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Abstract: MoS2 is a two-dimensional layered transition metal dichalcogenide with unique electronic
and optical properties. The fabrication of ultrathin MoS2 is vitally important, since interlayer inter-
actions in its ultrathin varieties will become thickness-dependent, providing thickness-governed
tunability and diverse applications of those properties. Unlike with a number of studies that have
reported detailed information on direct bandgap emission from MoS2 monolayers, reliable experi-
mental evidence for thickness-induced evolution or transformation of the indirect bandgap remains
scarce. Here, the sulfurization of MoO3 thin films with nominal thicknesses of 30 nm, 5 nm and 3 nm
was performed. All sulfurized samples were examined at room temperature with spectroscopic ellip-
sometry and photoluminescence spectroscopy to obtain information about their dielectric function
and edge emission spectra. This investigation unveiled an indirect-to-indirect crossover between the
transitions, associated with two different Λ and K valleys of the MoS2 conduction band, by thinning
its thickness down to a few layers.

Keywords: MoS2; sulfurization; MoO3; dielectric function; photoluminescence; confocal Raman
spectroscopy

1. Introduction

Group-VI layered two-dimensional (2D) transition metal dichalcogenides (TMDs)
(e.g., MoS2, WS2, MoSe2 and WSe2) exhibit very interesting semiconducting properties
and are attracting a lot of attention that has been increasingly growing after the discovery
of metallic two-dimensional graphene. As graphene, TMD monolayers have hexagonal
symmetry and show a direct bandgap in the range of 1–2 eV [1]. Bi- or multilayers of TMDs
are indirect bandgap semiconductors [1]. The remarkable versatility of monolayer and
multilayer TMDs as a viable alternative to graphene [2] arises from their unique crystal
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structure. Their bandgaps and chemical properties [3] can be effectively tuned using
different approaches (varying the number of layers, intercalation, alloying, mechanical
stress, doping, etc.) [4,5].

As far as MoS2 is concerned, numerous studies have revealed its intricate electronic
spectrum and optical properties, surpassing the limitations of the conventional one-electron
band structure [6]. The substantial influence of multiexcitonic effects has highlighted the
importance of thorough experimental studies on electronic excitations [7–11], placing them
at the forefront of the current scientific research concerning MoS2. According to a series of
theoretical works [1–5,12], the reported tunability of the direct bandgap due to indirect-to-
direct crossover [13,14] in atomically thin MoS2 is directly related to the variable orbital
composition of the involved electronic states. For the same reason, the indirect bandgap
of few-layer MoS2 will also vary with the thinning of its thickness, and even an indirect-
to-indirect crossover between the transitions associated with two different valleys of the
conduction band may occur. While few-layer MoS2 exhibits two valleys along the Γ–K line
with similar energy, as highlighted by Zhao et al. [15], the particular valley responsible
for forming the conduction band minimum remains poorly understood. Fundamental
questions persist regarding the circumstances under which the indirect Λ−Γ transition will
shift to indirect K−Γ band alignment and whether this shift will occur at all, because the
valley responsible for forming the conduction band minimum is yet to be specified.

Until now, MoS2 monolayer and few-layer films were obtained using the exfoliation
technique [10,13,16,17], chemical vapor deposition (CVD) [11,18–23], the sulfurization of
CVD-deposited MoCl5 [24] and MoO3 [25] and the sulfurization of Mo [26] and MoO3 [27]
thin films obtained using vapor phase growth.

In this work, we report the preparation of MoS2 ultrathin films by sulfurization of
few-layer MoO3 films that were preliminary obtained on a SiO2/Si substrate by plasma-
enhanced atomic layer deposition (PE-ALD). All sulfurized samples were examined at
room temperature with spectroscopic ellipsometry and photoluminescence spectroscopy
to obtain information about their dielectric functions (DF) and emission spectra. The
latter unveiled the competition of two indirect transitions from the Λ and K valleys of the
conduction band by thinning the MoS2 thickness down to a few layers.

