Influence of Lu - substitution on the frustrated antiferromagnetic system HoB12

S. Gabáni^a, I. Baťko^a, M. Baťková^a, K. Flachbart^{a*}, E. Gažo^a, M. Reiffers^a, N. Shitsevalova^b, K. Siemensmeyer^c and N. Sluchanko^d

^a Institute of Experimental Physics, Slovak Acad. Sciences, SK-04001 Košice, Slovakia

^b Institute for Problems of Materials Science of NASU, UA-03680 Kiev, Ukraine

^c Helmholtz Zentrum Berlin, D-14109 Berlin, Germany

^d General Physics Institute of RAS, RU-119991 Moscow, Russia

Abstract

In this contribution we present results of experimental investigations of the geometrically frustrated metallic antiferromagnet HoB₁₂ (with ordering temperature $T_N = 7.4$ K) influenced by substitution of magnetic Ho atoms through nonmagnetic Lu ones. In this case, in Ho_{1-x}Lu_xB₁₂ solid solutions, both chemical pressure and magnetic dilution take place with increasing content of Lu which changes the properties of the system. Experimentally, measurements of heat capacity and electrical resistivity of these solid solutions were performed from room temperature down to milikelvin temperatures and in magnetic fields up to 9 T. This wide range of experimental conditions allowed us among other things to follow the change of magnetic ordering temperature with concentration (x), i.e. to obtain the T_N vs. x phase diagram. The received results show strong indications for the existence of a quantum critical point (QCP) close to $x_C \approx 0.9$. This critical point separates the region of magnetic order (starting with HoB₁₂ for x = 0) and the nonmagnetic region (ending with superconducting LuB₁₂ for x = 1).

Graphical abstract

Heat capacity of Ho_{1-x}Lu_xB₁₂ solid solutions in zero magnetic field. The inset shows the received ordering temperature (T_N) vs. concentration (x) phase diagram with a possible quantum critical point (QCP) at $x \approx 0.9$.

1. Introduction

Heavy rare earth (RE) dodecaborides (REB₁₂) have attracted considerable attention in recent years [see e.g. references 1, 2], above all due to the wide variety of their physical properties. They crystallize in the NaCl based fcc - structure, and their electronic and magnetic properties result mainly from electron occupancy of the 4f shell of rare earth ions. Among these RE dodecaborides one can find e.g., LuB₁₂ with a fully occupied 4f shell - a metal which becomes superconducting below 0.4 K [3], YbB₁₂ - an intermediate valence Kondo insulator [4, 5], and DyB₁₂, HoB₁₂, ErB₁₂ and TmB₁₂ [6, 7] - metals, which order antiferromagnetically in the Kelvin temperature range.

Recent intensive investigations of HoB₁₂, which is a metallic compound with a frustrated fcc crystal structure have shown that its magnetic structure exhibits rather complex features [8, 9]. The Curie-Weiss constant Θ of HoB₁₂ is about -24.3 K and its Néel temperature $T_N = 7.4$ K. Three magnetic phases were observed below T_N in the B vs. T phase diagram and well below T_N the obtained neutron scattering results point to an incommensurate amplitude-modulated magnetic structure. Closely below T_N the ordered state is highly degenerate. It was also shown that besides the dominating indirect exchange interaction of RKKY type also the dipole-dipole interaction and frustration effects of the fcc lattice seem to play an important role in the formation of its magnetic structure. In the paramagnetic region (at about 40 K) a Schottky contribution to heat capacity appears and can be interpreted as a manifestation of strong crystalline electric field. Moreover, above T_N observed diffuse neutron scattering patterns indicate that at these temperatures (between about T_N and Θ) pronounced short range correlation (short range ordering) appears between neighboring magnetic moments of Ho-ions, similar as in low-dimensional magnets. Based on all received results it could be shown [9] that the geometric frustration in this compound is lifted in steps.

Thus, the substitution of magnetic Ho atoms through nonmagnetic Lu atoms in Ho_{1-x}Lu_xB₁₂ solid solution where both chemical pressure (as Lu³⁺ ions are smaller than Ho³⁺ ions) and magnetic dilution (as Lu³⁺ ions are nonmagnetic) take place with the increasing content of Lu, presents an interesting way to study the change of HoB₁₂ properties. Moreover, there is a possibility to investigate the behavior of the Ho_{1-x}Lu_xB₁₂ system at / near the quantum critical point, which is formed when long-range magnetic order is suppressed to zero temperature (i.e. $T_N \rightarrow 0$ K) by tuning an external parameter, as e.g. by pressure, magnetic field or composition, in this case by changing (increasing) the Lu concentration. Recently, similar complex experimental studies were performed on Tm_{1-x}Yb_xB₁₂ system where a metal-insulator transition (from metallic TmB₁₂ to insulating YbB₁₂) was observed with the appearance of a QCP near $x_C \approx 0.3$ [10].

