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In this paper, we provide an analytical description for transverse coupling impedances with dipole high

order modes (HOMs) and beam breakup (BBU) instability suppression of relativistic, high-current beams

undergoing strong acceleration, such as those typically produced by rf photoinjectors. The model adopted

is based on the accepted theory of coupling impedances extended to the case of beams characterized by a

fast transition due to strong acceleration, from the nonrelativistic to the relativistic regime in which

a bunch trajectory may not be rigidly directed parallel to the axis of the electric field. The trajectory

oscillations in a dipole HOM field in the transverse plane are effective in perturbing the bunch energy,

which causes an increase of the coupling impedance up to the BBU instability. This BBU instability

analysis is based on equations obtained by Volkov [Phys. Rev. ST Accel. Beams 12, 011301 (2009)] in

which external focusing due to both the applied transverse electric (TE) HOM and the accelerating

fundamental mode as well as dipole HOM damping by external loads are investigated. This analysis is

valid in the limit in which the weak nonlinearity of applied fields near the axis may be neglected. The

solution suggests a means of enhancing the BBU threshold current. The possibility of obtaining BBU

instability suppression in a long, integrated photoinjector and linac structure, such as the superconducting

rf source at Forschungs Zentrum Dresden (FZD), are numerically examined. New designs of photo-

injectors that provide BBU instability suppression of all dipole HOMs to enhance the threshold currents

are suggested.
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I. INTRODUCTION

Third-generation synchrotron radiation sources in the
UV and x-ray spectral region have become available to a
wide scientific community and have led to a huge number
of applications in different scientific fields. Light sources
based on the energy recovery linac (ERL) principle now
bear the promise of providing very short pulses at both a
high average brightness and flux for many users simulta-
neously. World-wide, several ERLs are already in opera-
tion or are being proposed [1,2]. One of them is the ERL
feasibility study BERLinPro that was proposed by the
Helmholtz-Zentrum Berlin. Among the most challenging
parameters of BERLinPro is the average beam current of
100 mA. The plans call for the development of a super-
conducting photoinjector to supply this beam, and proto-
typing is already under way [3].

The beam breakup (BBU) instability analysis of super-
conducting, multicell cavities in Ref. [4] is extended here
to an FZD-like, multicell rf gun [5], as shown in Fig. 1.

This gun consists of a 3 1
2 -cell, superconducting system

(1.3 GHz). In addition to the usual accelerating mode, the
TE021 mode provides a focusing field for the electrons that
can also be excited.
First, we analyze the features of BBU instabilities at

high-current beams in such injectors. The analytical de-
pendence of BBU onset for dipole high order modes
(HOMs) is obtained, and a table of calculated impedances
for the considered rf gun is presented. Next, we analyze the
characteristics of trapped dipole modes. It is shown that
their amplitudes and quality factors can change signifi-
cantly when the fundamental mode of the cavity is tuned
to the master clock. We then use the calculated HOMs to
estimate the threshold current for instabilities. Because the
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FIG. 1. Beam trajectory (red) conventionally used to calculate
the coupling impedances. The electric field lines of the vertically
polarized dipole mode TE111 of 0 type with 1653-MHz fre-
quency are depicted.
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impedance is trajectory dependent, the focusing of the TE
mode can be used to suppress some instabilities, and its
impact is examined. This allows for a new design of an rf
photoinjector able to suppress BBU instability of all dipole
HOMs. Finally, we present an option to damp other HOMs
using coaxial beam pipe couplers to dramatically increase
the threshold currents. New designs of photoinjectors that
incorporate these features are suggested.

II. DERIVATIONOF BBU INSTABILITY FEATURES

In the following discussion, we treat the beam as a series
of pointlike bunches entering the cavity at regular intervals.
The current thus is a series of delta functions with defined
charges. In the frequency domain, the current has an infinite
series of Fourier harmonics, all with an amplitude equal to
twice the average current (Ii ¼ 2I). Because we measure
the average current, we use the Ohm’s law formulas for DC
current and double the harmonic impedances (R ¼ 2Ri) to
keep the voltages and powers unchanged, i.e.,

Vi ¼ IiRi ¼ 2IR=2 ¼ IR ¼ V (1)

Pi ¼ V2
i =2Ri ¼ V2=R ¼ P: (2)

A. Brief review of the accepted theory
of coupling impedances

In the paper, a vertically polarized dipole field ðEy; BxÞ is
assumed, and the dipole field strength B is referred to
as a maximum dipole magnetic field on an axis, i.e.,
B ¼ maxðBxÞ. The excitation of dipole HOMs by the
beam current (I) is characterized by longitudinal
(RII � R1) and transverse (R?) coupling impedances:

VII � V1 ¼ I � R1 (3)

P?c ¼ I � R?: (4)

Both the induced longitudinal voltage and longitudinal
coupling impedance of the accepted theory are denoted
here by V1 and R1, respectively, but in reality, each of them
is a constituent part of three-component equations denoted
below by VII and RII.

