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ABSTRACT

In ferromagnets, domain patterns can be controlled globally using magnetic fields or spin-polarized currents. In contrast, the local control
of the magnetization on the nanometer length scale remains challenging. Here, we demonstrate how magnetic domain patterns in a Tm-
doped yttrium iron garnet (Tm:YIG) thin film with perpendicular magnetic anisotropy can be permanently and locally imprinted by high
intensity photon pulses of a hard x-ray transient grating (XTG). Micromagnetic simulations provide a qualitative understanding of the
observed changes in the orientation of magnetic domains in Tm:YIG and XTG-induced changes. The presented results offer a route for the
local manipulation of the magnetic state using hard XTG.

© 2023 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license
(http://creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/5.0119241

I. INTRODUCTION ferromagnetic nanoelements to achieve the required response” to a
global field or current. In extended ferromagnetic samples, local

The magnetic state of ferromagnetic materials can typically be
control of the magnetic state can be achieved by exploiting the inter-

controlled using magnetic fields or spin-polarized currents. However,

these modify the magnetic state globally and do not allow a targeted action between magnetic structures, such as vortices and domain
local control of magnetization. Such local manipulation can indi- walls.” Alternatively, optical control of the magnetization can be
rectly be achieved by tailoring the shape and spacing of carried out at the sub-micrometer length and femtosecond time
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scales.>” Most of these studies were conducted using visible or infra-
red light, while rare examples have demonstrated local manipulation
of magnetic textures using x rays.(’ Here, we present a route to
achieving local control of the magnetic state by using periodic x-ray
transient gratings (XTGs).

XTGs are formed by interfering coherent beams at the sample
to generate spatially periodic excitation patterns. These patterns
can equally display temporal structure, e.g., by using periodic laser
pulses. XTGs offer unique opportunities to manipulate the struc-
tural and electronic properties of materials at the femtosecond
timescale down to spatial scales down to a few nanometers.””'’ In
optical and XUV spectroscopies,”* splitting and crossing two laser
pulses by a set of mirrors is a standard method to generate XTGs;
in contrast, this is non-trivial in the soft x ray and hard x-ray
regimes.'' However, recent developments in x-ray free-electron
lasers (XFEL) and x-ray optics have enabled an extension of the
XTG technique towards hard x-ray energies.”'*'*"*

In the present study, we report the successful manipulation of
the periodicity and of the spatial orientation of magnetic domains
within a thin magnetic film by imprinting a hard x-ray grating with
high fluence that causes permanent structural changes of the mate-
rial, leading to characteristic changes in the magnetic structure.

Il. EXPERIMENTAL

A 24 nm-thick thulium-substituted yttrium iron garnet
Yo.51Tm; 49FesO1; (Tm:YIG) film displaying perpendicular mag-
netic anisotropy (PMA) was grown on a (111) gadolinium gallium
garnet (Gd;GasO1,, GGG) substrate by means of pulsed laser dep-
osition (PLD). Details of the PLD synthesis and sample characteri-
zation are given in Refs. 14 and 15. This composition yields a film
with perpendicular magnetic anisotropy lower than that of
Tm;FesO;, (TmIG) but with similar magnetization.

Highly intense XFEL pulses with 40fs duration and 50 Hz
repetition rate were delivered by SwissFEL at the Bernina beam-
line'® to imprint the grating onto the Tm:YIG sample in the same
setup as in Ref. 10. The energy of the incoming XFEL beam was
7.1 keV with a bandwidth of 0.3%. In total, 1000 XFEL pulses with

(a) (b)

Tm:YIG

phase grating
XFEL pulse
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a duration of ~40 fs each were utilized to permanently imprint the
gratings onto the sample. The x-ray beam fluence, controlled by a
set of attenuators, varied from 3.5 to 70 mJ/cm? at the sample, cor-
responding to an average of 5% and 100% of peak fluence of the
full beam, respectively. A schematic illustration of the XTG experi-
ment is shown in Fig. 1(a). The XTG pattern was generated by dif-
fracting the incoming hard x-ray beam on the transmission phase
grating. The quasi-one-dimensional grating with a spatial repetition
period of A =1650nm was made of polycrystalline
chemical-vapor-deposited diamond. Details on the grating fabrica-
tion can be found in Refs. 10 and 17.

