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Abstract

Active disturbance rejection control (ADRC) has been gaining attention in recent years
and has shown its performance in multiple applications including non-linear ones, with-
out the need of accurate models. Despite the good results of this technique, time delay
can deteriorate the performance of ADRC, limiting its application. Here, the effect of
time delay on the stability of a linear ADRC is analysed, using an alternative mathemat-
ical description, and a new effective design technique, based on a modified ADRC scheme,
is proposed to overcome the delay effect while maintaining the disturbance rejection prop-
erties of the ADRC. An experimental example is discussed considering a system with low
damped mechanical resonances, showing good results using the proposed technique.

1 INTRODUCTION

Active disturbance rejection control (ADRC) has gained rele-
vance in recent years, due to its growing successful application
[1–4] and the recent research increasing its theoretical back-
ground [1, 5–9]. Sometimes presented as an evolution of the
classical proportional integral derivative control (PID) [1], the
ADRC technique is based in four fundamental elements: a
simple differential equation as a transient trajectory generator,
a noise-tolerant tracking differentiator, the non-linear control
laws and the use of the concept of total disturbance estimation
and rejection.

One of the keys of the ADRC control technique is the
extended state observer (ESO), which estimates the external
disturbances and considers the internal dynamics as another
disturbance. The plant is reduced to a simple chained integra-
tor form by using a control law, in which model-based design
methods can be applied. Furthermore, feedback of the extended
state, consisting of the internal dynamics and the external dis-
turbance, allows the reduction of the total disturbance. This way
the desired system dynamics is obtained simultaneously with the
disturbance reduction. In addition, the ADRC control effort is
usually lower than that required with other control techniques.

This is an open access article under the terms of the Creative Commons Attribution-NonCommercial License, which permits use, distribution and reproduction in any medium, provided

the original work is properly cited and is not used for commercial purposes.
© 2023 The Authors. IET Control Theory & Applications published by John Wiley & Sons Ltd on behalf of The Institution of Engineering and Technology.

However, as with other control techniques, ADRC control
has practical limitations. An important limitation of feedback
control arises from the presence of time delay, which reduces
the stability range. The delay introduces a phase that is lin-
early dependent with the frequency, limiting the gain at higher
frequencies in order to maintain the stability. This effect is espe-
cially relevant in the presence of poorly damped resonances, as
high gains with high phase shift are difficult to manage with
feedback control. The delay limits the disturbance reduction
bandwidth that can be obtained with the conventional ADRC
control scheme. An example of a system with this problem is the
control of microphonics in superconducting RF cavities used
in particle accelerators, where distortion reduction is critical to
keep the cavity resonance around the nominal value [10]. Several
works deal with the time delay effect by mean of ADRC-based
schemes and several methods have been proposed [11–16]. One
possibility proposed by Han is to ignore the time-delay and
design the ADRC for dynamics without time-delay, but this
technique limits the performance obtained. Another possibil-
ity is the use of a Padé approximation, increasing the system
order, but it is only valid for small time-delays [1, 13, 16]. To
take in account the time-delay, in [11, 12] it was suggested to
delay the control signal by the same amount before it enters
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the ESO. In [14], a generalized proportional integral (PI) con-
trol based on Smith’s predictor, and the ADRC philosophy,
is proposed for a class of delayed-input non-linear mechani-
cal systems. In [15], tracking control of uncertain time-delayed
systems is proposed, which is implemented in a predictor
scheme for time-delay compensation. In [16], a two-degree-of-
freedom (2DOF) control structure is proposed for unstable
time-delayed systems. In general, these methods improve
stability in the presence of time-delay but reduce the distur-
bance rejection effect. More recently, probabilistic robustness-
based ADRC design has also been applied to systems with
delay [17].

Disturbance reduction is a key control objective in systems
with low damped resonances for many applications, such as
control of microphonics in superconducting cavities for par-
ticle accelerators, [2–4]. ADRC is a good candidate for these
applications, but the effect of relatively small time-delays can be
crucial due to the stability problems introduced by this delay,
which limits its application and effective disturbance rejection.
This relatively small delay can be easily introduced by actuators.

This work studies the effect of the delay in the stability of
a linear ADRC (LADRC) control system. The result of this
study is a novel strategy based on LADRC to increase the sta-
bility in the presence of time delay, obtaining an improvement
in disturbance rejection. The main contributions are:

∙ A mathematical description of LADRC that facilitates the
analysis of stability and the effect of the time delay.