In the steady state, the excited rf power is equal to the
power dissipated in the cavity wall (or in the coupler load):

IV1 ¼ V2
1=R1 ¼ !U=Q; (5)

where Q is a quality factor and ! is the angular resonance
frequency of the mode. Finally, using Eq. (5), we get

R1=Q ¼ V2
1=!U: (6)

The stored field energy (U) in the mode is proportional to
the square of the field amplitude U / B2. Therefore, R1=Q
is independent of the field amplitude (because V1 / B).

The Panofsky-Wenzel theorem describes the ratio of
transverse and longitudinal fields as

R?=R1 ¼ P?c=V1 ¼ c=!y: (7)

Usually, the coupling impedances of the cavity modes
are calculated in a ‘‘thin cavity approximation,’’ the inte-
gration path to calculate the energy gain of the bunch is a
straight line with a fixed offset to the cavity axis (see
Fig. 1). It is usually assumed that the bunch travels at the
speed of light c. At the cavity exit, the bunch receives both
longitudinal and transversal kicks characterized by a
change of energy �E and transversal momentum (�Pc).
Both parameters depend on the rf phase ’ of the mode:

�E ¼ V1 � cosð’Þ (8)

�Pc ¼ P?c � sinð’Þ: (9)

Here, V1 is the ‘‘longitudinal’’ energy in eV, and
P?c ¼ V? is called the ‘‘transverse energy.’’
In this paper, the impedances are expressed in Ohms. In

practice, offset-independent impedances of the dipole
modes are often used, i.e., RII=2y

2 [Ohm=m2] and
R?=2y [Ohm=m].

B. The source of BBU instability in cavities

We will analyze the interaction of a beam with any
dipole field excited by an external source. While electron
bunches are launched at a fixed main mode phase, the

phase of dipole modes changes from shot to shot as �’ ¼
n!T ¼ 2�n f

f0
, i.e., the dipole modes all have launch

phases (0–2�) with equal probability if there is no reso-
nance between the main mode (f0) and the HOM (f). Here,
T is the repetition time, and n is an integer. Therefore, the
energy transfer to the HOM in Eq. (8) averages to zero. In
any rf gun cavity with an initial beam offset (y) shown in
Fig. 2 by the blue curve, a net energy loss of particles
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FIG. 2. The actual trajectories in the rf gun cavity dependent
on the beam launch phase relative to the 1653-MHz dipole mode
(B ¼ 0:001 T). The fundamental mode at 1300 MHz has an
accelerating field of 25 MV=m. The blue trajectory depicts the
trajectory without the dipole mode (B ¼ 0 T).
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emitted over all phases is possible if the change in trajec-
tories under the influence of the dipole fields is taken into
account. These oscillating trajectories are depicted by red
curves in Fig. 2, i.e., there exists a phase independent
component in Eq. (8) that cannot be averaged to zero.
Because of energy conservation, the energy of the dipole
field changes by the same amount of energy as the particle
lost, which is then compensated by the external source. If
the field is excited by the beam when the external source is
absent, this phase independent component can drive BBU
instability.

Intuitively, BBU instability can be explained as follows:
the average particle energy exchanged due to the HOM is
proportional to the trajectory oscillation �y and the dipole
field strength (�y � B). The trajectory oscillation, if the
HOM field is taken into account, is also proportional to
the dipole field strength (�y / B). Therefore, there will be
components in Eq. (8) proportional to B2, i.e., to the stored
energy in the dipole mode U. Below, these components
of the energy kick are denoted by V0 and V2. The threshold
current occurs when the power fed into the mode
(IV0þIV2) equals the mode power dissipation (the dissi-
pation is also proportional to B2). This situation represents
the fundamental condition for the instability of a bunched
or DC beam current interacting with dipole or monopole
HOMs, as described in [6]. The dipole mode interaction is
unique due to the presence of the V2 component in Eq. (8).

Because of the oscillation of the trajectory, as is analyti-
cally proven in Ref. [4], the energy dependence of Eq. (8)
is modified by two additional Fourier-like components.
(Other Fourier components appear if the nonlinearity of
dipole fields near the axis are taken into account.)

�E ¼ V0 þ V1 cosð’Þ þ V2 cosð2’þ�Þ: (10)

Here, ’ is the dipole mode phase related to the moment
when the excited voltage V1 has a maximum, and � is a
constant phase shift. The components V0 and V2 are pro-
portional to B2 of the dipole HOM and are offset indepen-
dent. The field integration is made along the curved
trajectory taking into account the changed particle velocity
driven by the accelerating field of the fundamental mode
without the dipole HOM. This trajectory is shown in Fig. 2
by the blue curve.

We consider the appearance of the additional compo-
nents ðV0; V2;�Þ in Eq. (10) as the influence of dynamic
coupling between the beam and the HOM due to trajectory
oscillations. This dynamic coupling impedance can cause
BBU instability in a cavity.