The grating was placed at a distance of 150 mm upstream of
the sample [Fig. 1(a)]. The sample-to-grating distance and the real-
space periodicity of the phase grating A determine the periodicity
of the XTG pattern at the sample position, which can be either
smaller or larger than A depending on the convergence or diver-
gence of the incident photon beam.'’ In the present case, the
period of the phase grating and its distance to the sample were
chosen so that the real-space XTG period is of the order of the
width of magnetic domains in Tm:YIG, of a few um. The dark field
image recorded with an optical microscope presented in Fig. 1(b)
shows the contrast generated by the permanent XTG imprint due
to damage of the Tm:YIG film. To simplify the navigation on the
sample surface in the experiments, Pt markers have been deposited
on Tm:YIG by means of a focused ion beam (FIB) as shown in
Fig. 1(c).

lll. RESULTS AND DISCUSSION

The magnetic domain structure of the film was measured by
photoemission electron microscopy at the SIM beamline'® of the
Swiss Light Source (PSI, Switzerland) by exploiting the x-ray mag-
netic circular dichroism effect (XMCD-PEEM). In this technique,
x-ray light (here tuned to the Fe L; absorption edge at 710.6 V)
uniformly illuminates the sample, and the intensity of photoemit-
ted secondary electrons is imaged to obtain local maps of the x-ray
absorption of the sample with a spatial resolution down to
50nm."” By averaging PEEM images measured with opposite

FIG. 1. (a) Schematic of the x-ray transient grating experiment. The incoming XFEL beam is diffracted by a transmission phase grating generating an interference pattern
(so-called Talbot carpet). The pattern is permanently imprinted on the Tm:YIG sample placed downstream of the phase grating. (b) Dark field optical microscopy image of
the permanent grating imprinted on the sample by the hard x-ray transient grating with a beam fluence of 70 mJ/cm? [marked as TG1 in the panel (c)]. (c) Scanning elec-
tron microscopy (SEM) image of the sample surface. Pt marker lines have been deposited to identify different XTG irradiated areas marked as TG1, TG2, and TG3 corre-

sponding to beam fluences of 70, 17.5, and 3.5 mJ/cm?, respectively.
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FIG. 2. (a) Topography of the sample area exposed with the XTG with the maximum beam fluence of 70 mJ/cm? and (b) the corresponding XMCD-PEEM image of the
magnetic contrast. (c) and (d); XMCD contrast in the areas of the sample exposed to XTG with fluences of 17.5 and 3.5 mJ/cm?, respectively. (€) Line profiles of the
XMCD intensity taken along the pristine (blue) and XTG-exposed (red) areas of the film, highlighted in panel (b) by the corresponding color traces. The blue curve is
shifted by +0.15 for clarity. (f) and (g) Magnified images of the XMCD and topography contrasts shown in panels (b) and (a), respectively. White scale bars correspond

to 20 um.

circular polarizations C* and C~, one obtains a map of the local
electron photoemission, which is very sensitive to the local surface
potential and to the sample morphology. The sum (C* 4 C™)
image is shown in Fig. 2(a). The stripes visible in the surface topog-
raphy correspond well to the optical microscopy result shown in
Fig. 1(b) and are due to the permanent modification of the material
structure induced by the XTG exposure.

Magnetic XMCD images (CT — C7)/(C* + C™) are shown in
Figs. 2(b)-2(d) for regions exposed to the XTGs at different fluen-
ces. Figure 2(b) shows the XMCD contrast for the same area as
Fig. 2(a). Domain patterns typical for YIG-based systems with
out-of-plane anisotropy' >*°~** are present in the pristine regions of
the sample. We note that the pristine regions exhibit an asymmetry
between the widths of the out-of-plane domains pointing parallel
and antiparallel to the film normal (areas of bright and dark con-
trast). We observe a width ~20 um for the bright domains, as com-
pared to a width of ~3 um for the dark domains [Figs. 2(b)-2(d)].
We attribute this to the presence of a small magnetic bias field*® or,
alternatively, non-zero remanent magnetization of the film."> The
magnetic domain patterns are clearly different in the irradiated
areas. For the maximal XTG fluence [Fig. 2(b)], the orientation of
the magnetic domain stripes is visibly modified and aligned with
the regions exposed to the XTG, creating parallel band domains in
the irradiated region. In the exposed regions where the XTG
fluence is lower, more random domain patterns are observed

