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ABSTRACT 

In the last three decades Synchrotron radiation became an indispensable experimental tool for chemical and structural 
analysis of nano-scaled properties in solid state physics, chemistry, materials science and life science thereby rendering 
the explanation of the macroscopic behavior of the materials and systems under investigation. Especially the techniques 
known as Anomalous Small-Angle X-ray Scattering provide deep insight into the materials structural architecture ac- 
cording to the different chemical components on lengths scales starting just above the atomic scale (≈1 nm) up to sev- 
eral 100 nm. The techniques sensitivity to the different chemical components makes use of the energy dependence of 
the atomic scattering factors, which are different for all chemical elements, thereby disentangling the nanostructure of 
the different chemical components by the signature of the elemental X-ray absorption edges i.e. by employing synchro- 
tron radiation. The paper wants to focus on the application of an algorithm from linear algebra in the field of synchro- 
tron radiation. It provides a closer look to the algebraic prerequisites, which govern the system of linear equations es- 
tablished by these experimental techniques and its solution by solving the eigenvector problem. The pair correlation 
functions of the so-called basic scattering functions are expressed as a linear combination of eigenvectors.   
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1. Introduction 

Small-Angle X-ray Scattering (SAXS) experiments av- 
erage over a large sample volume and give structural 
and quantitative information of high statistical signifi- 
cance on a mesoscopic length scale between 1 and hun- 
dreds of nanometers, which can be correlated to the ma- 
croscopic physical and chemical properties of the ana- 
lysed condensed matter systems in solid state physics, 
chemistry, life science and materials science. Detailed 
descriptions of the experimental and theoretical aspects 
of Small-Angle Scattering can be found in [1-3]. By use 
of synchrotron radiation at suitable storage rings the so- 
called Anomalous Small-Angle X-ray Scattering (AS- 
AXS) can be employed, which is an excellent tool for 
the chemical selective structural analysis of multi-com- 
ponent systems.   

This publication outlines in detail the basic mathe- 
matical aspects related to the scientific results of a series 
of former publications [4-16] obtained from quantitative 
ASAXS measurements applied to very different phys- 

icochemical systems. The quantitative analysis of the 
nano-scaled phases is correlated with the structural pa- 
rameters, via the pair correlation functions and the so- 
called basic scattering functions, which provide (by Fou- 
rier transform) the nano-scaled architecture with very 
high statistical significance because scattering experiments 
average over up to 1010 structural entities. The related 
scientific problems cannot be addressed by a classical 
Small-Angle X-ray Scattering (SAXS) experiment, be- 
cause the specific scattering contributions of the different 
chemical components need to be separated. As outlined 
in a former publication [12] an outstanding experimental 
accuracy is needed in order to separate the so-called 
pure-resonant (element specific) scattering contribution. 
Additionally a suitable mathematical algorithm is em- 
ployed (the Gauss elimination algorithm), which turned 
out to provide the best results when inverting the vector 
equation introduced by ASAXS measurements. The pa- 
per wants to shed some light on the algebraic basics, 
which govern the analysis of numerous ASAXS publica- 
tions within the last decade.  
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2. The Eigenvector Problem Established by 
Anomalous Small-Angle X-Ray Scattering 

2.1. Anomalous Small-Angle X-Ray Scattering 

The remarkable possibilities of the ASAXS technique are 
based on the energy dependence of the atomic scattering 
factors giving selective access to the specific SAXS con- 
tributions of nano-scaled phases, which are built up by 
different chemical constituents in composites like for 
instance alloys, chemical solutions or porous multicom- 
ponent systems. In general the atomic scattering factors 
are energy dependent complex quantities:  
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where Z represents the atomic number. When performing 
ASAXS measurements on multi-component systems in 
the vicinity of the absorption edge of one of the sample 
constituents the scattering amplitude is:  
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where q is the magnitude of the scattering vector 
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calculated from the electron density, m , and the atomic 
(molecular) volumes 0V  and ZV , respectively, where 

m  is the electron density of the entire sample. The 
volume 0  represents the atomic (molecular) volume of 
the non-resonant scattering atoms or building groups. 

V

ZV  corresponds to the atomic volumes of the resonant 
scattering atoms. The functions  are the 
number densities of the non-resonant and the resonant 
scattering units, respectively and represent their spatial 
distribution in the sample. The atomic scattering factor, 

   ,u vr r

  t 0f cons , is nearly energy independent, while the 
atomic scattering factor,      if0,Z Z Z Zf f f     , 
shows strong variation with the energy in the vicinity of 
the absorption edge of the resonant scattering atoms due 
to the so-called anomalous dispersion corrections   ,Zf   

 Zf  . Calculating the scattering intensity  ,I  q  
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and (3) and averaging over all orientations yields the sum 
of three scattering contributions,  
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lution integrals [17,18]: 

 ,  is the scattering angle, λ the 
X-ray wavelength and Vp is the irradiated sample volume. 