∙ The analysis of the time-delay effect using LADRC, based on
the mathematical description presented.

∙ A new modified LADRC control scheme (MLADRC), valid
for increasing the delay stability margin.

First, in Section 2, the stability analysis of a delayed LADRC
system is performed, after rewriting the basic scheme follow-
ing a similar way to the one in [12]. The system description
obtained allows the definition of the MLADRC algorithm,
presented in Section 3, which facilitates the stability analy-
sis and adds a new control element, increasing the designer’s
freedom. The design of this control element for stabiliz-
ing the closed-loop system in the presence of time-delay is
discussed, using loop shaping as design technique. The result-
ing scheme allows to improve the stability in the presence
of time-delay, maintaining as much as possible the so-called
matching condition and, therefore, improving the disturbance
reduction. An experimental application example involving
mechanical resonances is used to discuss in detail the full pro-
cedure, which shows good results and improved disturbance
rejection.

2 STABILITY ANALYSIS OF LINEAR
ADRC SYSTEMS WITH TIME-DELAY

In this section, the analysis of an LADRC is carried out, follow-
ing the description proposed in [18] and including the effect of
an input time-delay.

Consider a linear system described in the Laplace domain by
the expression:

Y (s) = e−𝜏sP (s)
(
U (s) + 𝜉1 (s)

)
+ 𝜉2 (s) (1)

where P(s) is a transfer function representing the system dynam-
ics, 𝜉1,2(s) are the external disturbances of the system and τ is
the input time-delay.

In the original ADRC description, the system model is not
a requirement, this being one of the powerful characteristics of
this control approach. The only information needed is the rela-
tive order of P(s), that is, p: = n−m, and its high-frequency gain
b = bm∕an, where n and m are the order of the denominator and
numerator of the transfer function P(s), respectively, and an and
bm are the coefficients of the highest degrees.

Ignoring for the moment the delay to simplify the develop-
ment, the controlled plant is described by the following model:

y(p) (t ) = bu (t ) + f (t ) (2)

where f (t ) is a combination of the unknown plant dynamics and
the external plant disturbance, which is called the generalized
disturbance and assumed to be unknown in the ADRC design
framework.

Following this design scheme, the central idea is to esti-
mate the unknown generalized disturbance ( f (t )). To do so, a
Luenberger-type extended linear observer (ESO) is defined. Let

z1 = y, z2 =
⋅
y, … , zp = y(p−1), zp+1 = f (3)

Assume that f is differentiable and let
⋅

f = h. Then, (2) can
be written as {

ż = Aez + Beu + Eeh

y = Cez

where z = [z1, z2 … , zp, zp+1]T and

Ae =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

0 1 0 … 0

0 0 1 … 0

⋮ ⋮ ⋮ ⋱ ⋮

0 0 0 … 1

0 0 0 … 0

⎤⎥⎥⎥⎥⎥⎥⎥⎦(p+1)×(p+1)

(4)

Be =
[
0 0 … b 0

]T

(p+1)×1

Ee =
[
0 0 … 0 1

]T

(p+1)×1

Ce =
[
1 0 0 … 0

]T

(p+1)×1

A full-order Luenberger state observer can be designed as
follows: {

̇̂z = Ae ẑ + Beu + Lo

(
y − ŷ

)
ŷ = Ce ẑ
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FIGURE 1 Structure of the classical LADRC, including the plant an input delay.

where Lo is the observer gain vector Lo = [𝛽1 𝛽2 … 𝛽p 𝛽p+1 ]
T

.
The gain vector Lo is a designer’s tool, which defines the

bandwidth of the observer 𝜔o and delimits the frequency range
of the disturbances to be considered and must be selected
to ensure that Ae − LoC is asymptotically stable. The values
ẑ1(t ), … , ẑp(t ) estimate y(t ), ŷ(t ), and its derivatives, and ẑp+1(t )
estimates the generalized disturbance f (t ). This estimated dis-
turbance is the key control element in ADRC control, since it
can be used to force the system to follow the desired dynamics,
while the external disturbance is minimized, when the stability
is maintained.