2. Experimental Section
2.1. MoO3 Thin Films

The MoO3 films were deposited in a PE-ALD system (SI ALD LL, SENTECH Instru-
ments, Berlin, Germany), as described in detail in [28,29]. The films were grown on thermal
oxidized (SiO2 with a nominal thickness of 105 nm) p-type Si (100) wafers (thickness ~
650–700 µm) with a resistance of <0.005 Ohm × cm (high-doped substrates).

X-ray diffraction (XRD) patterns were recorded on a Malvern PANalytical X’Pert Pro
MRD diffractometer(Malvern Panalytical Ltd., Bristol, UK) equipped with a fast PIXcel
detector, using CuKα radiation generated at 40 kV and 40 mA. Grazing incidence XRD
(GIXRD) patterns were recorded at an incident angle of 0.5◦, with a step size of 0.01 ◦2θ
and a counting time of 0.5 s, over a 5–55 ◦2θ interval. Typical GIXRD patterns and dielectric
functions (DFs) retrieved using spectroscopic ellipsometry (SE), performed with the aid of a
rotating-compensator M 2000DI (J.A. Woollam, Lincoln, NE, USA) ellipsometer at different
incident angles over the photon energy range of 0.7–6.5 eV, are given in Figure S1a and
Figure S1b, respectively. All the obtained MoO3 films, subjected to further sulfurization,
were crystalline, and their DFs were indicative of the absence of the oxygen deficiency, as
discussed in the supplementary information S1 Section. Their thicknesses, found in an
X-ray reflectometry (XRR) examination were 3, 5 and 30 nm.

2.2. MoS2 Thin Films

The sulfurization of the MoO3 films was carried out in a 2-inch single-zone tube
furnace (OTF-1200X-S, MTI Corporation, Richmond, CA, USA). For this purpose, the MoO3
films were placed at the center of the furnace. The furnace and samples were purged
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multiple times under Ar flow (250 sccm 99.999% Ar). The temperature of the furnace
was ramped up from room temperature to 700 ◦C over 15–20 min and maintained at that
temperature for 60 min under atmospheric pressure. During heating, H2S (10 sccm 99.5%
H2S) was introduced at 300 ◦C; it was removed at the end of the 60 min thermal treatment.
Afterward, the furnace was purged with Ar (250 sccm) during the cool-down process. After
cooling to ~400 ◦C, the furnace was opened for rapid cooling at ~100 ◦C over ~10 min.

The topographies of the prepared 30, 5 and 3 nm-thick MoS2 films (plan view) were
examined using a Zeiss UltraPlus scanning electron microscope (Carl Zeiss, Oberkochen,
Germany). The corresponding scanning electron microscopy (SEM) images are given in
Figure S2b–d.

Examinations using X-ray reflectivity and SE revealed that sulfurization induces
changes in film thickness. Specifically, the thickness of 30 nm-thick film was reduced by
nearly 30% after sulfurization. On the other hand, the films with nominal thicknesses
of 3 and 5 nm each experienced less than a 15% change in thickness after sulfurization.
To simplify the references in this text, each of the MoS2 films studied will be identified
based on its nominal thickness, which corresponds to the thickness of the source MoO3
film before sulfurization. The variation in thickness among the resulting MoS2 films is
distinctly evident in their Raman spectra (Figure S2a). These were recorded using back-
scattering geometry on a Nanofinder-30 confocal Raman system (Tokyo Instrument Inc.,
Tokyo, Japan) equipped with a Juno 3050 GS-11 (Kyocera Soc Corporation, Yokohama,
Japan) Nd:yttrium–aluminum–garnet laser (second harmonic, 532 nm). The maximum
output power of the excitation source was 10 mW. The cross-sectional beam diameter was
4 µm. Diffraction grating with 1800 grooves per mm provided a spectral resolution of
0.5 cm−1. The spectral signal was detected using a photon-counting charge-coupled device
(CCD) camera “Andor” (Andor Technology, Belfast, Ireland) cooled down to −100 ◦C.

As shown in Supplementary S2, the observed decreases in intensity and disappearance
of the 521 cm−1 Raman line of the Si substrate with increasing thickness of the MoS2 film
(Figure S2a) corroborates the value of the absorption coefficient (Figure S3) extracted from
the DFs of the 3, 5 and 30 nm MoS2 films.