0 , R    are the differences of electron densities of the  
 

         

          

       

         

   

22 3 3 2
0 0 0 0

3 3
0 0 0,

0 0, 0

2 3 3

2 2

sin
d d

sin
, 2 d d

2 Re

sin
,

p

p

p

V

R Z m Z Z
V

Z m Z Z R

R Z
V

Z R

q
S q f u u r r f A q

q

q
S q f f V f u v r r

q

f f V f A q A q

q
S q f v v d rd r

q

f A q

  

 

 




    




      



     


  



 







r r
r r

r r

r r
r r

r r

r r
r r

r r

             (4) 

 
Equation (4) gives the so-called non-resonant scatter- 

ing, , the cross-term or mixed-resonant scattering, 

0R

 0S q
 ,S q  , originating from the superposition of the 

scattering amplitudes of the non-resonant and the reso- 
nant scattering atoms and finally,  ,RS q

The measurement of scattering curves at three energies 
in the vicinity of the absorption edge of the atoms with 
atomic number Z constitutes the following vector equa- 
tion: 

 , which con- 
tains only the scattering contributions of the resonant 
scattering atom species. These basic scattering functions 
are based on the pair correlation functions  2

0A q , 

0 R   Re A q A q ,  2
RA q  and in the literature are 

sometimes referred to as Stuhrmann functions.  
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where the summation is running over the index j of the 
matrix and vector components.   
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with 0, 0,Z Z m Zf f V   . The summation is running over 
the index j i.e. summing over the vector components Aj 
and the columns of the matrix Mij in the row with index i. 
The transformation of the vector Equation (5) by elemen- 
tary operations changes the matrix M into the triangular 
matrix M': 
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where the meaning of  is [11]: ,ij ia b
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The vector Equation (6) with the triangular matrix re- 

presents the Gauss algorithm (elimination procedure) for 
the solution of a system of linear equations. Thus the eli- 
mination procedure is equivalent to the elementary ope- 
rations performed to the matrix of a vector equation. 

2.2. The Eigenvector Problem in Anomalous 
Small-Angle X-Ray Scattering 

Up to this point the Equations (1)-(7) have been taken 
from [11,14] and represent nothing new. In what is to 
follow the underlying basics of linear algebra and the high 
degree of significance obtained by a suitable matrix in- 
version applied to experimental data (here scattering 
curves) will be outlined. In detail we demonstrate the cal- 
culation of the eigenvalues of the vector Equation (6) from 
the characteristic polynomial thereby providing the ei- 
genvectors. Furthermore the representation of the special 
solution as a linear combination of the eigenvectors is 
demonstrated. In the next step analytical expressions for  

the pair correlation functions have been deduced from the 
eigenvector representation. Finally in the last step the ba- 
sic scattering functions (Stuhrmann functions) are pro- 
vided. 

We start with the vector Equation (6):  
     ,ij i j i iq q   M A B . The characteristic polyno- 

mial for the determination of the eigenvalues writes:  
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In represents the identity matrix: 
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I                  (9) 

We will restrict the problem to n = 3, which is the mi- 
nimum number of energies to be measured in order to 
solve the system of linear equations with three unknown 
quantities. From Equations (8) and (9) the polynomial is 
deduced: 
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giving the three eigenvalues: 
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From the eigenvalues the eigenvectors, Ei, can be con- 
structed via Equation (12): 
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Because these eigenvectors are linear independent they 
define a system of basic vectors in the solution space and  

the vectors A and B can be expressed via a linear combi- 
nation of the eigenvectors Ei: 
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Thus the vector composed from the pair correlation 
functions can be represented by a linear combination of 
the eigenvectors Ei with the linear coefficients xi. From 
the vector Equation (14) the linear coefficients xi can be 
calculated: 
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In the next step Equation (14) is inserted into Equation 
(6): 
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or, because the Ei are eigenvectors of M': 
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From the vector Equation (16b) the three pair correla- tion functions can be calculated by inserting the xi from 
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Equation (15) into Equation (16b): 
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Figure 1 summarizes the results from Equations (1) to 
(17). The three pair correlation functions  2