Because Eq. (9) is obtained by integrating the Ey and Bx

components of the dipole fields, which are independent of
the trajectory offset, the form of Eq. (9) is changed only by
the addition of a constant phase shift in the argument of the
sine that appeared due to the variable particle velocity. The
magnitude of P?c in Eq. (9) will be some factor different,

and the transverse impedance must be multiplied by this
factor according to Eq. (4).
The dynamic aspects of Eq. (10) [4] of transverse

particle motion along a near-straight line in a vertically
polarized field driven by rf fields are considered:

d

dt
m _y� ¼ eEy cosð!tþ ’Þ þ e�cBx sinð!tþ ’Þ: (11)

The general solution of Eq. (11) for the particle trajec-
tory in the dipole field is

yðz; tÞ ¼ e

m�!2
cB½Y0ðzÞ cosð!tþ ’Þ

þ Y2ðzÞ sinð!tþ ’Þ� þ y1; (12)

where B is the on-axis maximal Bx dipole field, y1 is the
initial y offset, and the complex dimensionless function
_Y ¼ Y0ðzÞ þ jY2ðzÞ is a solution of a complex differential
equation:

@2 _Y

@c 2
� 2j

@ _Y

@c
� _Y ¼ Eyðc Þ=cBþ j�Bxðc Þ=B; (13)

where c ¼ kz, k ¼ !=�c, and �c ¼ v is the particle
velocity.
Integrating the electric dipole field Ez and Ey along this

trajectory, we obtain the components of Eq. (10):

�E¼ ec2B2

2m�!2
½I0�I2 cosð2’þ�Þ�þcBy1I1 cosð’Þ: (14)

It is proven by numerical calculations that, in the case of rf
gun dynamics in which �c changes due to a strong accel-
eration from the nonrelativistic to the relativistic regime
and the trajectory is not a straight line, this constant phase
� is offset independent. Furthermore, it depends only on
the dipole and accelerating field configuration, and each
mode has a certain value from 0 to 2�. The dimensionless
cumulative constants I0, I1, and I2 also depend only on
dipole and accelerating field configuration and are offset
independent. For example, I0 is given as follows:

I0 ¼
Z kL

0

@ðEz=cBÞ
@ky

Y0ðc Þdc þ
Z kL

0
ðEy=cBÞ @Y0ðc Þ

@c
dc

þ
Z kL

0
ðEy=cBÞY2ðc Þdc ; (15)

where L is the cavity length.
The condition of the excited equal-to-dissipated power

gives the threshold current [4],

IthrQ ¼ �!U

V0

¼ �2m�

eI0
!3

�
U

c2B2

�
: (16)

The energy change (see Fig. 3, Table I) is numerically
calculated according to the algorithm described in Ref. [4].
The calculated values fit the analytical dependence of
Eq. (10) within an accuracy of approximately 1%. We
can assume without a loss of generality that the focusing
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TE mode fields do not change the form of Eq. (10), even if
the averaging of �E over all phases of the TE mode is
applied. This is proved analytically and numerically in [4].

Hypothetically, approximately half of all dipole HOMs
can be unstable, i.e., can experience exponential growth.
This fact is obvious in a thin-cavity model of a recirculat-
ing linac in which the beam and the cavity form a feedback
loop that closes upon the return of the beam to the same
cavity on a subsequent pass [7]. The physics of all of these
effects is fundamentally the same, and the threshold cur-
rent occurs when the power fed into the mode equals the
mode power dissipation. Without a loss of generality, we
can assume the recirculating linac model is a two-cell
cavity with a long distance between cells in which the
longitudinal coupling impedance depends on the squared
beam trajectory offset. Threshold currents in Ref. [7] are
similar to Eq. (16) (first term) if we replace ðR=QÞd with
our impedances defined in Ohms. The threshold current
becomes the following:

IthQ ¼ �2!p

qcðRII=QÞm� sinð!TrÞ : (17)

Here, Tr in a multicell cavity is the time it takes a bunch
to travel between the centers of the two cells. The phase
delays!Tr for each HOM are unique, and statistically, half
of them will have a negative sign indicating the instability.

C. Derivation of coupling impedance formulas in a
beam-loaded cavity

The coupling impedances of Eqs. (6) and (7) obtained by
integration over a real trajectory depends on the beam
current because the excited dipole HOM field changes
these trajectories. Although the term ‘‘impedance’’ is con-
sidered usually to be current independent, wewill refer to it
as ‘‘impedance’’ because we assume here the average beam
current is constant in time.
This current-dependent longitudinal impedance and

induced voltage are denoted here by RII and VII, respec-
tively. Thus, Eq. (6) must be rewritten as

RII=Q ¼ V2
II=!U: (18)

At low beam current, we have V0 � V2 � 0 and
VII�V1. Therefore, the coupling impedance at low beam
current is close to a constant component (R1), independent
of the beam current and defined by Eq. (6).
By definition, the excited voltage has the opposite sign

than the particle energy loss, i.e., Vq ¼ ��E. Furthermore,

the phase ’ of the excited mode must be set relative to the
excited voltage, i.e., in Eq. (10),’ ! ’þ �. Assuming the
above and Eq. (10), we derive the excited voltage as

Vq ¼ V1 cosð’Þ � V0 � V2 cosð2’þ�Þ: (19)

Here, we assume the analytic model of HOM excitation by
pointlike bunches periodically moving (with period T)
through the cavity. After a bunch with a charge q leaves

TABLE I. The numerically calculated voltage components of Eq. (10) for Eacc ¼ 25 MV=m.
B is the maximal on-axis dipole field. N is the serial number of the calculated dipole mode.