Despite the large number of theoretical works on ultrathin MoS2, only a few address its
DFs. So far, as the thicknesses of the obtained 3 and 5 nm MoS2 samples exceeded one layer
(L) and approximately corresponded to 4 L and 8 L MoS2 (Supplementary S2), respectively,
they were of primary importance in the context of the present work. Nevertheless, along
with the latter two, bulk and 2 L MoS2 were also included in the band structure calculations
to obtain a more complete picture and unravel the main trends that band structure and DF
show upon thinning of the MoS2 thickness.

We used the full-potential linearized augmented plane wave (FP LAPW) method
implemented in the scheme reported in [30]. The exchange-correlation interactions were
described as within the generalized gradient approximation (GGA), using the strategy
reported in [31]. The convergence parameter RmtKmax, where Rmt is the smallest atomic
sphere radius and Kmax is the largest K-vector of the plane wave expansion of the wave
function, was set to 7.0. Within the atomic spheres, the partial waves were expanded up
to lmax = 10, where lmax is the highest value of the orbital angular-momentum quantum
number used for partial waves inside atomic spheres. Integrations over the first Brillouin
zone (BZ) were performed using the tetrahedron method, with 60 points in the irreducible
part of the BZ. The Rmt values for Mo and S were set to 2.34 and 2.08 a. u. (atomic unit),
respectively. The value of −6.0 Ry of cut-off energy was used for the separation of the core
and valence states. The imaginary part of the DF was calculated using the joint density
of the states for optical transitions between the valence and conduction bands, using the
Monkhorst–Pack technique for integration over the Brillouin zone [32]. The real part of
the dielectric function was calculated from the imaginary part using the Kramers–Kronig
relation.

While SE is a powerful tool for studying direct optical transitions, photoluminescence
(PL) is a well-endorsed technique for studying indirect-gap emissions in MoS2.
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In the present work, PL studies were performed on an Infrared PL/PLE/Raman
spectrometer (Tokyo Instrument Inc., Tokyo, Japan) using lasers with two excitation wave-
lengths, 785 nm (NovaPro 785–250) and 532 nm (NovaPro PB 532–200 DPss), to embrace
a possibly wider range of intrinsic electronic excitations that may decay radiatively and
contribute to the PL of MoS2. The obtained PL spectra are given and discussed together
with the other main results in the next section.

3. Results and Discussion

Among the significant parameters in the resulting electronic energy spectrum of
MoS2 (Figure 1a–d) is the splitting between adjacent bands at the K-point of the BZ. As
highlighted in Figure 1, for each MoS2 layer count, it arises from interlayer interactions and
spin–orbit coupling (SOC). The splitting magnitude was reduced in the 8, 4 and 2 L MoS2
compared to the bulk material, primarily due to the finite number of layers in ultrathin
MoS2. In a 1 L MoS2 limit, the splitting solely originates from SOC [3].

Nanomaterials 2024, 14, x FOR PEER REVIEW 4 of 12 
 

 

dielectric function was calculated from the imaginary part using the Kramers–Kronig re-
lation. 

While SE is a powerful tool for studying direct optical transitions, photoluminescence 
(PL) is a well-endorsed technique for studying indirect-gap emissions in MoS2. 

In the present work, PL studies were performed on an Infrared PL/PLE/Raman spec-
trometer (Tokyo Instrument Inc., Tokyo, Japan) using lasers with two excitation wave-
lengths, 785 nm (NovaPro 785–250) and 532 nm (NovaPro PB 532–200 DPss), to embrace 
a possibly wider range of intrinsic electronic excitations that may decay radiatively and 
contribute to the PL of MoS2. The obtained PL spectra are given and discussed together 
with the other main results in the next section. 

3. Results and Discussion 
Among the significant parameters in the resulting electronic energy spectrum of 

MoS2 (Figure 1a–d) is the splitting between adjacent bands at the K-point of the BZ. As 
highlighted in Figure 1, for each MoS2 layer count, it arises from interlayer interactions 
and spin–orbit coupling (SOC). The splitting magnitude was reduced in the 8, 4 and 2 L 
MoS2 compared to the bulk material, primarily due to the finite number of layers in ul-
trathin MoS2. In a 1 L MoS2 limit, the splitting solely originates from SOC [3]. 

