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Semianalytical predictions for the transients of spin-dependent transport and recombination rates through
localized states in semiconductors during coherent electron-spin excitation are made for the case of weakly
spin-coupled charge-carrier ensembles. The results show that the on-resonant Rabi frequency of electrically or
optically detected spin oscillation doubles abruptly as the strength of the resonant microwave field �B1 exceeds
the Larmor frequency separation within the pair of charge-carrier states between which the transport or recom-
bination transition takes place. For the case of a Larmor frequency separation of the order of �B1 and arbitrary
excitation frequencies, the charge carrier-pairs exhibit four different nutation frequencies. From the calcula-
tions, a simple set of equations for the prediction of these frequencies is derived.
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I. INTRODUCTION

Electrically and optically detected magnetic resonance ex-
periments �EDMR and ODMR, respectively� are alternative
ways to detect electron-spin resonances �ESR� in materials
with charge-carrier transport or recombination transitions
that are governed by spin-selection rules.1–7 The advantage
of EDMR and ODMR in comparison with the traditional
ESR spectroscopy is the sensitivity of these methods, which
is typically 6 to 10 orders of magnitude higher.3,4 This has
become particularly useful for the investigation of paramag-
netic centers in highly diluted matrices or low-dimensional
semiconductor thin-film devices and interfaces, point
defects,1,2,8–10 and defect clusters. One of the challenges of
EDMR and ODMR spectroscopy is that the information ob-
tained from these experiments is different in comparison to
the ESR data.11 The reasons for the discrepancies between
ESR and EDMR/ODMR are mainly due to the two different
measurement approaches, which imply two different observ-
ables: When the density operator �̂ represents the spin en-
semble to be investigated, the observable corresponding to
ESR experiments will always be spin polarization �P� �
=Tr�P̂�̂� represented by the spin polarization operator P̂,
whereas for the indirect detection through spin-dependent
transport or recombination, the observables are the
permutation-symmetry or -antisymmetry operators repre-
sented by the singlet �S��S� or triplet operators �Ti��Ti�,
respectively.12 For many experimental EDMR/ODMR stud-
ies �the so called continuous-wave experiments�, the differ-
ent description of the observables is not relevant, since these
experiments are carried out in the incoherent time regime
where only a line-shape analysis of the respective spectra is
feasible. However, when coherent effects are studied with
pulsed techniques �PEDMR/PODMR�,13–17 the interpretation
of the experiments relies strongly on the proper theoretical
description of spin interaction during coherent microwave
excitation.8,13

An example for the difference between a PEDMR signal
and an ESR signal that come from the same spin ensemble

are weakly exchange and weakly dipolar coupled distant pair
states in the band gap of an arbitrary semiconductor material
with weak spin-orbit coupling as described analytically by
Boehme and Lips.14 Weak spin-spin coupling means that the
exchange coupling constant J and dipolar coupling strength
Dd as defined in Ref. 14 must be much smaller than the
difference ���=���a−�b�, which is the difference of the
Larmor frequencies �a,b=ga,b�BB0 of the pair partners a and
b, respectively, times �. Note that �B represents Bohr’s mag-
neton and B0 the magnitude of an external magnetic field to
which the spin pair is exposed. The requirement of weak
spin-spin coupling implies that only pair systems with suffi-
ciently large pair partner distance are considered in this
model. Since too large distances and therefore too slow elec-
tronic transition rates between the pair partners lead to a loss
of the observed signals, the pair distances for which this
model is applicable range in the lower nm range, depending
on �� given for the pair and the wave functions of the indi-
vidual pair states. Examples for such systems could be
donor-acceptor pairs whose distance is sufficiently large, yet
not large enough to make donor-acceptor recombination
impossible,18 donor deep defect recombination at crystalline
silicon surfaces, or equivalently, trap-dangling bond recom-
bination in disordered silicon materials such as amorphous or
microcrystalline silicon.8,19 Weak spin-orbit coupling is re-
quired in order to ensure spin conservation and, therefore, a
spin-selection rule. It is fulfilled, for instance, in all known
silicon morphologies but also in many organic semiconduc-
tor materials.18 When the two pair constituents are manipu-
lated identically with a coherent pulse of high field strength23

B1 �
g�BB1

� ª�B1	��,24 whereas � is the gyromagnetic
ratio�, they undergo a simultaneous spin-Rabi oscillation.
This can be detected by means of pulse length dependence
measurements with both PESR and PEDMR. With PESR,
the measurement could be conducted by integration of the
free induction decay and would be called a transient nutation
experiment,20 whereas with PEDMR, the rate relaxation after
the coherent excitation would be integrated reflecting the
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pair permutation symmetry within the pairs at the end of the
exciting pulse.21 While both the PESR and the PEDMR tran-
sients would exhibit oscillating signals, the frequency of
these oscillations would differ by a factor of 2: The PESR
detected nutation frequency 
ESR=�B1 would simply repre-
sent the Rabi frequency of an uncoupled spin s= 1