N F (MHz) V0=B
2 (V=mT2) V1=y=B (V=mm=mT) V2=B

2 (V=mT2) � degrees

1 1653 11.3 14.7 53.2 �166
2 1724 �400 447 589 14.3

3 1766 1118 616 920 127

4 1814 90.2 104 73.3 �148
5 1864 12.6 136 105 110

6 1873 4.86 29.5 58.7 �127
7 1887 �22:2 82.5 24.3 63

12 2699 14.5 53.2 24.6 38.7

20 3159 10.3 68.5 20.6 112

37 4466 �5:0 195 27.5 118

89 6709 4.43 167 2.41 109

∆Ε
 (

eV
)

φ (degree)

V
V cos(φ)

V cos(2φ+Φ)

V+V cos(φ)+V cos(2φ+Φ)
1653MHz 0
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-180 -135 -90 -45 45 90
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FIG. 3. The numerically calculated energy kick and voltage
components of Eq. (10) for the dipole 1653-MHz mode depicted
by a dotted line and fitted by harmonic functions.
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the cavity, a beam-induced voltage with a resonance HOM
frequency (!)

�Vq ¼ qðRII=QÞ!ei!t�!t=2Q ¼ IðRII=QÞ!Tei!t�!t=2Q

(20)

remains in each mode. By superposition, �Vq in a cavity is

the same whether a generator or previously self-excited
voltage is present. This is true even if we have a situation
with nonrigid bunches, as the RII=Q value depends on the
bunch trajectory in the cavity that, due to large currents,
depends on the squared excited field amplitude and on its
phase ’. The total excited voltage, _V, is the sum of an
infinite number of bunch-induced voltages representing a
geometric progression:

_V¼�Vqe
i!t�!t=2Q

X1
n¼0

ðei!T�!T=2QÞn¼ �Vqe
i!t�!t=2Q

1�ei!T�!T=2Q
;

(21)

where n is the serial number of the previously passed bunch
through the cavity at the time, nT þ t, back from the
recently (n ¼ 0) passed bunch moment t (0< t < T).
This excitation process is depicted in the complex plane,
as shown in Fig. 4, at a moment t ¼ 0, just after the recent
bunch leaves the cavity. The previously excited voltage
(n ¼ 1) in the cavity at that moment is _V�1 ¼ _V � �Vq.

According to the fundamental theorem of beam loading,
the charge itself sees the 1=2 fraction of �Vq, i.e.,

_V q¼ _V�1

2
�Vq¼1

2
IðRII=QÞ!T

1þei!T�!T=2Q

1�ei!T�!T=2Q
; (22)

where�Vq is replaced by Eq. (20). The hodograph of _Vq at

IðRII=QÞ ¼ const obtained by varying !T is depicted in

Fig. 4. It is a cycle with Reð _VqÞ ¼ IRII cosð’Þ2 that is fully
equivalent to the hodograph of a resistor, inductance, and
capacitor (RLC) oscillating circuit, where ’ is the argu-
ment of _Vq that corresponds to the angle between the beam

current and the excited voltage vectors. The real part of _Vq

is identical to Vq of Eq. (19).

This implies that the excited HOM field amplitude in the
cavity is proportional to V1 cosð’Þ. Therefore, the first
term in Eq. (19) is ½V1 cosð’Þ� cosð’Þ ¼ V1 cosð’Þ2 and
V0þV2 cosð2’þ�Þ¼�0½V1 cosð’Þ�2þ�2½V2 cosð’Þ�2�
cosð2’þ�Þ because the other two terms of Eq. (19) are
proportional to the squared HOM field amplitude. The
factors �0 and �2 are constants. After inserting the above
to the equation Reð _VqÞ ¼ Vq and using Eq. (19), we obtain

Reð _VqÞ ¼ IRII cosð’Þ2
¼ V1 cosð’Þ2 � �0½V1 cosð’Þ�2

� �2½V1 cosð’Þ�2 cosð2’þ�Þ: (23)

From Eq. (23), after dividing it by cosð’Þ2, we get the
following:

IRII ¼ VII ¼ V1 � V0 � V2 cosð2’þ�Þ: (24)

The equivalence of such a current-dependent beam-
cavity interaction with electric processes in an RLC circuit
has an average current-dependent RII=Q that is uniquely
determined by Eq. (24). Therefore, we can consider the
application of Eq. (18) to be feasible.
Without a loss of generality, it can be assumed in prac-

tice that V2 cosð2’þ�Þ � �V2 cosð�Þ because as a rule,
there are no resonances with the HOM, i.e., ’ � ��=2. In
reality, the probability of the resonance case is on the order
1=Q in magnitude. We can consider in this case that the
current-dependent excitation process does not differ from
the usual process but has the possibility to be unstable.
To obtain the coupling impedance at a higher beam

current, we can formulate using Eqs. (18), (6), and (24):