0A q , 

0    Re R A q A q ,  2
RA q  are plotted along the three 

rectangular axis of the 3-dimensional coordinate system. 
The eigenvectors E1, E2(ε), E3(ε) build up an oblique- 
angled coordinate system where two of them depend on 
the photon energy. The blue and the red line show the 
eigenvectors E2(ε) and E3(ε) following curvatures de- 
pending on the energy via their vector components. Thus 
the pair correlation functions of Equation (14) depicted by 
the black vector are represented by the parallelepiped 
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Figure 1. The pair correlation functions (black vector) in 
eigenvector representation. The eigenvectors E1 (green) E2 
(blue) and E3 (red) build up the oblique-angled coordinate 
system (see text). The parallelepiped depicts the black vector 
in eigenvector representation at energy ε1. For energy ε2 the 
dashed blue and red vectors together with the energy inde- 
pendent vector E1 (green) are the eigenvectors. The under- 
lying data of the red and the blue curves have been taken as 
example from Cromer Liberman calculations [21,22] of the 
LIII-absorption edge of Thallium. Note the different length 
scales of the 3 axis in the rectangular basic system. In order 
to depict the energy dependence of the eigenvectors with a 
better resolution the x-component of E2 and the y-compo- 
nent of E3 have been stretched by a factor 100 and 10 re-
spectively. For the same reason the x-component of E3 was 
compressed by a factor of 10 and E1 is stretched by a factor 
1500. Δf0 = −3.5. The dashed red line represents the projec- 
tion of E3(ε) onto the grey xy-plane. 

which shows the vector of pair correlation functions in 
eigenvector representation with the coordinates xi/li in the 
oblique angled basic system. The li are the lengths of the 
basic vectors Ei.   

From Equation (17) the so-called basic scattering func- 
tions (Stuhrmann functions) can be deduced (see Equation 
(4)): 
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or in explicit form: 
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(19) 

Equation (19) provides the analytical form for the cal- 
culation of the basic scattering functions from scattering 
curves measured at in minimum three energies. The ma- 
thematical theory behind this formula is the solution of the 
eigenvalue problem in six steps:   
1) Calculation of the triangular matrix by elementary 

operations upon the vector equation established by an 
ASAXS measurement at in minimum three different 
energies.  

2) Calculation of the eigenvalues from the characteristic 
polynomial of the new vector equation obtained from 
the elementary operations. 

3) Calculation of the eigenvectors. 
4) Representation of both, the special solution vector Ai 

and the vector Bi by linear combination of the eigen- 
vectors. 

5) Calculation of the pair correlation functions,  2
0A q , 

    0Re RA q A q ,  2
RA q  from these representa- 

tions. 
6) Calculation of the basic scattering functions (Stuhr- 
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R

  1

3 3
2 1

, 1 , 1

1

3

ij ij
i j i j

T

a a





 

    

  

mann functions) from the basic pair correlation func- 
tions. 

With the definition of S0R in Equation (4) the three basic 
scattering functions fulfill the Cauchy-Schwarz inequality 
because the integrals in S0, S0R and SR of Equations (4) and 
(20) define a positive definite metric in the vector space of 
functions [5,14]:  

2 

M M M

M' M
,    (21) 

where 1M  is the inverse matrix. A detailed description 
of the impact of the Turing number for ASAXS measure- 
ments is given in [14,20]. 

    2

0 0, 4 ,RS q S q S q                (20) 

2.3. The Eigenvector Problem in Anomalous 
Small-Angle X-Ray Scattering with More 
than Three Energies at One X-Ray 
Absorption Edge 

This criterion is essential but not sufficient for the re- 
liability of the basic scattering functions obtained from the 
matrix inversion. If it is not fulfilled, the basic scattering 
functions are meaningless. The significance of the special 
solution obtained by matrix inversion can be numerically 
quantified by the Turing number [19]:  

In the following we will discuss the system of linear equa- 
tions with more than three (4…n) energies:  
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    
       


   (22) 

 
Equation (22) represents an ASAXS sequence with 

scattering curves I(q,εi) measured at four different ener- 
gies εi. Once again the summation is running over the 
index j = 1, 2, 3 i.e. summing over the vector components 
Aj and the columns with index j of the rectangular i × 
j-matrix Mij in the row with index i. But now the resulting 
vector has four components on the right side. Equation (22) 
represents a linear map from a 3-dimensional space into a 
4-dimensional space. The possible solutions are located in 
the 3-dimensional subspace, which is embedded in the 4- 
dimensional space. Because the rank of the matrix is three 
in minimum two of the four linear equations must be li- 
near dependent. The transformation of the vector Equation 
(22) by elementary operations changes the matrix M into 
the triangular matrix M' of the form:   
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   (24) 
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 
 