2 , whereas
the PEDMR measured oscillation would exhibit the fre-
quency at which the identically precessing spins of the two
pair partners cross the geometric plane transverse to the
field direction of the externally applied magnetic field B0
�the x̂-ŷ plane�, since at these moments the projection of the
parallel oriented spins in the x̂-ŷ plane onto the spin eigen-
states with singlet content will be maximized. Since this
plane is passed twice per nutation period, the oscillation of
the transition rate is twice as high. Note that this frequency
discrepancy of the oscillations between PESR and PEDMR
detected transient nutations is changed as the B1-field
strength becomes weak: When �B1���, an ESR excitation
will be possible with only one pair partner at the same time.
Thus, the maximum singlet content of a pair will be achieved
when the spin orientations therein point to opposite direc-
tions parallel to the B0 field. Hence, for weak B1 fields, the
nutation frequencies for PESR and PEDMR become equal.
In this regard, it shall be noted that we assume that both J
and Dd and, therefore, the singlet-triplet splitting of the pairs
are much smaller than both ��� and the strength of the
excitation field ��B1. A “weak B1 field” therefore means
J ,Dd���B1����.

In the following, a semianalytical study is presented
which describes spin-dependent electronic transition rates
�e.g., recombination or hopping transport� when the driving
forces for Rabi oscillation �under experimental conditions
these are typically strong coherent microwave fields� are be-
tween a weak ��B1���� and a strong excitation regime
��B1	���. The goal of this study is to fill the gap between
the two analytically derived extremal cases of very weak and
very strong excitation as presented by Boehme and Lips14

and to describe a general behavior of the nutation frequency
reflected by the spin-dependent transition rates for arbitrary
B1 and �� and arbitrary excitation frequencies �. For a
straightforward interpretation of experimental results,22 it is
of particular interest to understand if the change of Rabi
frequency from 
=
ESR to 
=2
ESR takes place continu-
ously or abruptly.

II. MODEL FOR SPIN-DEPENDENT RECOMBINATION

The basis for the results presented in the following is the
pair models for spin-dependent recombination and transport
as described and discussed in detail in Refs. 14 and 21, re-
spectively. These models are based on the Kaplan-Solomon-
Mott model5 under consideration of non-negligible triplet
transition probabilities and spin relaxation. For the calcula-
tion of the data presented, we strictly follow these models
under the assumption of negligible spin-spin interactions.
Note that this constraint does not apply to all known experi-
mental systems and will always have to be considered when
the results presented in the following are applied to the in-
terpretation of experimental data.

Quantitatively, the models outlined can be represented by
an ensemble of spin s= 1

2 pairs described by the density

operator �̂ as derived in Ref. 14. We define Ĥ= Ĥ0+ Ĥ1�t�
to be the Hamiltonian of an individual pair with

Ĥ0=− 1
2ga�BB0�̂z

a− 1
2gb�BB0�̂z

b representing the unperturbed
Hamiltonian in the presence of a constant magnetic field

B� 0=B0ẑ, and Ĥ1�t�=− 1
2g�BB1��̂+

a + �̂+
b�e−i�t is the perturba-

tion with a circularly polarized microwave of angular fre-
quency � and strength B1. Note the absence of spin-spin

coupling in Ĥ0 in contrast to Eq. �5� of Ref. 14. The dynam-
ics of the ensemble of spin pairs can be described by a Liou-

ville equation �t�̂= i
� ��̂ , Ĥ�− in which, in contrast to Eq. �1�

of Ref. 14, all stochastic terms have been dropped since in-
coherent processes are considered to be negligible during the
applied coherent ESR pulse. Only coherent pulses—these are
pulses that are shorter than the fastest incoherent processes—
are considered in the following. The ensemble of spins as
represented by the density operator �̂= �̂�t� can be expressed
by a unitary, time-dependent 44 matrix. Due to the ab-

sence of coupling, the Hamiltonian Ĥ0 will be diagonal in the
product base with four eigenvalues ±

��0

2 and ± ���
2 , wherein

�0 and �� represent the sum and the difference of the Lar-
mor frequencies �a and �b, respectively.