In this work, the reference tracking is not considered nec-
essary, since the main objective is the disturbance reduction.
For this reason, the use of a tracking differentiator (TD) is not
considered hereinafter, simplifying the discussion. Under these
conditions, the control can be defined:

u (t ) =
r − K ′

o

[
ẑ1 (t ) , … , ẑp (t )

]T
− ẑp+1 (t )

b

where K ′
o is the controller gain for the pth-order integral plant

and r the reference signal. This second gain vector is another
designer’s tool, which defines the controller bandwidth 𝜔c , [18].
Defining Ko = [K ′

o , 1], the LADRC can be described:

⎧⎪⎪⎨⎪⎪⎩

̇̂z (t ) = Ae ẑ (t) + Beu (t) + Lo

(
y (t) −Ce ẑ (t)

)
= (Ae − LoCe ) ẑ (t) + Beu (t) + Loy (t)

u (t ) =
r− Ko

[
ẑ1 (t ),…,ẑp+1(t )

]T

b

(5)

In this classical description, the LADRC is a “general” con-
trol structure which is independent of the original plant model,
except for the relative order p of the model and the high-
frequency gain b. Moreover, a LADRC can be tuned with two
parameters (𝜔c and 𝜔o), and, thus, is easy to understand by prac-
tical control engineers [17]. The scheme of this system can be
observed in Figure 1, including the plant an input time delay.
The designer does not need to know the detailed structure and

the parameters of the model, so it is quite similar to PID con-
trol which has a fixed control structure that is independent of
the plant models.

2.1 Alternative system description

To facilitate the analysis, the system shown in Figure 1 can be
restructured as in Figure 2 following a similar way to the one
proposed in [11], and a generalized ESO Heso can be defined
[19].

From this scheme and (5), this generalized ESO (GESO) can
be described by the following state-space representation:

⎧⎪⎪⎪⎨⎪⎪⎪⎩

̇̂z (t ) = Ae ẑ (t) + Bo

[
r (t )
y (t )

]
yo(t ) = Kôz (t)

Ao = Ae − LoCe −
Ko

b
Be

Bo =
[

Be

b
Lo

] (6)

where Ko defines the desired dynamics, which is now included
in the GESO description. Note that (6) is equivalent to (5).

Following a similar description of the state-space realization
(6) using the Laplace Transform presented in [19], the GESO
can be described as follows:

Ẑ (s) = AoẐ (s) +
Be

b
R (s) + LoY (s)

Yo (s) = KoẐ
(7)

Deleting the intermediate variable Ẑ (s), the GESO output
Yo(s) is:

Yo (s) = Ko

(
sI(p+1)×(p+1) − Ao

)−1
Be

b
R

+Ko

(
sI(p+1)×(p+1) − Ao

)−1
LoY (s)

(8)

which can be rewritten by a two-degree-of-freedom conven-
tional feedback structure as shown in Figure 3:
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FIGURE 2 Alternative description of the classical LADRC structure, which eases the system analysis.

FIGURE 3 Equivalent system description of the classical LADRC using
transfer functions.

Yo (s) = Heso (s)Y (s) + H r
eso (s) R (s)

Heso = Ko

(
sI(p+1)×(p+1) − Ao

)−1
Lo

H r
eso = Ko

(
sI(p+1)×(p+1) − Ao

)−1
Be

b

(9)

Note that the denominator of Heso(s) and H r
eso(s) transfer

functions is the same.
This description facilitates the stability analysis of the

LADRC system. Using the transfer functions in (9), the closed
loop characteristic equation derived from Figure 3 can be
written:

1 + e−𝜏sKHeso (s) P (s) = 0 (10)

The roots of (10) are the poles of the closed loop transfer
function and gives the stability of the system which can be stud-
ied as function of the direct-loop gain K, for a particular time

delay τ. Note that K =
1

b
is the nominal value that satisfies the

matching condition, since this description is valid for any time
delay, including 𝜏 = 0.

When τ is not 0, the analytical solution of equation (10) is
not easy, since the number of roots is infinity. However, fre-
quency domain methods, such as the Nyquist criterion, are valid
in this case [11, 20]. By obtaining the Nyquist diagram (or Bode

diagram for open loop stable systems) from the expression
e−𝜏sKHeso(s)P (s), the stability of the system can be analysed by
the Nyquist criterion and the delay stability margin can be easily
obtained.

As a straightforward result, if the original system is open-loop
stable, for any delay 𝜏 a sufficiently low K makes the closed-
loop system stable [20]. However, if this K value is lower than
1/b the matching condition is not fulfilled, and the disturbance
reduction is diminished.

The equivalent description of Figure 3 is only valid for anal-
ysis and not as an alternative implementation scheme since
numerical issues may arise.