RII=Q ¼ ½V1 � V0 � V2 cosð2’þ�Þ�2=!U

¼ ðR1=QÞ
�
1� V0 þ V2 cosð2’þ�Þ

V1

�
2
: (25)

Because the dissipated power (!U=Q) must equal the
excitation power (IVII) implied by Eq. (24), it follows that

!U=Q¼½V1�V0�V2 cosð2’þ�Þ�I
¼ð!U=QÞðI=IthÞ

�
1� V1

V0þV2 cosð2’þ�Þ
�
: (26)

Here, we introduce a more accurate threshold current defi-
nition (depending on the period T through the phase ’)
that differs from the definition obtained in Ref. [4] [first
term of Eq. (16)]:

IthQ ¼ � !U

V0 þ V2 cosð2’þ�Þ : (27)

Im

Re

ϕ

∆Vq

∆Vq

VV Vq-1

...

ω

ϕ=arg  ωT1+ejωT-ωT/2Q

1-ejωT-ωT/2Q(             )

FIG. 4. The complex plane with voltages excited by a series of
pointlike bunches entering the cavity at regular intervals.
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The combination of these last three equations gives

RII=Q ¼ R1=Q

ð1� I=IthÞ2
: (28)

Recall that the change in the transverse momentum
ðP?cÞ obtained by integrating the fields Ey and Bx along

trajectories does not depend on the trajectory oscillation �y
because these fields are offset independent within these
approximations. Therefore, the linear dependence of P?c
on the field amplitude or on the square root of the stored rf

energy U1=2 is conserved. By Eq. (4), the linear depen-
dence is then

P?cffiffiffiffiffiffiffiffi
!U

p ¼ R?=Qffiffiffiffiffiffiffiffiffiffiffiffiffi
RII=Q

p ¼ ðR?=QÞjI�0ffiffiffiffiffiffiffiffiffiffiffiffi
R1=Q

p ; (29)

where ðR?=QÞjI�0 is the transverse impedance at a low

beam current, which can be numerically calculated. Using
Eqs. (6) and (7),

ðR?=QÞjI�0 ¼ P?cV1

!U
: (30)

Finally, the equation of the transverse coupling imped-
ance using Eqs. (28) and (29) is

R?=Q ¼ ðR?=QÞjI�0

j1� I=Ithj : (31)

Clearly, because stable dipole modes must lose stored
energy to the beam during the beam-dipole mode interac-
tion, then V0 þ V2 cosð2’þ�Þ> 0, i.e., the threshold
current in Eq. (27) is negative, and there are plus signs in
Eqs. (28) and (31). It follows that coupling impedances of
stable dipole modes will decrease for large beam currents.
The opposite is true for unstable mode impedances, which
become infinite at the threshold current. We have to note
that the current dependency of Eq. (31) is experimentally
confirmed in Ref. [7].

Table II lists the calculated transverse impedances for
the Fourier components of a low beam current ðR?=Q=2yÞ

of Eq. (30) with its threshold currents multiplied by the
quality factor. No resonance is assumed, i.e., ’ � ��=2.
The impedances, as calculated using CLANS2 according
to the accepted theory (a straight-line trajectory approxi-
mation of particles at the velocity of light), are also pre-
sented for comparison. Interestingly, these impedances,
as a rule, are significantly larger than those calculated
for the rf gun.
Because quality factors directly affect the threshold

currents, there is a necessity to decrease the quality factors
as much as possible to obtain stability at high current
beams. Below, we will analyze these possibilities.

III. TRAPPED DIPOLE MODE FEATURES

Trapped modes are an important class of modes whose
frequencies lie above the cutoff frequency of the beam pipe
but whose damping by a beam-tube load is very weak
because they poorly couple to the tube. Hence, an analysis
of their features is important for the determination of BBU
instabilities.
We have calculated the dipole HOM field distributions

up to 8 GHz for a FZD-like, 3 1
2 cell, rf gun cavity using the

2D CLANS2 field solver [8] and consider eleven HOMs with
the greatest Q=!3 values according to Eq. (16).
An external load (see Qext in Fig. 5) at the end of the

beam pipe is responsible for the dipole mode damping.
Given properly chosen characteristics of the load in the
calculation, the incident rf power (P) is dissipated in the
load without reflection. Because trapped modes poorly
couple to the pipe, this power is small, and these modes
will have higher qualities.
To simplify the study of the HOM properties, the trans-

verse coupling impedances (R?) in this section were cal-
culated using the CLANS2 code using the conventional
formalism for ultrarelativistic particles [9]. The properties
of the modes were studied as a function of changing
boundary conditions. Here, we assume that the actual
impedances for rf gun beams considered in the following
sections react to system changes (e.g., cavity length) in a
similar manner.

TABLE II. Transverse impedances R?=Q½�=m� for Eacc ¼
25 MV=m and threshold currents [A] of Eq. (30).