[Figs. 2(c) and 2(d)]. In the XTG-imprinted area, the amplitude of
the magnetic contrast remains comparable or even stronger to the
unexposed one, as seen from the line profiles given in Fig. 2(e).
This indicates that the magnitude of the magnetic moment is not
reduced by the imprint. Furthermore, the increased contrast is
evident from Fig. 2(f), which indicates either an increase of the
magnetization or its tilting toward the sample plane.

In the case of the permanently imprinted gratings with fluen-
ces 70 and 17.5mJ/cm? [Figs. 2(b) and 2(c)], the periodicity and
the size of magnetic domains differ from those in the pristine area.
This is clearly seen in the extracted line profiles of the
XMCD-PEEM intensities [Fig. 2(e)] in the regions of interest for
70 mJ/cm? marked by red and blue lines in Fig. 2(b). We find that
the average distance between magnetic domains is 5.3 + 1.5um in
the exposed region and /=8.7 + 1.5um in a nearby pristine
region, as extracted from the red and blue regions in Fig. 2(b),
respectively.

In the XTG irradiated regions, the presence of closely spaced
domains is likely due to two processes: (1) local demagnetization
and (2) pinning within the damaged areas. The former explains the
varying degrees of modification of the domain pattern as a function
of fluence. The latter is supported by the fact that domain pinning
takes place exactly at the permanently imprinted grating as seen in
Figs. 2(f) and 2(g), which, respectively, show the magnetic contrast
and surface topography in the area exposed to 70 mJ/cm? XTG. In
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FIG. 3. Micromagnetic simulations of the XTG effect on the magnetic domain pattern. Starting with a pristine domain pattern (a), the effects of the XTG are simulated by
defining regions of the sample (green) where the magnetization is transiently suppressed (b). A modified equilibrium magnetization pattern emerges after transient expo-
sure with (c) 400 nm-wide and (d) 100 nm-wide gratings. The blue scale bar corresponds to 1 um.

the case of the intermediate fluence of 17.5 mJ/cm?, lower pinning
contributes to the more randomly altered magnetic domain
pattern, as compared to that at 70 mJ/cm?.

To better understand the qualitative changes of the magnetic
domain pattern induced by the XTG, the effect of spatially periodic
demagnetization on the Tm:YIG system was investigated using
micromagnetic simulations.”® The simulated geometry consisted in
a thin film with dimensions of 9000 x 9000 x 24 nm?® with a cell
size of 6 X 6 x 6 nm>. The exchange stiffness A,, = 2.3 pJ/m, first-
order uniaxial out-of-plane anisotropy constant K, = 18 kJ/m?,
and saturation magnetization Mg = 140kA/m typical for Tm:
YIG' were used as material parameters. The Gilbert damping
constant was taken to be & = 1 to accelerate the convergence of the
simulations. The simulations did not take into account material
damage due to the x-ray irradiation or ultrafast processes taking
place on the sub-ns time scale.

An initial magnetic configuration resulting from the competi-
tion between the magnetostatic, exchange, and anisotropy energies
and displaying a maze domain was used [Fig. 3(a)]. Note that this
configuration exhibits equal regions with dark and bright contrasts.
Due to the relatively low Curie temperature of Tm:YIG (~500 K),
we anticipate a total quenching of the magnetization in the irradi-
ated areas due to local heating above T¢ by the laser pulses.”” The
effects of the XTG were simulated by assuming the total quenching
of the magnetization due to the transient grating, i.e., by locally
setting A, Ms, and K, to zero within rectangular regions [Fig. 3(b)].
The width of the modified regions was 400 nm. The quenching of
the magnetization leads to a redistribution of the magnetization
along the boundaries of the exposed regions. The magnetization is
subsequently restored with the initial material parameters, giving rise
to a modified pattern [Fig. 3(c)] made of band domains that closely
match the position of the transient gratings, reflecting the experi-
mental observations.