As shown in Figure 1e (shaded area), this splitting manifests itself through the irreg-
ular behavior of the ellipsometric parameter Ψ within the narrow photon energy gap 
spanning from 1.8 to 2 eV. 

 

Figure 1. Electronic band structures of 2 L (a), 4 L (b), 8 L (c) and bulk (d) MoS2. Valence band
splitting is encircled; possible indirect radiative transitions are indicated by arrows; and bold and
dashed vertical lines show direct transitions A, B and C, respectively. (e) Ellipsometric parameter Ψ
as a function of photon energy for the obtained MoS2/SiO2/Si structures with 3 (top plot), 5 (middle
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plot) and 30 nm (bottom plot) MoS2. On the top, colored open circles and solid lines represent
experimental data and the fits to these data, respectively; each color corresponds to one of the four
accessed angles of incidence.

As shown in Figure 1e (shaded area), this splitting manifests itself through the irregular
behavior of the ellipsometric parameter Ψ within the narrow photon energy gap spanning
from 1.8 to 2 eV.

Such peculiar behavior was observed across all MoS2/SiO2/Si stacks studied in this
work and for all incident angles accessed during the SE measurements. Note that the mean
square error (MSE) given in Figure 1e for each studied MoS2/SiO2/Si structure is related to
the model that was fitted to the ellipsometric parameters not only within the 1.4 to 2.1 eV
range shown in Figure 1 but also for the entire accessible photon energy range spanning
from 0.7 to 6.5 eV. The obtained MSE values fell below eight, indicating that the fit was
acceptable and the retrieved DF was accurate enough.

The DF across the entire range of photon energies is displayed in Figure 2, with
separate representation for the real (a) and imaginary (b) parts. The data for the MoS2
films with thicknesses of 30, 5, and 3 nm are indicated by the blue, green and red lines,
respectively.
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Figure 2. Real (a) and imaginary (b) parts of the experimental DFs retrieved for 30 (blue lines),
5 (green lines) and 5 nm (red lines)-thick MoS2 in a wide photon energy range. The splitting-related
features of the spectra are encircled. Notations A, B, C and E, commonly used for MoS2, are related
to the particular peaking structures in the spectrum of each of the considered MoS2 thin films. The
vertical dashed lines and small horizontal arrows are given for convenience to show how A, B, and C
exciton peak positions shift with changing the thickness of MoS2. As illustrated in the inset in (b), A-
and B-excitons also exhibited shifts toward higher photon energies as the thickness of the obtained
MoS2 was reduced to 5 or 3 nm.
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Based on its crystal structure and symmetry [33], MoS2 is a uniaxial crystal, and its
optic axis is normal to the layer plane (LP). As reported in Figures S4 and S5, the calculated
DF indeed shows different dispersions for light polarized parallel and perpendicular to the
layer plane. Comparison between the SE-based (Figure 2) and calculated (Figure S4) data
drove us to the conclusion that the obtained SE-based DF is overwhelmingly determined
by dielectric response to the light polarized in the LP for all MoS2 films studied in this
work. The descending trend in the intensity of the main features of the SE-based DFs
of the 30, 5 and 3 nm MoS2 was reproduced using the calculated DFs obtained before
and after rescaling (Figure S6). The latter mitigated the vacuum dilution effect, since the
band structure calculations for MoS2 with a finite number of layers were conducted using
supercells that included vacuum space.