 
 
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    (23) 

Because b4 is not exactly zero, the vector is located in 
the 4-dimensional space but outside the embedded 3- 
dimensional space of solution vectors. Thus no exact 
solution for the system of linear equations exists. Only an 
approximate solution exists. It is the vector in the 3-di- 
mensional hyper plane with the shortest distance to B in 
the 4-dimensional space or in other words: the foot of the 
perpendicular constructed between B and the hyper plane 
(Figure 2). The meaning of Equation (24) is: no im- 
provement can be obtained from additional measurements 
of scattering curves at more than three energies, because 
the rank of the matrix is three or in other words in case of 
more than three equations in the 3-dimensional vector 
space in minimum two of them are linear dependent. The 
same argumentation holds for n energies. The significance 
of the solution vector obtained by the matrix inversion of 
the system of linear equations can be calculated by the 
Turing number, which was outlined in a recent publication 
[14]. Note that the Turing number increases with the 
number n of equations (energies) by n  i.e., ASAXS 
measurements at many (n > 3) energies cannot improve  

As a consequence the fourth component of the vector 
on the right side must be zero, b4 = 0. Of course when 
performing measurements the latter is not exactly fulfilled 
due to the error bars of the measurements. Thus the value 
of the fourth row is not exactly zero but nearly zero!  
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Figure 2. In analogy the blue plane represents the 3-dimen- 
sional hyper plane which is embedded in the 4-dimensional 
vector space. The possible solution vectors of the matrix equ- 
ation are located in the plane. Due to measurement errors no 
solution vector of equation (24) exists, because the right 
hand vector is located outside of the plane (black vector). 
The approximate solution is the blue vector in the hyper 
plane with the shortest distance to the black vector.   
 
the accuracy of the ASAXS sequence but require im- 
proved (!) accuracies [14,19]. 

2.4. The Eigenvector Problem in Anomalous 
Small-Angle X-Ray Scattering with More 
than Three Energies but at Different X-Ray 
Absorption Edges 

In the following we will discuss the system of linear 
equations established by ASAXS measurements at dif- 
ferent X-ray absorption edges such as binary alloys  

composed of components A and B, glasses or chemical 
solutions with different metal constituents.  
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      (25) 

The Ii represent six scattering curves measured at dif- 
ferent energies, three at energies of the 1st X-ray absorp- 
tion edge, the other three at energies of the 2nd X-ray ab- 
sorption edge. The aij again are functions of the density 
contrasts and the anomalous dispersion corrections of the 
different chemical constituents but this time from differ- 
ent X-ray absorption edges. The two X-ray absorption 
edges define two 3-dimensional vector spaces, which are 
orthogonal to each other i.e. the six linear equations are 
linear independent. Due to the different X-ray absorption 
edges the rank of the matrix is now six. Once again the 
triangular matrix can be found by elementary operation of 
the 6-dimensional vector equation, but for every subspace 
a triangular matrix can be established:  
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              (26) 

 
For the calculation of the eigenvalues, eigenvectors, 

pair correlation functions and the basic scattering func- 
tions the formula of the for-going chapter 2.2 can be used 

individually for each vector subspace (X-ray absorption 
edge). The eigenvectors in the 6-dimensional vector space 
are: 
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              (26a) 

 
The physical meaning of the 3 × 3-submatrix in Equa- 

tion (26) filled with zero in the top right and bottom left is, 
that the atomic scattering factors of component B do not 
change, when tuning the energy at the X-ray absorption 
edge of component A and vice versa. The latter is a good 
approximation in the case, that the X-ray absorption edges 
lie far apart of each other. But of course there is a small 
change with energy and additionally, as in the forgoing 
chapter, there are measurement errors which enter the 
right hand vector. So a realistic formula of the vector 
equation is:   
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      (27) 

If the matrix elements in the top right and bottom left 
matrix are small enough the eigenvector problem can be 
solved in good approximation separately for each ab- 
sorption edge as outlined in chapter 2.2. In the case of 

contiguous X-ray absorption edges a more sophisticated 
equation must be employed for the solution of the eigen- 
vector problem as is shown in Equation (28) for the ex- 
ample of a binary system:  

 
    
 

 
    
 

11 12 13 14 15 16

22 23 24 25 26

33 34 35 36

44 45 46

55 56

66

2

0

1
0

2
2

3

2
4

0

5
0

62

0

0 0

0 0 0

0 0 0 0

0 0 0 0 0

Re

Re

R

R

R

R

a a a a a a

a a a a a

a a a a

a a a

a a

a

A q
b

A q A q
b

A q b

bB q
b

B q B q
b

B q

      
      