In this contribution we present results of heat capacity and electrical resistivity measurements performed on $Ho_{1-x}Lu_xB_{12}$ solid solutions in a wide range of temperatures and in magnetic field. This wide range of experimental conditions allowed us to follow in detail the change of ordering temperature and of other properties with concentration (x).

2. Experimental

Experimentally, high-quality single crystals of HoB_{12} and $Ho_{1-x}Lu_xB_{12}$ solid solutions with x = 0.2, 0.5, 0.7 and 0.9 were grown by vertical crucible-free induction zone melting in an inert gas atmosphere. Measurements of heat capacity were performed in wide temperature range of 2-300 K in a magnetic field up to 9 T (B $\|$ <111>) in a PPMS instrument (Quantum Design,

US). Electrical resistivity was measured below 3 K down to 50 mK and up to 8 T (B $\|$ <111>) in a home-made dilution ³He-⁴He minirefrigerator. Four probe ac - measurement of very small electrical resistance values ($\approx 0.1 \text{ m}\Omega$) in a non-shielded laboratory was carried out thanks to a special current source with active common mode reduction (Pico Precision, SK).

3. Results and discussion

The observed heat capacity data C(T) in zero magnetic field are displayed in Fig. 1. A heat capacity discontinuity, steep increase and the shape of C(T) at $T_N = 7.4$ for HoB₁₂ are typical features of incommensurate amplitude-modulated magnetic structures. With increasing lutetium concentration x (see Fig. 1) or magnetic field *B* (see the example for Ho_{0.5}Lu_{0.5}B₁₂ in Fig. 3) the overall heat capacity picture remains similar, but the steep increase of C(T) gets reduced in amplitude and the AF phase transitions are shifted to a lower temperatures. As usually, the derivative of heat capacity C(T) or of electrical resistivity $\rho(T)$ with respect to temperature has been used to define Néel temperature, T_N . The resulting phase diagrams T_N vs. *x* (with a linear dependence of $T_N(x)$) and T_N vs. *B* (with a quadratic behavior of $T_N(B)$) are displayed in Fig. 2 and Fig. 4, respectively. The extrapolations of phase boundary lines T_N vs. *x* and T_N vs. *B* down to $T_N = 0$ K provide then information about critical parameters of concentration x_C and field B_C, respectively, of the investigated solid solutions Ho_{1-x}Lu_xB₁₂. From received results it follows that AF ordering should disappear at $x_C \approx 0.9$ (see Fig. 2).

Fig. 1: Temperature dependencies of the heat capacity of dodecaborides $Ho_{1-x}Lu_xB_{12}$ (with x = 0, 0.2, 0.5, 0.7, 0.9 and 1) in zero external magnetic field.

Fig. 2: The magnetic phase diagram of solid solutions $Ho_{1-x}Lu_xB_{12}$ derived from C(T) data with a possible QCP at $x \approx 0.9$.

Fig. 3: Temperature dependencies of the heat capacity of $Ho_{0.5}Lu_{0.5}B_{12}$ in magnetic field up to 9 T.

Fig. 4: The phase diagram T_N versus field *B* of Ho_{0.5}Lu_{0.5}B₁₂ derived from heat capacity and magnetoresistance measurements. The obtained dependence points to a QCP at $B_C \approx 3.8$ T. (Note: Magnetoresistance measurements down to 0.5 K and in magnetic field up to 12 T point to a QCP in HoB₁₂ at B_C ≈ 8.2 T [11].)

The temperature dependence of electrical resistivity below 3 K (see Fig. 5) displays the results for Ho_{1-x}Lu_xB₁₂ solid solutions with x = 0.7, 0.9 and 1 in zero external magnetic field. In the $\rho(T)$ dependence of Ho_{0.3}Lu_{0.7}B₁₂ (x = 0.7) with $T_N \approx 1.9$ K a typical hump can be seen which reflects the effect of superzone boundaries at transition to the antiferromagnetic state. In LuB₁₂ (x = 1) at $T_C \approx 0.4$ K a transition into the superconducting state can be observed. However, for Ho_{0.1}Lu_{0.9}B₁₂ (x = 0.9) there is no evidence of a phase transition (AF or superconducting) down to 50 mK! Furthermore, for this solid solution a $\rho(T) \propto T^2$ dependence was observed, which points to Fermi liquid behavior in this compound, so that a QCP can be expected in the concentration range $0.7 < x_C < 0.9$. In solid solutions which order antiferromagnetically (x = 0.7, 0.5, 0.2, 0) the resistivity in the lowest temperature range and in zero magnetic field can be well described by spin wave scattering of conduction electrons $\rho(T) \propto T^b \exp(-\Delta E/k_B T)$, where ΔE reflects the value of spin wave activation energy. Best fits for these concentrations were received with $b \approx 2$ and with ΔE decreasing from ≈ 0.25 meV down to 0.04 meV with x increasing from 0 to 0.7.