When a solution for �̂�t� is found, the transients of the
spin-dependent transition rate

R�t� = �
i=1

4

riTr��i��i��̂�t�� �1�

can be calculated from the projection of the permutation
symmetry operators on the ensemble state. Experimentally, a
real-time observation of R�t� on typical time scales in the
lower ns range is difficult to obtain with PODMR and often
impossible with PEDMR due to the insufficient time resolu-
tion caused by the long dielectric relaxation times of semi-
conductors in particular at low temperatures. Hence, tran-
sient nutation experiments are typically conducted by means
of decay transient measurements as a function of the applied
pulse length.15 The spin dynamics during the coherent spin
excitations are obtained from these pulse length dependence
measurements by charge integration Q���, which reveals the
permutation symmetry state at the end of the microwave
pulse as explained in detail in Ref. 21. Under the given con-
ditions,

Q��� � ���� =
�11��� − �11

S

Tr��S�
=

�44��� − �44
S

Tr��S�
, �2�

whereas �ii
S is the steady-state value of the matrix element �ii

of the density matrix �̂. Hence, it is Q��������, which is the
observable calculated and displayed in the following. Note
that while Q��� represents a number of charge carriers for
PEDMR experiments, the integration of the photolumines-
cence decay transient in PODMR reveals a number of pho-
tons. Nevertheless, in both cases, the observable shall be
referred to as Q��� in the following and is always plotted in
arbitrary units because of this ambiguity.
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III. SIMULATION METHODS AND RESULTS

When incoherence is negligible, the Hamiltonian Ĥ
can be diagonalized for any given parameter set, and thus
the Liouville equation in its time integrated form �̂���
=exp�− i

�Ĥ���Ŝ exp� i
�Ĥ�� can be solved by a simple matrix

multiplication in which �S= 1
2 ��T+��T+�+ �T−��T−�� is the same

initial state as used in Ref. 14. The solution �̂��� is referred
to as “semianalytic” since this is easy to perform by means

of calculation of the eigenvalues and eigenvectors of Ĥ with
any given parameter set, while attempting to solve it fully
analytically for arbitrary variables leads to unreasonably
lengthy expressions.

Figure 1 displays an example for the time-domain result
for Q��� as a function of the Larmor frequency for a spin pair
ensemble with a Larmor separation much larger than �B1,
which is one of the extremal cases discussed in Ref. 14 �Sec.
V A 2�. One can recognize the two well distinguishable
peaks at �=9.95 and �=10.05 GHz on the Larmor frequency
scale determined by the choice of the respective g-values of
the spin-pair partners as well as the undamped Rabi nutation
on the scale of the pulse length �. Outside of the resonances,
the signal intensity drops while the nutation frequency in-
creases. The latter is well known and understood from the
expression of the Rabi frequency as introduced in Eq. �28� of
Ref. 14. It is due to the spin nutation about the residual B0
field �B0 in the rotating frame, which increases with the
distance of the excitation frequency from the resonance fre-
quency. Figure 1 shows that the relevant information con-
tained in the calculated transients Q��� includes the frequen-
cies as well as the amplitudes of the nutation components.
Thus, from the solutions of Q���, the absolute Fourier trans-
form �FT� was calculated in order to analyze the various
nutation frequencies contained therein. In contrast to the
short 160 ns transient shown in Fig. 1, the time scale for the
time-domain simulation and, therefore, the Fourier integra-
tion was chosen to be 5 �s long. For the parameters used
throughout this study, this corresponds to at least 50 Rabi
oscillation periods.

Figure 2�a� displays 
=FT	Q���
 obtained by semiana-
lytical calculations for spin pairs with four different Larmor
separations ���

2� =1, 5, 20, and 40 MHz� for microwave exci-
tation frequencies of 9.95��= �

2� �10.05 GHZ with a given
B1 field of

�B1

2� =10 MHz. While the plots �a.i� and �a.iv� ful-
fill the extremal cases of small and large Larmor separation,
respectively, the plots �a.ii� and �a.iii� describe two interme-
diate cases with �B1���. Note that the scaling of the color
code was normalized to the maximum for each graph in or-
der to achieve sufficient contrast. In order to be able to com-
pare the four different cases more easily, the Rabi compo-
nents FT	Q���
 at the resonance frequency of the two spin
partners are plotted in the respective graphs �red curves� as
conventional two-dimensional plots. Here, the chosen scal-
ing is equal for all graphs. The four cases displayed in Fig.
2�a� confirm the hyperbolic increase of the Rabi frequency

=���B1�2+ ��−�a,b�2 as the microwave frequency is
shifted out of resonance. One can deduce from the two-
dimensional inset plots of Fig. 2�a.i� and �a.iv� that the on-
resonance cases show only one frequency component for the
two extremal cases, namely 
=�B1 for large Larmor sepa-
ration and 
=2�B1 for small Larmor separation. This con-
firms the analytical results of Ref. 14. Outside of the reso-
nances ����a,b�, the oscillation splits into two components
for the extremal cases, and in the general, intermediate cases
there are up to four different nutation frequencies.