The A, B and C transitions depicted in Figure 1 and reproduced by SE-based DFs in
Figure 2 are commonly observed in the majority of the related studies. The exciton peaks
(Figure 2) related to these transitions clearly exhibit blue shifts with the thinning of the
MoS2 samples. The E-exciton, which is also frequently observed in optical studies [34] does
not show noticeable shift. The most significant shift was observed for the C-excitons, which
are not originating from transitions between parabolic bands with opposite concavities, like
A- and B-excitons, but resulting from transitions between the valence and conduction band
regions with similar concavities, known as the nested band regions. The comparison of the
C-exciton position in 30 nm MoS2 with those in 5 and 3 nm MoS2 indicated a considerable
blue shift upon thinning, exceeding 100 meV (Figure 2b). As illustrated in the inset of
Figure 2b, the A- and B-excitons also exhibited shifts toward higher photon energies as
the thickness of the obtained MoS2 was reduced to 5 or 3 nm. In comparison to the C-
excitons, the B- and A-excitons experienced smaller shifts (approximately 50 and 20 meV,
respectively).

Overall, as stated before, the above analysis confirms that the obtained 30 nm MoS2
is a good counterpart to bulk MoS2. Along with the already mentioned Raman spectra
(Supplementary S2 Section), this assertion was corroborated by the PL spectra taken for the
studied MoS2 thin films and shown in Figure S7.

The exciton landscape in MoS2 is highly intricate, embracing neutral, charged and
dark excitons, all of which directly or indirectly contribute to the DFs. This landscape
is dynamic, with various components influenced by numerous factors, including the
fabrication process [20]. Therefore, when the retrieved DFs are evaluated, they should be
analyzed in conjunction with PL data, comparing the absorption coefficient derived from
the DFs to the PL spectra within the same spectral range. Since our primary focus was
on few-layer MoS2, we initially concentrated on MoS2/SiO2/Si structures featuring 3 and
5 nm-thick MoS2 layers.

Figure 3 displays the photon energy dependencies of the absorption coefficients
(α) and PLs of the few-layer MoS2 films. The PLs under the excitation wavelength of
532 nm (2.33 eV) are given for various levels of excitation power. The normalized PL
spectrum (shape function) for each excitation level underwent little change, with increasing
excitation power in the range of 2–10 mW (Figure S8), and the positions of the emission
lines remained unchanged.

A- and B-excitons, which are positioned above 1.8 eV in MoS2 [13,33–36], clearly
manifested themselves in the spectral features of the α and PL values of the studied films.
Comparison with the reported energy positions of Aexc. (1L MoS2) and Bexc. (1L MoS2) for
a single layer showed that the energy gap between the A- and B-excitons in our case did
not exceed approximately 150 meV. This value is noticeably smaller than 200 meV that is
the value of the splitting between A- and B-excitons in bulk MoS2 [3]. This observation
is directly related to a few layers’ thickness of the prepared films. In the case of the 5 nm
MoS2, the energy position of the emission line ascribed to the B-excitons was red-shifted
by nearly 20 meV from its energy position in the MoS2 monolayer and from its absorption
peak as reported in Figure 2b. For the 3 nm MoS2, the shift was definitely less pronounced
(see Figure 2a). The energy difference between absorption and emission, known as the
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Stokes shift, is inherent to all materials and varies widely depending on the material type
(semiconductor, molecular crystal) and internal electrical fields. For typical semiconductors
like GaAs, this shift is only 4 meV [39]. There are no reports on the intrinsic Stokes
shift value in MoS2. However, as the shift is decreased in 3 nm MoS2 compared to 5 nm
MoS2, the Stokes shift in the latter is non-intrinsic and is likely caused by some strain or
inhomogeneity in 5 nm MoS2.
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Strong enhancement in PL intensity related to the direct exciton radiative transitions
in MoS2 when MoS2 thickness goes down to a few nanometers is a well-known and solid
fact. According to the PL spectra in Figure 3, some enhancement also takes place at the
nanoscale when MoS2 thickness is changed from 5 to 3 nm. It can be clearly seen that under
the same excitation levels, the PL intensity in 3 nm MoS2 was noticeably stronger than in
the 5 nm MoS2.

While α is structureless and, for both the 3 and 5 nm MoS2, showed only absorption
tails descending toward lower photon energies, the PL spectrum showed an indirect-gap
emission band centered around 1.25 eV (Figure 3).

