
Ideal J0_mlr (300 °C)

[A cm−2]
4.68E-13 6.69E-12 6.99E-11 5.63E-10

Ideal J0_input
[A cm−2]

4.68E-13 6.69E-12 6.99E-11 5.62E-10

Ideal Ea_mlr [eV] 1.0999 1.0999 1.0999 1.0999
Ideal Ea_input [eV] 1.10 1.10 1.10 1.10

• Semi-Ideal case

Jsc[A] Voc[V] FF
P_out
[W]

Eta
[%] Rs Rp Ideality j0 Eg

0.0406 0.5487 0.744 0.0166 16.61 1 1300 1 2.43E-11 1
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Case Parameter 300 320 340 360

semi-Ideal n_mlr 1.024 1.022 1.020 1.019
semi-Ideal n_input 1.00 1.00 1.00 1.00
semi-Ideal J_N [A cm−2] 4.07E-02 0.040 0.040 0.040
semi-Ideal J0_mlr (300 °C)

[A cm−2]
4.04E-11 4.14E-10 3.25E-09 2.04E-08

semi-Ideal J0_input
[A cm−2]

2.43E-11 2.73E-10 2.3E-09 1.53E-08

semi-Ideal Ea_mlr [eV] 0.999 0.999 0.999 0.999
semi-Ideal Ea_input [eV] 1.00 1.00 1.00 1.00

• Slightly shunted

Jsc
[A]

Voc

[V] FF
P_out
[W]

Eta
[%] Rs Rp Ideality j0 Eg

0.034 0.4979 0.582 0.0099 9.93 2.38 580 1.7 4.02E-07 1

Case Parameter 300 320 340 360

Slightly
shunted

n_mlr 1.79 1.78 1.77 1.76

Slightly
shunted

n_input 1.70 1.70 1.70 1.70

Slightly
shunted

J_N
[A cm−2]

3.43E-02 0.0342 4596 0.034 226 83 0.034 2077

Slightly
shunted

J0_mlr
(300 °C)
[A cm−2]

7.35E-07 2.66E-06 8.41E-06 2.36E-05

Slightly
shunted

J0_input
[A cm−2]

4.02E-07 1.6683E-06 5.8511E-06 1.785E-05

Slightly
shunted

Ea_mlr
[eV]

0.999 0.999 0.999 0.999

Slightly
shunted

Ea_input
[eV]

1.00 1.00 1.00 1.00
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