To explain the observed change in domain periodicity in the irra-
diated regions, we suggest that magnetization pinning occurs in
regions where the material’s magnetic parameters have been strongly
altered. Although the surrounding magnetization may have recovered,
the persistent pinning may be due to physical changes of the sample.

We expect that laser-induced heating is the main source of the
magnetization quenching in the XTG-exposed regions. Higher

J. Appl. Phys. 133, 123902 (2023); doi: 10.1063/5.0119241
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hard x-ray fluences strongly heat the irradiated areas with the heat
being dissipated to a larger area around the XTG-exposed stripes
via phonons.'’ Reduction of the irradiation dose can be qualita-
tively mimicked by narrowing the width of demagnetized regions
to 100 nm in the simulation. The result is a more disordered
imprinted pattern [Fig. 3(d)], which does not lead to the formation
of long, parallel band domains, in qualitative agreement with the
patterns observed in the sample areas exposed with XTGs with the
beam fluences of 17.5 and 3.5mJ/cm? [Figs. 2(c) and 2(d)].
Moreover, the simulations show that in the absence of physical
pinning, the imprint does not affect the width of magnetic
domains, which is determined by the competition between the
exchange, magnetostatic, and anisotropy energies. Instead, the
grating geometry affects the orientation of the domains in the irra-
diated area. Despite the simplicity of the model, the simulations
reproduce the main effects of the XTG. The fact that the simula-
tions display features that are not experimentally observed [bubble
states in Fig. 3(c)] or do not reproduce certain experimentally
observed features (such as domains that are perfectly parallel to the
XTG) points to the role played by physical defects and changes in
material parameters besides demagnetization. We therefore discuss
below a few possible mechanisms that may affect the magnetic
structure in the XTG-exposed regions.

Indeed, aside from structural and morphological changes in
the sample, domain wall pinning could be induced by a local modi-
fication of the uniaxial anisotropy in the irradiated regions. It is
also known that while maze patterns form in the presence of uniax-
ial out-of-plane anisotropy, the formation of parallel band domains
requires the presence of additional, secondary anisotropy contribu-
tions superimposed to the fundamental out-of-plane anisotropy.”’
Moreover, the stronger contrast in the exposed areas seen in
Fig. 2(b) hints towards the presence of an in-plane magnetization
component.

While intense optical pulses and ion irradiation can result in
structural and associated magnetic changes in iron garnets,” " the
effect of hard x rays is less explored, although x-ray-induced
damage has so far also been observed in some magnetic
oxides.”®” Therefore, the exact mechanism underpinning the
magnetic domain modifications would require deeper follow-up
studies.
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IV. CONCLUSION

In conclusion, we have investigated magnetic domain struc-
tures imprinted in a Tm:YIG PMA film by an XFEL hard x-ray
transient grating. By measuring the resulting magnetic patterns
with XMCD-PEEM, we observed modifications of the domain pat-
terns in the exposed regions that correlate with permanent changes
in the sample. Particularly, the observed decrease of the magnetic
domain spacing and change in orientation suggests a pinning of
the domain walls to the defects imprinted by the x rays. XFELs
allow the generation of gratings with periods down to a few nano-
meters and durations of tens of femtoseconds, offering a possible
route for the ultrafast manipulation of magnetic structures by x
rays down to the nanometer scale in suitable materials. Although
the currently studied material only supports micrometer-scale mag-
netic domains, further investigations could lead to promising path-
ways to imprint magnetic textures, such as bubble domains or
topological magnetic skyrmions of a smaller size."”*' Taking
advantage of the periodic spatial patterns induced by radiation as
used to produce the XTG, these textures could also be arranged
into artificial arrays using x-ray gratings with a custom shape,
imprinting, for example, one-dimensional chains or two-
dimensional hexagonal or square lattices. The XTG approach is
more technologically promising than the generation of magnetic
skyrmions by using a focused x-ray beam.® Furthermore, our study
extends the XTG approach toward the hard x-ray range, allowing
one to manipulate and probe bulk specimens and reach resonant
edges of a broad range of elements.
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