Now, consider the next expression:

Heso (s) = H c
eso (s) + H

f
eso (s) (11)

being

H c
eso (s) =

[
K ′

o , 0
] (

sI(p+1)×(p+1) − Ao

)−1
Lo

H
f

eso (s) = [0, … , 0, 1]
(

sI(p+1)×(p+1) − Ao

)−1
Lo

(12)

where H
f

eso defines the feedback loop dependent on f (t ), that
is, the extended state which estimates the system dynamic and
the external disturbances, and H c

eso depends on the rest of the
state vector. Note that the denominator of the transfer func-
tions H c

eso(s) and H
f

eso(s) are equal and have a pole in the origin,
since the matching condition is satisfied by definition of matrix
Ao. The use of these transfer functions must be done care-
fully to avoid numerical problems, since both have the same
denominator.

Using the relation (11), the feedback loop in Figure 3 can be
separated into two loops, which can be analysed independently.
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FIGURE 4 Open loop Bode diagrams with 𝜔c = 5 rad/s and τ = 0.005 s, for different values of the observer bandwidth 𝜔o. Left: e−𝜏sH
f

esoP , Right: e−𝜏sH c
esoP .

The phase increases linearly with τ.

To illustrate the effect of each loop, an example with two
mechanical resonances is considered:

P (s) =
1.4

(s+1)
+ g0 + g1

g0 =
𝜔2

0

(s2+2𝛿0𝜔0s+𝜔2
0 )

g1 =
𝜔2

1

(s2+2𝛿1𝜔1s+𝜔2
1 )

(13)

with 𝜔0 = 10 rad/s, 𝛿0 = 0.1, 𝜔1 = 40 rad/s, 𝛿1 = 0.05 and a
constant delay 𝜏 = 0.005 s. Those values have been chosen for
defining a system with low relative stability.

For this system, several LADRC controllers (first order)
have been defined from (6), using different values of the ESO
observer bandwidth 𝜔o (two poles in −𝜔o) for obtaining Lo,
and of the controller bandwidth 𝜔c (one pole in −𝜔c ) for
computing Ko. First, the controller bandwidth 𝜔c = 5 rad/s is
maintained constant and different values of the ESO observer
bandwidth 𝜔o are used, obtaining the open-loop transfer func-

tions e−𝜏sKH
f

eso(s)P (s) and e−𝜏sKH c
eso(s)P (s) using (12), for the

analysis of its influence on the system stability. Figure 4 shows
the Bode diagrams for both transfer functions with different
values of 𝜔o.

Similarly, several LADRC controllers (again first order) has
been defined keeping constant 𝜔o = 1000 rad/s for differ-
ent values of the LADRC control bandwidth 𝜔c . Figure 5
shows the Bode diagrams for the open-loop transfer functions

e−𝜏sKH
f

eso(s)P (s) and e−𝜏sKH c
eso(s)P (s), for such systems.

Observing Figures 4 and 5, the effect of reducing or increas-
ing the observer bandwidth is closely related to the change of

the gain value in the disturbance estimation loop (H
f

eso(s)P (s))),
that is, K.

Other relevant conclusion, observed in all the figures, is
the evident effect of the delay 𝜏 = 0.005 s on the stability
of the LADRC system. This effect is especially important for
the loop with feedback of the estimated disturbance. The high

gain responsible of the disturbance reduction makes the sys-
tem unstable with relatively low time delay, since the delay
increases the phase lag proportionally with the frequency. In
this case, following the Nyquist criterion for stable open-loop
systems, the system becomes unstable if the system amplitude
is higher than 0 db at frequencies with a phase lag higher
than −180 degrees. The figures show that the mentioned phase
limit is always gained due to the delay effect and, then, all
cases have a maximum system gain that guarantees the stability.
This maximum allowable gain limits the capacity of distortion
reduction.

This example shows that, comparing both feedback loops,

the disturbance estimation loop (H
f

eso(s)P (s)) is the dominant
one, that is, its open-loop gain is much larger and can be
considered the main control effect of the LADRC scheme.

From the previous analysis, it is clear that the expression (10)
facilitates the stability analysis of the LADRC controller, espe-
cially in the presence of time delay. Taking into account these
results and with the aim of increasing the design flexibility, a
new scheme based on the LADRC controller is proposed in the
next section.