N F [MHz] CLANS [�=m] Eq. (30) [�=m] Ith Q [A]

1 1653 84 4.2 �2:8� 105

2 1723 241 255 þ1:9� 104

3 1765 1940 719 �1:1� 104

4 1814 371 74.5 �4:5� 104

5 1864 289 143 �1:4� 105

6 1873 100 14.2 �1:1� 105

7 1887 57 49.3 þ2:5� 105

12 2698 208 19.6 þ1:3� 106

20 3158 51 18.1 �6:4� 105

37 4466 12 34.9 �1:5� 106

89 6707 75 41.0 �5:9� 105

Tuning length 400 mm
Qext

1653 MHz

FIG. 5. The 3 1
2 -cell cavity of an FZD-like SRF gun with a

perfect rf load Qext. The electric field lines of the 1653-MHz,
vertically polarized dipole mode are shown.
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A. Dipole mode amplitudes versus cavity detuning

In this section, we examine the dipole HOM amplitude
changes that follow from a cavity-length detuning.
Typically, the length of the cavity is mechanically modified
to match the fundamental frequency to the master clock.
In the simulations, we model the cavity shape changes
by changing the inclination of the geometry marked
in red in Fig. 5. Other sections remain unchanged.
Clearly, all other HOM frequencies will also be changed.
Because the bunch repetition period is coupled to the
fundamental frequency by T ¼ n=f0 (n is an integer), it
is also detuned.

The sum of all of the dipole HOM voltages, each calcu-
lated by Eq. (22) with different repetitions n, is depicted in
Fig. 6. We see in Fig. 6 that some HOM voltages increase
significantly at some cavity deformations. This occurs
when the resonances approach the beam harmonics
(!iT=2� is integer). This result shows that HOMs can
affect the beam quality for some cavity shapes (cavity
length) and repetition frequencies. These effects can be
avoided by switching between different repetitions rates, as
demonstrated in Fig. 6 in which the excited spectra for
different repetition rates are depicted.

B. Trapped HOM quality factors versus detuning

The loadedquality factors of some trappedHOMs increase
significantly during detuning. The external quality factors of
three trapped dipole HOMs versus cavity deformation is
depicted in Fig. 7. This indicates the high coupling sensitiv-
ity of some trapped HOMs to the beam pipe on the cavity
deformation. As shown in Fig. 7, some trapped HOMs can
increase theirQ factor significantly and can potentially drive
BBU instability. It should be noted that frequency detuning
of all HOMs fið�Þ remains close to linear.

IV. DYNAMICS SIMULATION OF FZD-LIKE RF
GUN CAVITY

In this section, we analyze the impact of the additional
focusing of the bunch by an externally excited TE mode on
BBU instability in the FZD-like superconducting rf (SRF)
gun. Initially, it was suggested in Ref. [10] to use the field
of an externally excited TE mode for emittance compen-
sation instead of a solenoid. In this way, the (relatively
high) magnetic field of the solenoid near the superconduct-
ing gun cavity is avoided, and booster cavities can be
placed closer to the gun. However, the focusing by this
mode modifies the BBU threshold current of other modes.
Note that the initial phasing between the TE and accel-

erating mode is time dependent but this does not influence
the beam quality because the TE mode frequency
(3781 MHz) is large (see Ref. [11]). Because the dipole
HOM frequencies are large, the BBU instability is affected,
and hence, the voltages calculated with Eq. (10) were
averaged over all TE mode phases.
In Table III, the calculated threshold currents multiplied

by the quality factors are presented for selected dipole
HOMs. Three of them are unstable (positive thresholds).
Focusing by the TE 3781-MHzmode suppresses instability,
but there are dipole modes (1653, 1864, and 3159 in
Table III) that react little to focusing or even become
unstable due to this focusing. Presumably, this effect is
due to insufficient focusing, as this TE mode peaks in the
first accelerating cell and then decreases for subsequent
cells in which the dipole modes progressively increase
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FIG. 6. Transverse voltages of all dipole HOMs excited by a 2-mA beam at different bunch repetition frequencies versus the cavity
deformation (� parameter). The numbers over the peaks are the frequencies of excited dipole HOMs.
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FIG. 7. Trapped dipole HOM external quality factors versus
the cavity longitudinal deformation.

BEAM BREAKUP INSTABILITY SUPPRESSION IN . . . Phys. Rev. ST Accel. Beams 14, 054202 (2011)

054202-7



(see Fig. 8 and Ref. [10]). We recall that the focusing effect
distribution along the axis depends on the field amplitude
distribution BTEðzÞ2 [11]. In such a scenario, the trajectories
depicted in Fig. 2 are condensed in the first full cell but fan
out in subsequent cells, i.e., there is a defocusing effect in
the last cells.

To avoid this problem, a specially shaped rf gun cavity
design can be applied. In this cavity, each of the three full
cells has equal amplitudes for the fundamental as well as
for a focusing TE mode. The sketch of such a cavity with a
TE021 mode of � type is depicted in Fig. 9. The accelerat-
ing mode remains at 1300 MHz and has equal amplitudes
in each cell. The beam is focused in each cavity cell, and
therefore, BBU instability can be effectively suppressed.
The impact on the threshold currents must be calculated in
a new simulation because the dipole HOM spectrum for

such a cavity differs significantly. The impact will be
discussed in another paper.