It has been established in many experimental and theoretical works [2,5,14,15,18,
38,40,41] that MoS2 remains an indirect semiconductor even when reduced to bilayers.
Observation of the indirect-gap emission around 1.25 eV on 3 nm-thick MoS2 (Figure 3) has
revealed that MoS2 retains its indirect characteristics even when its thickness is reduced to
just four layers. This agrees well with the already-quoted works.
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However, as noted by Zhao et al. [15], few-layer MoS2 exhibits two valleys along the
Γ–K line with similar energy, and there is limited understanding of which valley forms
the conduction band minimum. It is important to highlight that the indirect-gap value
of 1.20 eV [38] characterizes bulk MoS2 and corresponds to the I1 transition in the band
structure shown in Figure 1. This implies that, like in previous calculations, including the
cited work [15], the band structure in Figure 1 captures the main trends in the evolution of
band structure with the thinning of MoS2. It indicates a higher energy of K–Γ transitions
(I2) compared to Λ–Γ transitions (I1) and even predicts a crossover between the Λ and K
conduction band valleys. However, the precise temperature at which this crossover occurs
in few-layer MoS2 is beyond the predictive capabilities of the performed calculations.
Nevertheless, discovering experimental conditions that would enable the simultaneous
generation of both I1 and I2 radiative transitions at room temperature would greatly assist
in addressing this issue.

The PL spectra displayed in Figure 3 were excited with a 532 nm (2.33 eV) laser and,
along with direct exciton lines, showed only indirect I1 (Λ–Γ) emission. The photon energy
of 2.33 eV considerably exceeds the direct energy gap between the conduction and valence
bands at the K point, and this may have prevented excited carriers from emitting I2 (K-Γ).

Note that some relaxation paths for excited electrons can be blocked or very slow
before emission, as has been observed in a case of high energy C-excitons in MoS2 [42].
However, considering the blocking of carriers excited at 2.33 eV from relaxation down to the
K–point to prevent K–Γ indirect emission seems implausible. Such a blocking mechanism
would contradict the observation of the intense direct gap exciton emission (Figure 3)
associated with the same K point in the band structure (Figure 1). It is more reasonable to
assume that the direct emission channel for the K-point is considerably more effective than
the indirect emission channel and the K–Γ indirect emission does not manifest itself under
2.33 eV excitation. This assumption has received strong experimental evidence in the PL
spectra taken under excitation with a wavelength of 785 nm or photon energy of 1.57 eV,
which was below the direct bandgap energy to exclude the excitation of direct emission.

Indeed, as shown in Figure 4a, b for the 3 and 5 nm MoS2, respectively, both the I1
(Λ–Γ) and I2 (K–Γ) indirect-gap emissions, with experimental energies corresponding to
1.25 and 1.4 eV, respectively, were observed in the PL spectra under 1.57 eV excitation.

It is important to stress that although both the Λ and K valleys were involved in the
indirect emission of the obtained few-layer MoS2, the PL spectra of the 3 (Figure 4a) and
5 nm (Figure 4b) MoS2 differed in some details.

Along with the emission line related to the K–Γ transition, I2 and besides the emission
line associated with the Λ-Γ transition, I1, the room-temperature PL spectra of the 3 nm
MoS2 also showed a small satellite (I1+50 meV) positioned 50 meV higher than I1 (Figure 4a).
On the other hand, the K–Γ emission I2 in the 5 nm MoS2 was split into two components,
denoted as I2 and I2–42 meV, while the I1+50 meV satellite was no longer seen in the spectra
(Figure 4b).

The disparity observed in the PL between the 3 and 5 nm-thick MoS2 highlights the
complicated and thickness-dependent character of the radiative processes in ultrathin
MoS2. Further investigation is required to understand their origin. However, when the
intensity ratio between the I1 and I2 emissions was compared under similar excitation
powers (11.46 mW for the 3 nm MoS2 and 11.5 mW for the 5 nm MoS2), the results strongly
suggested that at room temperature, 3 nm (4 L) MoS2 is more likely to be closer to the K-Λ
crossover than 5 nm (8 L) MoS2. Preliminary studies on temperature-dependent PL further
support this assumption.