3 MODIFIED LADRC CONTROLLER

The original design procedure for an ADRC controller is based
in two steps. First, the observer gains Lo are selected considering
the canonical system (4) and the desired estimation bandwidth
𝜔o and, second, a controller gain K ′

o is selected to define the
desired control bandwidth 𝜔c . The controller and estimation
bandwidth are selected to not interfere with each other.

In this section, a modified LADRC (MLADRC) controller,
which follows other design procedure, is presented. This
MLADRC is based on a novel GESO scheme, which has some
similarities with the proposed one in [20], and it has been
derived from the previous discussion and observing the transfer
functions (9).
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JUGO ET AL. 1997

FIGURE 5 Open loop Bode diagrams with 𝜔0 = 1000 rad/s and τ = 0.005 s, for different values of the control bandwidth 𝜔c . Left: e−𝜏sH
f

esoP , Right:
e−𝜏sH c

esoP . The phase increases linearly with τ.

First, the new GESO structure is presented, which can be
described by the following state space representation:

⎧⎪⎪⎪⎨⎪⎪⎪⎩

̇̂z (t ) = Aôz (t) + Bo

[
r (t )
y (t )

]
yo (t ) = Kôz (t)

Ao = Ae − LoCe −
Ko

b
Be

Bo =
[

Be

b
Lo

] (14)

being Ko = [K ′
o , 1], ẑ = [ẑ1, ẑ2⋯, ẑp, ẑp+1]T and

Ae =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

0 1 0 … 0

0 0 1 … 0

⋮ ⋮ ⋮ ⋱ ⋮

0 0 0 … 1

0 0 0 … 0

⎤⎥⎥⎥⎥⎥⎥⎥⎦(p+1)×(p+1)

(15)

Be =
[
0 0 ⋯ b 0

]T

(p+1)×1

Ce =
[
1 0 0 ⋯ 0

]T

(p+1)×1

The design parameters are selected as follows:

∙ The controller gains K ′
o are calculated to get the desired

closed-loop dynamics by solving the pole placement problem
defined by𝜔c . The vector of desired poles for the controller is
[𝜔c , 𝜔c ,⋯, 𝜔c ]1xp . Using this gain vector, an auxiliary ESO

matrix is defined, Ae −
[K ′

o ,0]

b
B.

∙ Using the auxiliary matrix, the observer is designed for a cho-
sen observer bandwidth, 𝜔o. The vector of desired poles for
the observer is [𝜔o, 𝜔o, … , 𝜔o]1x(p+1) . With a valid Lo vec-
tor, the resulting GESO dynamics will be stable since the

FIGURE 6 Modified LADRC control structure, based on the feedback of
the generalized disturbance.

interaction between the controller and observer bandwidth
is included in the observer design.

∙ Define the definitive GESO matrix Ao = Ae − LoCe −
Ko

b
Be .

This matrix assures the fulfilment of the matching condition
in the GESO.

The GESO, as shown in Figure 6, uses as inputs the reference
r (t ) and the output of the plant to be controlled. One of the
main novelties if this GESO is the direct introduction of the
effect of the disturbance estimation feedback in matrix Ao, as
can be observed in the definition of Ao in Equation (15). This
change isolates the matching condition with respect to the direct
loop gain (originally 1/b). So, by changing the direct loop gain,
the GESO maintains the matching condition.

In addition, this scheme allows the use of two possible
alternatives by defining Co = Ko or Co = [0, … , 1]:

∙ In the first case, the full feedback loop (Heso) is used, similarly
to the typical LADRC scheme.

∙ In the second case, the feedback is obtained only by means

of estimating the total disturbance f (t ) (H
f

eso). This is a new
proposal, but taking into account the nature of the total dis-
turbance and the analysis of the example presented in the
previous section, the expected dynamics obtained from the
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1998 JUGO ET AL.

FIGURE 7 Comparison of the disturbance reduction using original
LADRC scheme (blue line) and the proposed MLADRC scheme (orange line).
The green line shows the disturbance effect at open loop. The open loop gain
has been normalized to one, for a better comparison.

new scheme is not very different from the original scheme.
The obtained advantage is a simpler controller structure,
which can be more easily analysed.

In both cases, one of the main features of the proposed
GESO is the easy stability analysis as function of the direct loop
gain. This is discussed in the next subsection.