    
 

   
  
   
 
     
  
  
   
  
  
     
 










     (28) 

The same arguments hold for N X-ray absorption 
edges of condensed matter systems composed by N che- 
mical components thereby establishing a 3N × 3N matrix 
in a 3N-dimensional vector space. If the N X-ray absorp- 
tion edges lie far apart of each other the 3N-dimensional 
vector space is spanned by N 3-dimensional subspaces 
being orthogonal to each other in good approximation 
and the eigenvector problem can be solved separately in 
each 3-dimensional subspace via the formula of chapter 
2.2. In the case of M < N contiguous X-ray edges the 3N- 
dimensional vector space is spanned by N − M 3-dimen- 
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sional orthogonal subspaces and a 3M-dimensional sub- 
space. The scheme of the vector equation is shown in 
Figure 3. Again the significance of the solution vectors 
obtained by these matrix inversions must be calculated 
via the Turing number [14]. 

As an example taken from a former publication Figure 
4 depicts schematically the eigenvector representation in 
the 9-dimensional vector space of two ternary alloys (blue 
vectors) of different metallurgical states with the compo- 
sition Ni68Nb16Y16 [10,11,14]. The light blue lines con- 
struct the foot points of the projection of the 9-dimen- 
sional vectors onto the three 3-dimensional subspaces of 
the three alloy components Nickel, Niobium and Yttrium. 
Because the X-ray absorption edges of the three elements  
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Figure 3. The vector equation established by a multi com- 
ponent system composed of N chemical elements. The small 
squares with the number 3 represent N-M 3 × 3 matrices in 
3-dimensional subspaces. The small rectangles in the special 
solution vector represent the special 3-dimensional solution 
vector of Equation (6). The large square with the number 
3M represents a 3M × 3M matrix of M chemical components 
with contiguous X-ray absorption edges. In the case of M = 2 
it is the matrix of Equation (28). The subspaces are ortho- 
gonal to each other. 
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Figure 4. The blue vectors show the schematic eigenvector 
representation in the 9-dimensional vector space of two ter- 
nary alloys of different metallurgical states with the compo- 
sition Ni68Nb16Y16 [10,11,14].  

lie far apart of each other the three subspaces are ortho- 
gonal to each other in good approximation. Each subspace 
is spanned by the Cartesian orthogonal system of the pair 
correlation functions A0

2, Re(A0AR) and AR
2 (see Figure 1). 

Thus within these three subspaces the pair correlation 
functions can be expressed in eigenvector representation 
i.e. each subspace provides the solution of the eigenvector 
problem independently from the other subspaces via the 
equations of chapter 2.2. 

3. Conclusion 

The mathematical basics of the system of linear equa- 
tions established by Synchrotron radiation based Anoma- 
lous Small-Angle X-ray Scattering experiments have been 
analyzed. The linear algebraic theory provides the AS- 
AXS techniques with five major improvements: (1) Ana- 
lytical formula for the basic scattering functions, thereby 
omitting in-transparent fit or inversion procedures of un- 
known significance (2) a mathematical unambiguous so- 
lution of the system of linear equations by employment 
of the (linear) Gaussian elimination algorithm (3) an es- 
sential (but not sufficient) criterion (the Cauchy Schwarz 
inequality) allowing direct control, whether obtained ba- 
sic scattering functions can possess significance or not 
and (4) a sufficient criterion represented by the Turing 
number, which tells directly the errors of the special so- 
lution vector facilitated by the inversion algorithm, there- 
by revealing its degree of significance. (5) The latter can 
be verified directly by ab initio error calculations, which 
start with the experimental errors entering the scattering 
curves of the ASAXS experiment (for instance the statis- 
tical errors obtained via single photon count techniques). 
For the calculation of the error propagation, the analyti- 
cal formula is mandatory.   

In summary, the eigenvector-based algorithm repre- 
sents a superior mathematical description, because the 
problem is treated in the context of a linear matrix theory 
thereby offering the calculation of the significance of the 
solution, which cannot be provided by non-linear proce- 
dures. In other words, Linear Algebra gives deep insight 
(first intended by [20]) into ill-conditioned mathematical 
problems in condensed matter research thereby giving 
clear hints on how to overcome these problems by ex- 
perimental and mathematical improvements. The subject 
underlines the crucial importance of Linear Algebra for 
search and understanding of mathematical algorithms in 
condensed matter research with Synchrotron radiation. 
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