V. NEW DESIGNS FOR HOM DAMPING

In this section, we propose two novel design schemes to
damp the higher modes.
Figures 10 and 11 depict two schemes for HOM damp-

ing. The newly proposed concept of HOM damping is
consistent with the higher-order TE focusing mode. The
HOM damping effectively suppresses both monopole and
dipole HOMs and couples to some trapped HOMs. A
special insert presents a coaxial line to the cavity with a
matched ferrite load at the opposite end, thereby ensuring
that both monopole and dipole modes propagate down the
line for heavy damping in the load. A similar design was

FIG. 9. The TE021 focusing � mode in all three cells.

TABLE III. Threshold currents multiplied by the quality factors Ith �Q½A� of dipole modes at
different focusing strengths BTE½T� for the 3781-MHz mode [see Eq. (27)]. The negative ones
correspond to stable modes. Eacc ¼ 25 MV=m.

N F MHz BTE ¼ 0 T BTE ¼ 0:1 T BTE ¼ 0:2 T BTE ¼ 0:3 T

1 1653 �2:8� 105 3:6� 105 3:2� 105 1:8� 105

2 1724 1:9� 104 3:0� 104 8:4� 105 �8:2� 104

3 1766 �1:1� 104 �1:1� 104 �2:1� 104 �1:1� 105

4 1813 �4:5� 105 �7:3� 104 �1:1� 105 �1:1� 105

5 1864 �1:4� 105 �7:2� 104 2:7� 105 6:2� 105

6 1873 �1:1� 105 �1:1� 105 �6:2� 104 �1:1� 105

7 1887 2:5� 105 2:0� 105 �5:6� 106 2:6� 107

12 2699 1:3� 106 �1:0� 107 �4:3� 105 �2:8� 105

20 3159 �6:4� 105 �7:0� 105 2:5� 106 6:7� 106

37 4466 �1:5� 106 �1:1� 106 �6:0� 105 �3:6� 105

89 6709 �5:9� 105 �5:9� 105 �5:9� 105 �6:1� 105

FIG. 8. Magnetic field lines of the TE021 focusing mode in the
rf gun

L

TE couplers

Notch filter of TE021 frequency
      (3663 MHz) dipole mode

RF power input 

Notch filter HOM load

Variable 
coupling

40 41 42 43

10

10

104

5

6

L (mm)

Q
ex

 External quality behavior
of 3663 MHz dipole mode

Cu

N2

Cu

78 44

Nb

N2

Insert

Vacuum vessel

FIG. 10. HOM-damping scheme with the rf power input and
the notch outside the cryostat.
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employed to successfully damp HOMs in the normal con-
ducting VEPP2000 cavity [12]. The insert also serves as
the fundamental rf power input coupler mode, providing a
highly symmetric system. It could be longitudinally tuned
by a motor to change the external quality factor to match
the cavity to the rf source. The insert is thermally isolated
such that it can be cooled with liquid nitrogen or, as shown
in the second variant in Fig. 11, with helium.

There are two notch filters. One of them isolates the
fundamental rf power mode from the HOM load while the
second isolates the TE focusing mode (see Figs. 10–12).
The field of the TE mode is axiasymmetric due to the TE
couplers, and a dipolelike component of the field appears
[13]. The notch filter changes the field distribution of the
dipolelike component to prevent the coupling of the TE
mode to the HOM load. The distribution of the dipole
electric field in the notch filter is shown in Fig. 12. The rf
field is zero at the entrance of the following coax line.

Besides the power losses of the TE mode in the super-
conducting wall, the external quality factor of the TE mode
is limited (see the insert in Fig. 10) by the dissipated power
of the dipolelike component in the normal conducting
notch. This limited quality is much higher in the super-
conductive notch variant. The rf power of the TE focusing
mode needed to operate the cavity with BTE ¼ 0:1 T can

be found for this rf gun from the numerically calculated
formula,

P½W� ¼ 2:7þ 2:6� 105Ktr; (32)

where the first term is the dissipated TE mode power in the
cavity wall. The second term is the dipole mode power
dissipated in the copper notch filter, which remains at the
temperature of liquid nitrogen. Ktr ¼ ðBdip=BTEÞ2 is the

coefficient of TE focusing-to-dipole mode transformation
due to the asymmetry, and Bdip is an axis field of the dipole

field. We assume here for a properly tuned choke, the
power dissipated in the load behind the choke is zero.
Note that the diameter of the insert aperture (44 mm) is

chosen such that its cutoff lies above the dipole mode
frequency to avoid its propagation through this aperture.
The dissipated power in a thin wall of the cylindrical

insert with a Cu coating (see Fig. 10) is less than 17 W,
corresponding to a power density of 0:08 W=cm2. This is
sufficiently low to cool the insert with liquid nitrogen. The
insert of Fig. 11 with a superconducting notch filter has a
very low dissipated power and can be cooled with liquid
helium.
The results of dipole and monopole HOM simulations