The results of magnetoresistance measurements carried out at temperatures far below T_N (at T = 200 mK and in magnetic field up to 9 T) are shown in Fig. 6. A positive magnetoresistance $\Delta \rho / \rho(0T)$ was observed (its amplitude reaches 150 %) for HoB₁₂, and the local minimum at \approx 8.2 T can be assigned to critical field B_C of QCP. With increasing x the amplitude of $\Delta \rho / \rho(0T)$ decreases, B_C gradually goes to zero, and for x = 0.9 the field dependence of $\Delta \rho / \rho(0T)$ changes to simple quadratic behavior (like for LuB₁₂ [7], but with much smaller slope). The received B_C vs. x dependence corresponds well with that obtained from T_N vs. B phase diagrams.

Fig. 5: Temperature dependencies of the electrical resistivity of $Ho_{1-x}Lu_xB_{12}$ (x = 0.7, 0.9 and 1) below 3 K in zero magnetic field. The solid lines represent spin-waves scattering fits (see also text).

Fig. 6: Field dependencies of magnetoresistance of various $Ho_{1-x}Lu_xB_{12}$ solid solutions at 200 mK (see also text).

Schottky anomalies which can be observed in C(T) dependencies of Ho_{1-x}Lu_xB₁₂ compounds at about 40 K are quite stable with respect to Lu concentration and to applied magnetic field.

Conclusions

In this work, we have performed studies of the Ho_{1-x}Lu_xB₁₂ system. It was shown that AF order is suppressed to zero temperature, i.e. $T_N \rightarrow 0$, as lutetium concentration increases to $x \approx 0.9$. Phase diagrams of T_N vs. x and T_N vs. B constructed from C(T) and $\rho(T)$ dependencies point to a possible QCP at $x_C \approx 0.9$, or $B_C(x)$. The observed results / transitions originate probably from the suppression of the dominating RKKY indirect exchange interaction

between Ho magnetic ions (mediated via the conduction electrons) and by the suppression of spin fluctuations (and correspondingly spin polarization of the conduction 5 d states) with increasing concentration of Lu nonmagnetic ions and magnetic field, respectively. To shed more light on it, further detailed studies of this system especially at / around the QCP are needed.

Acknowledgements

This work was supported by the Slovak Scientific Agency (VEGA-0148-10), by the Slovak Research and Development Agency (VVCE 0058), and by the Center of Excellence of the Slovak Academy of Sciences.

References

[1] K. Flachbart, P. Alekseev, G. Grechnev, N. Shitsevalova, K. Siemensmeyer, N. Sluchanko, O. Zogal, Rare earth dodecaborides - magnetism, superconductivity and other properties. In: Rare Earths: Research and Application, Ed. Delfrey K.N. New York: Nova Science Publishers (2008), p. 79.

[2] T. Mori: Higher borides. In: Handbook on the Physics and Chemistry of Rare Earths, vol. **38** (2008), p. 105.

[3] K. Flachbart, S. Gabani, K. Gloos, M. Meissner, M. Opel, Y. Paderno, V. Pavlik, P. Samuely, E. Schuberth and N. Shitsevalova, K. Siemensmeyer, P. Szabo, J. Low Temp. Phys. **140** (2005), p. 339.

[4] F. Iga, Y. Takakuwa, T. Takahashi, M. Kasaya, T. Kasuya, T. Sagawa, Solid State Commun. **50** (1984), p. 903.

[5] P.A. Alekseev, V.N. Lazukov, K.S. Nemkovskii, I.P. Sadikov, J. Exp. Teor. Phys. 111 (2010), p. 285.

[6] S. Gabani, I. Batko, K. Flachbart, T. Herrmannsdoerfer, R. Koenig, Y. Paderno, N. Shitsevalova, J. Magn. Magn. Mater **207** (1999), p. 131.

[7] N.E. Sluchanko, A.V. Bogach, V.V. Glushkov, S.V. Demishev, N.A. Samarin, D.N. Sluchanko, A.V. Dukhnenko and A.V. Levchenko, JETP **108** (2009), p. 668.

[8] A. Kohout, I. Batko, A. Czopnik, K. Flachbart, S. Matas, M. Meissner, Y. Paderno, N. Shitsevalova, K. Siemensmeyer, Phys. Rev. B **70** (2004), p. 224416.

[9] K. Siemensmeyer, K. Habicht, T. Lonkai, S. Matas, S. Gabani, N. Shitsevalova, E. Wulf, K. Flachbart, J. Low Temp. Phys. **146** (2007), p. 581.

[10] N.E. Sluchanko, A.V. Bogach, V.V. Glushkov, S.V. Demishev, K.S. Lyubshov, D.N. Sluchanko, A.V. Levchenko, A.B. Dukhnenko, V.B. Filipov, S. Gabani, K. Flachbart, JETP Letters 89 (2009), p. 256.

[11] K. Flachbart, E. Bauer, S. Gabani, H. Kaldarar, T. Lonkai, S. Matas, V. Pavlik, P. Priputen, N. Shitsevalova, K. Siemensmeyer, N. Sluchanko, J. Magn. Magn. Mater **310** (2007), p. 1727.

* Corresponding author: <u>flachb@saske.sk</u>