Using this novel GESO, a Modified LADRC (MLADRC)
structure is proposed, shown in Figure 6. The proposed scheme
includes an additional control element, substituting the gain

K =
1

b
. Then,

e (t ) = r (t ) − yo (t )

u (t ) = e f (t )
(16)

where e f (t ) is the output of the transfer function C (s), that is,
E f (s) = C (s)E (s). This element adds flexibility to the designer,
which is valid for increasing the delay stability margin of the
resulting system. On the other hand, the stability analysis
MLADRC (and C (s) design) can be easily performed in the fre-
quency domain, since it only depends on a scalar signal and is
applicable with the presence of time delay.

To illustrate the good behaviour of the new MLADRC using
Co = [0, … , 1], it has been applied to the system (13) with 𝜏 =

0.0001 s and using C (s) =
1

b
, b = 1.4. The MLADRC and

the original LADRC have same design parameters: first order,
𝜔o = 1000 rad/s and 𝜔c = 5 rad/s. Figure 7 shows the results
comparing both LADRC and MLADRC with the open-loop
response using a step signal as reference and white noise as input
disturbance. The open-loop gain has been normalized to one
for better comparison. It can be observed that the disturbance
rejection is very good and very similar using both schemes. In
this example, the delay 𝜏 has been selected low to maintain the
system stable without the necessity of a more complex C(s), the
system being stable by using the original LADRC.

FIGURE 8 Delay stability margin, in seconds, depending of the value of
the gain K for the system (20).

3.1 Stability analysis of the modified
LADRC

Based on the mathematical description of the MLADRC (14),
(15), the GESO output can be expressed:

Yo (s) = Heso (s) Y (s) + H r
eso (s) R (s)

Heso = Ko

(
sI(p+1)×(p+1) − Ao

)−1
Lo

H r
eso = Ko

(
sI(p+1)×(p+1) − Ao

)−1
Be

b

(17)

Now, closing the loop with a plant P (s) in the presence of
time-delay, the characteristic equation of the MLADRC system
is:

1 + e−𝜏sC (s) Heso (s) P (s) = 0 (18)

with Heso(s) = Co(sI − Ao)
−1
o Lo.

Using Equation (18), the stability analysis as a function of
the loop gain can be easily performed using the Nyquist crite-
rion. This analysis is especially straightforward when the plant is
minimum phase, [21], since the system is stable for a gain that
satisfies K < Kmin; that is, if the open loop plant is minimum
phase, the system is closed-loop stable for a sufficiently low gain
value.

It is important to remark that, in this case, the gain of C(s) is
directly related to the reduction of the disturbances and for gain
values lower than the value of the matching condition 1/b, the
disturbance reduction is limited.

As an example, the analysis of the system (13) can be used
to illustrate the procedure using a first-order MLADRC with
𝜔o = 1000 rad/s and 𝜔c = 5 rad/s. Figure 8 shows the delay
stability margin of this system choosing C (s) = K , as a func-
tion of the gain K, obtained from (18). This configuration is
equivalent to a classical LADRC controller. As is observed, by
reducing the value of the feedback gain, the stability margin
improves, but at the cost of losing disturbance reduction. This
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JUGO ET AL. 1999

FIGURE 9 Example showing the disturbance response of (18) with a time delay 𝜏 = 0.001 s, using C(s) = K. A low K value (0.002) is used for maintaining the
stability, obtaining a limited disturbance reduction.

fact can be observed in Figure 9. In this case, being the time
delay 𝜏 = 0.001 s, the gain K = 0.002 is chosen from Figure 8
for maintaining the closed loop stability, and a poor disturbance
reduction is obtained.

3.2 Loop shaping design

As the previous example illustrates, gain reduction is a limited
design strategy, which may be useful for some systems and with
small time-delays. However, the MLADRC presented opens the
door to improving the stability by designing C(s), allowing an
increment of the loop gain and, as a result, the disturbance
reduction. This is one of the main novelties introduced by
MLADRC. For instance, the direct gain K can be substituted by
a phase compensator, which can be used for shaping the system
frequency response.

Loop shaping is a common design methodology which, in
fact, can be done following different strategies for obtaining
a desired frequency response shape [22]. The controllers can
be PIDs, lead or lag phase compensators, notch filters, among
others.

In the case of time delayed systems, loop shaping can be
applied to compensate the frequency response in the high gain,
high phase lag areas. Two possible actions can be introduced:
gain reduction or introduction of a lead phase in the critical fre-
quency range. In the case of resonances, lead compensators can
be used to improve the phase and notch filters to reduce the sys-
tem gain in such sensitive frequency ranges. At high frequencies,

a gain-reducing filter can be necessary, as the lag introduced by
the delay may be excessive to be able to compensate.