In order to illustrate the transition from a single 
=�B1
to a single 
=2�B1 frequency component with decreasing
Larmor separation �or equivalently, for an increasing micro-
wave field B1�, a plot of 
=FT	Q���
 versus the ratio ��

�B1
on

a logarithmic scale around ��
�B1

=1 is shown in Fig. 3 for the
one-spin on-resonant cases �=�a,b �a� and the average fre-
quency case �=��= 1

2 ��a+�b� �b�. Again, for the extremal
cases of ��

�B1
�1 and ��

�B1
	1, the plots confirm the known

results for small and large Larmor separation described
above. In Fig. 3�a�, one can see for ��

�B1
�1 �log� ��

�B1
��0�

that there is only one component with 
=2�B1. As ��
�B1

in-
creases and approaches 1 �log� ��

�B1
� approaches 0�, this com-

ponent gradually becomes weaker and its frequency in-
creases. This behavior can be understood by the fact that in
Fig. 3�a�, � is always equal to one of the pair partner reso-
nances. When �� becomes larger, ���� and thus an in-
crease of the observed nutation frequency takes place. When
��
�B1

�1 �log� ��
�B1

��0�, two new nutation components be-
come visible: �i� A low-frequency component that generally
is hard to separate from any given offset in the function
Q���, and �ii� one component with 
=�B1. The magnitude
of the latter rises from very small values for ��

�B1
�1 and

increases asymptotically to a maximum value for ��
�B1

	1,
whereas the two other components vanish. A complementary
view on these changes is given by Fig. 3�b�, where the Rabi
components for an excitation frequency �=�� are plotted
versus ��

�B1
. For ��

�B1
�1, plots �a� and �b� agree since they

represent the same physical situation. When ��
�B1

increases
and �a,b���=�, no low-frequency component becomes
visible. The 
=�B1 component, which also becomes visible,
will increase proportionally to �� since it is off-resonant to
the applied microwave frequency �.

FIG. 1. Plot of the observable Q as a function of the pulse length
� and the applied microwave frequency � for a spin pair with large
Larmor separation �B1���. The parameters of the simulation

were
�a

2� =9.95 GHz and
�b

2� =10.05 GHz for 0���160 ns and mi-
crowave excitation frequencies of 9.86��= �

2� �10.14 GHz as

well as a B1 field of
�B1

2� =20 MHz. One can distinguish the two
resonant peaks and recognize the nutation on the pulse length axis.
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IV. DISCUSSION

The simulation of spin-Rabi oscillation as observed by
PEDMR/PODMR reveals that the doubling of the nutation
frequency 
=�B1 to 
=2�B1 with decreasing Larmor sepa-
ration � ��

�B1
� is abrupt, which means that there is no continu-

ous increase of the oscillation frequency. Instead, only the
magnitudes of the various components change in the inter-
mediate Larmor separation regime about ��

�B1
�1. Here, four

nutation components become visible, which can all become
significant at the same time. Mathematically, it is obvious
that the pairs consisting of two s= 1

2 particles with four eigen-
states will reveal four eigenfrequencies for any given general
set of parameters. We interpret this behavior for the general
case as the interplay of the two one-spin systems and the one
two-spin system by which the spin pairs are described in the
two extremal cases discussed above. The results of the ana-
lytical derivation given in Ref. 14 showed that the most sig-

nificant qualitative change that takes place when the Larmor
separation changes from infinity to zero is that a transition
from a one-spin to a two-spin system occurs. For the one-
spin system, the spin in resonance �note that here, only one
spin can be in resonance� fully determines the oscillation of
the pair permutation symmetry, whereas for the two-spin sys-
tem, the permutation symmetry is determined by the relative
movements and spin orientations within the pair ensemble.
For large Larmor separation, at least one spin will remain
fixed in its initial state, typically an eigenstate with polariza-
tion parallel to the B0 axis. As the excitation frequency is
changed, the system becomes off-resonant, and two one-spin
contributions


a,b = ���B1�2 + �� − �a,b�2 �3�

appear where the frequency of one increases whereas the
frequency of the other decreases at the same time. The pair
still behaves like two individual one-spin systems. For small
Larmor separation, there are always two spins in motion as
long as the system is on resonance �there is then only one
resonance line observed�. Hence, since the relative spin mo-
tion of the two spins within the pair will now determine the
oscillation of the electronic rate transition, the beat frequen-
cies


p,n = 
a ± 
b �4�

of the two one-spin nutation frequencies can be expected.
Here, 
p and 
n stand for parallel and antiparallel orienta-
tions, respectively. Figure 2�b� displays four plots of the nu-
tation frequencies obtained with the simple terms given in
Eqs. �3� and �4� for the same parameter sets used for the
simulation results displayed in Fig. 2�a�. While this purely
phenomenological description of the nutation frequencies
cannot account for the intensities of the nutation