Until now, the concurrent generation of PL related to both the I1 and I2 indirect
transitions had not been detected in MoS2 thin films. In a work by Luo et al. [43], the
simultaneous generation of similar indirect-gap emissions was reported in multilayer MoS2
bubbles prepared from exfoliated MoS2 thin films. However, the exfoliated thin films
themselves did not exhibit any PL [43]. This effect was achieved through the introduction
of surface strain in multilayer bubbles and has little in common with our case. Lastly, it
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is essential to note that the simultaneous observation of indirect-gap emissions I1 (Λ-Γ
transitions) at 1.25 eV and I2 (K-Γ transitions) at 1.4 eV occurred exclusively under excitation
with a photon energy of 1.57 eV, which is below the energy gap for direct transitions in
MoS2. For excitation with a photon energy of 2.33 eV or higher, beyond the energy gap for
direct transitions in MoS2, the K-Γ indirect emission channel would become ineffective.
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4. Conclusions

The sulfurization process applied to ultrathin MoO3 initially deposited on SiO2/Si
substrates using plasma-enhanced atomic layer deposition has transformed MoO3 into
ultrathin MoS2. The achieved material, in the form of a few layers, was deeply investigated
using spectroscopic ellipsometry and photoluminescence with different excitation energies,
supported by first-principles DFT-based calculations. This study has given rise to the first
observation of the simultaneous generation of the indirect-gap PL caused by the indirect
radiative transitions involving two distinct valleys (Λ and K) within the conduction band.
This discovery provides a fresh insight into the electronic band structure of ultrathin MoS2
and a new platform for experimental studies into its bandgap.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/nano14010096/s1, Figure S1: (a): Typical XRD patterns of thin
films with crystalline c-MoO3 (black line) and amorphous a-MoO3, obtained at different deposition
temperatures; (b): Absorption coefficient of c-MoO3 (black line) and a-MoO3 (red line); Figure S2:
Left panel (a): Raman spectra of the obtained MoS2/SiO2 (100 nm)/SiO2 structures with different
thickness of MoS2 layer (blue, green, and red lines). Inset shows Raman spectra in a wavenumber
range above 510 cm−1; Right panel: SEM images (top view) of the produced MoS2 layers with
thicknesses of 30 (b), 5 (c), and 3 nm (d); Figure S3: Absorption coefficient as a function of the
photon energy for 30 (blue), 5 (green) and 3 nm (red) MoS2 thin films. Inset shows the details of the
photon energy dependence of the absorption coefficient, together with the parameters (excitation
wavelength, photon energy) of the lasers used in the present work. Further explanation is given in
the text; Figure S4: Calculated dielectric function of 4L (black lines), 8L (red lines) and bulk (green
lines) MoS2 for light polarized in the layer plane; Figure S5: Calculated dielectric function of 4L(black
lines), 8L(red lines) and bulk (green lines) MoS2 for light polarized perpendicular to the layer plane;
Figure S6: Real and imaginary parts of the experimental (black lines) and calculated (red lines) DF
obtained for 30 (a and b) 5 (c and d), and 3 nm (e and f) MoS2 for light with electrical vector E
polarized in the layer plane (LP). The blue curves represent a correction to the calculated DF in order
to take into account effects related to the finite number of layers in 5 and 3 nm MoS2; Figure S7: PL
spectra of 30 (top part), 5 (middle part) and 30 nm (bottom part) MoS2. Vertical dashed lines are
given for convenience and indicate positions of the indirect transitions I1, A and B excitons in one
monolayer of MoS2 and shift of the A and B exciton positions in 30 nm MoS2 as compared to 5 and

https://www.mdpi.com/article/10.3390/nano14010096/s1
https://www.mdpi.com/article/10.3390/nano14010096/s1
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3 nm MoS2; Figure S8: Normalized spectra (line-shape function) of the PL spectra in Figure 3 (main
text); (a) MoS2(3 nm)/SiO2(100 nm)/Si thin film, (b) MoS2(5 nm)/SiO2(100 nm)/Si thin film. Two
vertical dashed lines on the right and one on the left in each figure are given for comvenience and
indicate the positions of excitons (A and B) in monolayer and indirect gap energy in bulk of MoS2.
References [44–47] are cited in the supplementary materials.
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