The example (13) presented in the previous sections can
be used again to illustrate the procedure, using the same first-
order MLADRC with 𝜔o = 1000 rad/s 𝜔c = 5 rad/s and the
time delay 𝜏 = 0.001 s. From Figure 8, the value of the gain
should be K < 2 × 10−3 to maintain the system stability. How-
ever, the distortion reduction is very poor with such a low gain
(see Figure 9).

To increase the gain to a value that gives good disturbance
rejection, for instance, K = 0.3, a lead compensator is intro-
duced as a direct loop controller C(s). From the Bode diagram
of the open-loop system with K = 0.3 (Figure 10), the compen-
sator parameters are designed to stabilize the system, obtaining
the following transfer function:

C (s) =
1 + bTbs

1 + Tbs

with b = 5.8284 and Tb = 9.204710−4. This controller increases
the phase around the critical frequency of 55 rad/s. Figure 10
shows the Bode diagram of the original open-loop system, with
and without delay and the effect of the designed compensator,
stabilizing the system. The phase of the MLADRC, the green
line, increases from 40 rad/s to 1000 rad/s approximately,
thanks to the controller designed C (s), compared with the
MLADRC controller using only a constant K. This increment
compensates the effect of the delay, increasing the stability
margin.
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2000 JUGO ET AL.

FIGURE 10 Open-loop frequency response comparison, showing the loop shaping effect of the compensator, increasing the phase around the critical
frequency: red line, system without delay; blue line, system with delay; green line, system with delay and compensator.

FIGURE 11 Disturbance reduction using the modified LADRC with
K = 0.3 and a lead compensator for time delay 𝜏 = 0.001 s.

Figure 11 shows the disturbance rejection obtained using
the gain value K = 0.3, thanks to the increased stability margin
obtained by the compensator. Note that the input noise is
equivalent to the one used in the Figure 9, being the obtained
disturbance two orders of magnitude lower. The compensated
system is stable for 𝜏 < 0.0038 s. To compare performance,
using the scheme proposed in [12] and the gain K = 0.3, the
system becomes unstable for 𝜏 > 0.00022 s, that is, the stability
margin is one order of magnitude lower.

4 EXPERIMENTAL VALIDATION

In this section, the aforementioned approach is implemented in
a real mechanical system with relevant resonant modes to anal-
yse the feasibility of the design process and the performance of
the resulting controller.

4.1 System description

The mechanical system used to analyse the stabilization process
must meet certain characteristics that are important for proper
testing of the control algorithm and its ability to reject distur-
bances. This characteristic is a high sensitivity to mechanical
vibrations. This is an added difficulty to control the system and
makes a perfect scenario for testing the algorithm, because this
type of systems is very sensitive to time-delay, which can become
unstable. In this way, the mechanical system selected for this
test was a passive flexible structure mounted on a single-axis
seismic table for the study of active mass dampers, commercial-
ized by Quanser [23], and shown in Figure 12. The structure
has a capacitive accelerometer on its top in order to measure
the vibration of the system and is controlled by the linear move-
ment of the shaking table. At the same time, the shaking table
is controlled by a high-torque motor connected to it via a
rack-and-pinion system. The motor also has a high-resolution
optical encoder with which the position of the shaking table
is measured. The goal of this implementation is to control
the position of the shaking table and the vibration (accelera-
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JUGO ET AL. 2001

FIGURE 12 Photography of the mechanical system under study.

tion) of the top of the structure just by the movement of the
motor.

It should be noted that this system has several characteristics
that make it highly difficult to control. Firstly, due to the friction
that happens in the rack-pinion system and the dead zone of the
motor, the system dynamics has a relevant non-linear compo-
nent. Moreover, due to its geometry, the structure has various
relevant resonant modes along the control bandwidth, which
make it very sensitive to vibrations. Finally, the objective is to
control the top of the structure by moving the table, which is a
clear case of a non-collocated control problem.

In order to have a preliminary idea of the dynamics of the
system and as a starting point for the design of the loop shaping
compensator, a simplified mathematical model of the system in
state space have been used, modelling only the most relevant
resonant mode, given by the following matrices:

A =

⎡⎢⎢⎢⎢⎣
0 0 1 0

0 0 0 1

−469.063 469.063 −33.38 0

631.6875 −631.6875 0 −0.3125

⎤⎥⎥⎥⎥⎦
B =

[
0 0 2.087 0

]T

C =

[
1 0 0 0

631.6875 −631.6875 0 −0.3125

]
(19)

FIGURE 13 Step response of the system controlled by a well-tuned PID
versus the proposed ADRC. The system performance is improved by mean of
the MLADRC.