are shown in Fig. 13 and Table IV. These results were
calculated for a given external quality factor of Qext ¼
!0U=P ¼ 4:3� 105 for the fundamental mode. This
allows 100 kW of rf power to be transmitted to a beam of
26-mA current and accelerate it to an energy of 3.7 MeV.
The maximal electric field on-axis is 20 MV=m (Eacc ffi
10 MV=m), which corresponds to a stored rf energy of
U ¼ 5:23 J. The dissipated rf power is found to be only
4.3 W. The total dissipated power taking into account the
TE mode [first term of Eq. (32)] is 7 W. Continuous-wave
operations are possible with this system.
The dramatic improvement of the threshold current

with the suggested HOM damping is illustrated in
Table IV. These data demonstrate the effect of HOM damp-
ing with the described insert. The threshold currents of
untrapped (propagating) modes become large on some or-
ders of magnitude. The 2699 mode is trapped and unstable,
but it can be suppressed (see Table III) by TE focusing at
BTE ¼ 0:1 T.
Note also that 1873-, 2699-, and 4466-MHz modes

having an unloaded quality of about 4� 109 are trapped
in the first two cells (1=2þ 1—cathode cell and first
accelerating cell) and almost have no rf field in the other
two cells (see Fig. 14). As a result, they do not couple to the
cavity pipe load. These modes have an external quality of
approximately 108 only due to power losses in the photo-
cathode copper stem cooled by liquid nitrogen. The stem
with a 10-mm diameter is positioned into the larger 12-mm
pipe hole and attached to the center of the back wall of the
cathode cell. There is a coax line formed by these parts.
The mentioned three modes penetrate it on decay lengths
of 5.7, 5.8, and 6.5 mm, respectively.

TE couplers

RF power input

Notch filter 1.3 GHz HOM load

N2

Nb

N2

Vacuum vessel

He vessel

He

Insert

He

FIG. 11. HOM-damping scheme with a superconducting in-
sert, a conventional rf power input, and superconducting notches
inside the cryostat.

FIG. 12. The electric field distribution in the notch filter
(CLANS2 output).
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To increase the coupling of these modes with the pipe
load and in turn decrease its external quality, we may
change slightly the shape of the first accelerating cell.
The shaping should not change the fundamental mode
frequency and amplitudes in any of the cells. The 4466
mode, for example, is reshaped by slight inclinations
(as in Fig. 5) of 2 degrees and an increase of the equator
radius by 0.48 mm. The result is Qext ¼ 2� 105

(see Fig. 14). Here, the frequency of the main mode

and the field amplitudes in all of the cells remain
unchanged.
Finally, note that the external quality of the main mode

can be matched to the beam power P as Qext / E2
acc=P by

varying the extent of the coupler into the cavity pipe.
Numerical calculations predict that the quality factors of
propagating HOMs (with N ¼ 1–5; 7 in Table IV) are

changed as Qext�N 
Q1=2
ext .

Ultimately, when more than just a few mA are to be
accelerated, the use of an rf gun with less than 3.5
cells might be preferable to limit the required rf power

Pipe couplerShaped cell

FIG. 14. Electric field distribution of the 4466-MHz mode in
the initial cavity (upper picture) and after the shaping of the 1st
cell (CLANS2 output is used).

TABLE IV. Threshold currents [mA] at Eacc ¼ 25 MV=m
with and without the insert. No TE focusing.

Without insert With insert

N F [MHz] Ith, A Qext Ith, A Qext

1 1653 6:20� 107 1:95� 105

2 1724 1.1 1:77� 107 144 1:32� 105

3 1766 7:71� 106 7:97� 104

4 1813 9:72� 105 1:45� 104

5 1864 4:65� 108 1:39� 107

6 1873 1:83� 108 2:00� 108

7 1887 3.1 8:06� 107 135 1:85� 106

12 2699 27.3 4:76� 107 29a 4:47� 107

20 3159 2:91� 105 3:70� 106

37 4466 1:03� 108 1:03� 108

89 6709 2:83� 104 2:43� 104

aThis mod is suppressed by TE focusing at BTE ¼ 0:1 T (see
Table III).
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(<100 kW) and to reduce the number of trapped modes
driving instabilities.

VI. SUMMARY

Expressions for the coupling impedances of dipole
HOMs as a function of the beam current have been
derived. The analysis of BBU instabilities in 3 1

2 -cell

SRF guns revealed several dipole-driven instabilities,
and their associated threshold currents were calculated.
In particular, trapped dipole HOMs can be dangerous.
A scheme for efficient damping of dipole HOMs by
an external load is proposed, resulting in a significant
increase of the instability threshold currents. The suppres-
sion of the BBU instability of trapped modes by TE
focusing is demonstrated, and the possibility of equal
TE focusing in all cavity cells is analyzed. New designs
of HOM damping consistent with TE mode focusing
are suggested. Thus, we believe that the use of SC cavities
with less than 3.5 cells for high-current injectors is
feasible.
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