FIG. 2. �Color� �a� Three-dimensional color plots of the semianalytically calculated 
=FT	Q���
 as a function of the excitation
frequency � scaled in units of �B1 as the difference between � and the average of the Larmor frequencies of the two pair partners ��
= 1

2 ��a+�b� and the Rabi-nutation frequency 
 in units of �B1. For all four plots �a.i� to �a.iv�, �
2�B1=10 MHz and ��

2� =10 GHz. From plot
�a.i� to �a.iv�, the Larmor separation increases: �a.i�, ��

2� =1 MHz; �a.ii�, ��
2� =5 MHz; �a.iii�, ��

2� =20 MHz; �a.iv�, ��
2� =40 MHz. The two-

dimensional inset plots display the data of the three-dimensional plot at the Larmor frequency slices indicated by the dashed lines. �b� The
plot of the Rabi-nutation frequencies as obtained from Eqs. �3� and �4� for the same parameters as used for the calculated results in �a�. A
comparison with the frequencies therein shows an excellent agreement.

FIG. 3. �Color� Color plot of the Rabi-frequency components

=FT	Q���
 as function of log� ��

�B1
� for an excitation frequency �a�

�=�a,b on resonance with one of the pair partners and �b� �=�� on
resonance with the average �� of the pair partners Larmor
frequencies.
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components—this is the reason why there is no gray scale
gradient in Fig. 2�b�—it nevertheless shows that there is an
excellent agreement of Eqs. �3� and �4� with the semianalyti-
cally calculated frequency patterns displayed in Fig. 2�b�.

While simple quantitative predictions can be made for the
nutation frequencies, there are no straightforward formulas
for the prediction of the nutation amplitudes. As shown in
Fig. 2�a�, the intensities of the different nutation components
can have quite complex microwave frequency ��� dependen-
cies. Well separated lines �as in the case of large Larmor
separation� exhibit Lorentzian line shapes determined by the
B1 field due to the power broadening as described in Ref. 14.
For intermediate cases, the � dependence becomes much
more complex and a given nutation component can exhibit a
maximum at its corresponding resonance but also a local
minimum at the resonance of a noncorresponding transition.
An example for this behavior is the data of Fig. 2�a.iii�. At a
frequency of �−��= ±�B1, one can recognize both a maxi-
mum of the nutation component at 
=�B1 but also a mini-
mum of the respective other nutation component at 

�2�B1. Qualitatively, this behavior can be interpreted by
consideration of a four-level system. Any of the four levels
can undergo first-order transitions into two different states.
For excitations that are out of resonance with both transi-
tions, the transition probability is small but may not be neg-
ligible in the vicinity of the resonances. However, when one
transition is induced resonantly, the transition into the non-
resonantly excited state is quenched at the same time and the
intensity of its corresponding nutation component is

quenched. Note that in spite of this qualitative interpretation,
quantitative predictions have to be made by means of the
simulation methods described above.

V. SUMMARY AND CONCLUSIONS

In summary, the response of charge-carrier transport and
recombination rates through localized electronic states in
semiconductors to a coherent manipulation by magnetic
resonance were simulated as they would be expected in
PEDMR/PODMR experiments. The transient response was
calculated with the spin excitation present for different exci-
tation fields and frequencies as well as different Larmor
separations within the pairs. It was assumed that exchange
and dipolar interaction are weak and incoherence due to the
electronic transitions or spin relaxation is negligible. The
presented data were obtained by a semianalytical simulation
method. The results show that four qualitatively distinguish-
able nutation processes influence the oscillation of the tran-
sition rates, which reduce to one significant contribution in
the cases of large and small Larmor separations. Simple em-
pirical equations for the calculation of these nutation fre-
quencies have been obtained that match the simulated data
excellently, and a qualitative picture for the interpretation of
the nutation intensities has been discussed. The presence of
the four nutation processes implies that changing the Larmor
separation or the applied excitation field leads to an abrupt
and not continuous change of the observed nutation frequen-
cies.
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