4.2 ADRC performance without time-delay

First, the generic performance of the ADRC for the mechan-
ical system given by matrices (19) has been measured. For
that purpose, the MLADRC structure described in Figure 6,
using Equations (14), (15) was implemented on a myRio device
using LabVIEW and its performance was compared with a PID
controller tuned by the means of a genetic algorithm based
on BLX-alpha crossover [24] (design values, Kp = 3, Ki = 12,
Kd = 0.006). The sampling time used in the discrete implemen-
tation has been 0.5 milliseconds, thus restricting the ADRC to a
maximum bandwidth of 1 KHz.

After extensive testing, it was determined that the second-
order MLADRC with a GESO bandwidth of 𝜔o = 250 Hz and
a controller bandwidth of 𝜔c = 15 Hz is an acceptable compro-
mise between smooth dynamics and good disturbance rejection.
In this way, the L0 and K0 matrices (15) have been set to place
the observer poles at 250 Hz (three poles) and the controller
poles at 15 Hz (two poles). As shown in Figure 13, the perfor-
mance of this an algorithm is superior to that of a PID, because
it offers five times less overshoot and much better vibration
rejection.

4.3 Stabilization of the delayed system by
loop shaping

To test the proposed stabilization procedure, the control signal
has been delayed via software by 5 ms, making the system unsta-
ble. Analysing the resulting control signal shown in Figure 14,
it can be concluded that the system instability grows in a
frequency range around 97 Hz. A compensation around this
frequency is necessary in order to maintain the stability, by
designing a suitable C (s) controller for the MLADRC (a digital
version C (z ) in the real implementation).
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FIGURE 14 Unstable control signal using the MLADCR with 𝜏 = 0.005
s and C (s) = K , K being a constant gain.

FIGURE 15 Step response of the non-delayed and stabilized systems.
Introducing C = Hnotch , the MLADRC is able to compensate the effect of the
delay 𝜏 = 0.005 s.

In this way, a digital notch filter (20) centred in 97 Hz
was implemented as a loop shaping compensator, in order to
stabilize the system and improve its dynamics. In this case,
the stability is obtained limiting the gain around the critical
frequency.

Hnotch

(
z
)
=

z2 − 1.911z + 0.9975

z2 − 1.753z + 0.8395
(20)

The resulting controller keeps the system step response
almost identical (see Figure 15) and improves to a large extent
the disturbance rejection (see Figures 15 and 16, respectively),
validating the proposed loop shaping-based compensation
ADRC scheme.

FIGURE 16 External disturbance response of the non-delayed and
stabilized systems. Introducing C = Hnotch , the MLADRC is able to
compensate the effect of the delay 𝜏 = 0.005 s.

5 CONCLUSIONS

The ADRC algorithm is very effective for disturbance rejection,
due to the high gain obtained in the ESO bandwidth. However,
this fact makes the ADRC algorithm sensitive to the presence of
time delays, since the system can become unstable for relatively
low delays. Some algorithms consider this problem, but usually,
if stability is improved, disturbance rejection is reduced.

This paper discusses this reduction in stability and its rela-
tion to the high gain necessary for good perturbation rejection.
The discussion is carried out with systems that include mechan-
ical resonances, where the low relative stability shows clearly
the problem, and the disturbance effect is significative for such
systems.

For dealing with this problem, a variation of the LADRC con-
troller is presented, the proposed MLADRC scheme, obtaining
a simplification of the stability analysis of the algorithm and
opening the door to the use of control strategies for improv-
ing of the stability range, using additional elements as phase
compensators or notch filters. This work proposes the use of
an additional controller to achieve a stable system and a good
disturbance reduction in the presence of time delay.

An application example using a mechanical system with
resonance modes and a non-linear behaviour illustrates the
proposed idea, obtaining a significant disturbance reduction
improvement, using a loop shaping strategy.

For future works, efforts will focus on testing the MLARDC
in practical implementations. In particular, the control scheme
will be tested in a superconducting RF cavity for the reduction
of microphonic effects, using as actuator a piezoelectric tuner,
which presents a small, but significant, time delay. In the tests,
different controllers will be implemented for loop-shaping pur-
poses, as lead or lag phase networks, in addition to the notch
filters used in this work.
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