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ABSTRACT

A segmentation algorithm is proposed which automatically extracts single fibers from tomographic 3D data
of fiber-based materials. As an example, the algorithm is applied to a non-woven material used in the gas
diffusion layer of polymer electrolyte membrane fuel cells. This porous material consists of a densely packed
system of strongly curved carbon fibers. Our algorithm works as follows. In a first step, we focus on the
extraction of skeletons, i.e., center lines of fibers. Due to irregularities like noise or other data artefacts, it is
only possible to extract fragments of center lines. Thus, in a second step, we consider a stochastic algorithm to
adequately connect these parts of center lines to each other, with the general aim to reconstruct the complete
fibers such that the curvature properties of real fibers are reflected correctly. The quality of the segmentation
algorithm is validated by applying it to simulated test data.
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INTRODUCTION

The fuel cell technology provides an efficient way
to convert hydrogen into electricity. This allows the
replacement of oil products as energy carrier, e.g., in
automobiles or submarines. In the present paper we
concentrate on proton exchange membrane fuel cells
(PEMFC). A key component of PEMFC is their gas-
diffusion layer (GDL), which has to provide many
functions for an efficient operation of fuel cells like
to supply the catalyst layer with gas, water storage
and evacuation, mechanical support of membrane, etc.,
(Mathias et al., 2003; Hartnig et al., 2008).

It is generally accepted that the microstructure of
GDL has a significant impact on their functionality.
For example, the length and curvature of single fibers
influence their mechanical strength, stiffness, and
electrical resistance (Teßmann et al., 2010), where the
arrangement and the form of fibers can be changed by
the production process or as a result of degradation
phenomena. To better understand the coherence of
the microstructure of the considered material and
the physical processes therein, the development of
stochastic models describing the geometry of GDL is
of great importance. Typically, these models are built
in two steps (Thiedmann et al., 2008; Gaiselmann et
al., 2012). First, a stochastic model for single fibers
is developed. Then, in a second step, the single-fiber
model is used to construct a stochastic microstructure
model for the entire 3D system of fibers. Therefore,

in order to build an adequate single-fiber model, we
first need to develop a segmentation algorithm which
automatically extracts single fibers from tomographic
3D data. In the literature, some works on this topic
has been done so far (Altendorf and Jeulin, 2009;
Dokládal and Jeulin, 2009; Teßmann et al., 2010). In
this paper, we propose another algorithm for single-
fiber extraction which is developed in particular for
densely packed systems of strongly curved fibers. It
extends and modifies similar algorithms which have
recently been developed for straight (Thiedmann et
al., 2008) and curved (Gaiselmann et al., 2012) planar
fibers on the basis of 2D SEM images.

Our algorithm can be described in the following
way. In a first step the 3D image is binarized by
global thresholding. Then, we focus on the extraction
of skeletons, i.e., center lines of single fibers from the
binarized image. Therefore, using tools from image
analysis, i.e., the Euclidean distance transformation,
global thresholding and skeletonization, the center
lines are extracted. Due to irregularities like noise or
binarization artefacts, it is only possible to extract
relatively short fragments of center lines. Thus, in a
second step, we consider a stochastic algorithm to
adequately connect these parts of the center lines to
each other, with the general aim to reconstruct the
complete fibers such that the curvature properties of
real fibers are reflected correctly. The quality of the
segmentation algorithm is validated by applying it to
simulated test data.
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The paper is organized as follows. First, we
describe the algorithm for automatic extraction of
single fibers from tomographic 3D data. Then, a
technique to fit the parameters of the segmentation
algorithm and to validate the quality of segmentation
is briefly explained. A final section summarizes the
results.

DESCRIPTION OF ALGORITHM

We present an algorithm to automatically detect
single fibers from tomographic 3D data of fiber-based
materials. As an example of application, we use this
algorithm for 3D image data of non-woven GDL,
gained by synchrotron tomography.

IMAGING AND MATERIAL
The segmentation algorithm introduced in this

paper is applied to tomographic image data of non-
woven GDL. More precisely, we consider 3D image
data of H2315 GDL produced by the company
Freudenberg FCCT KG. The GDL consists of strongly
curved carbon fibers which run mainly in horizontal
direction (Figs. 1 and 2). Moreover, there occur
fiber bundles within the GDL, i.e., several fibers
which run parallel to each other. By means of high
resolution synchrotron tomography, 3D image data of
this material was gained. The conditions of acquisition
were the following. A W-Si monochromator with an
energy resolution of ∆E/E = 10−2 was used to obtain
a monochromatic X-ray beam. The beam energy was
adjusted to 15 keV in order to achieve optimal contrast
for fibers. A radiographic set of 1500 projections
and 500 flatfields were taken and, subsequently,
reconstructed to a 3D volume. The image data is
given in the dimension [0,3.3]× [0,2.2]× [0,0.2]mm3,
where the voxel size is equal to 0.833 µm. In order to
obtain reasonable computational efforts for the single-
fiber extraction algorithm which is introduced in the
next sections, we consider only a cut-out of the image
data defined on the volume [0,0.625]× [0,0.625]×
[0,0.2] mm3. Note that this volume corresponds to
[0,750]× [0,750]× [0,240] voxels, where the size of
each voxel is 0.833 µm.

PREPROCESSING OF IMAGE DATA
In this section, we explain several steps of image

preprocessing which are necessary for the detection
of fibers from 3D image data. To begin with, the
synchrotron image is median filtered by a 3× 3× 3
kernel in order to reduce noise. Then, the image data is
binarized by global thresholding with some threshold
value t, which will be specified later on (Fig. 1).

Fig. 1. 2D slice of synchrotron data (left) and binarized
image (right).

The binarized image consists of one large
foreground cluster representing the fiber system and
small foreground clusters which obviously do not
contribute to the fibers. To remove them, an algorithm
proposed in Hoshen and Kopelmann (1976) is used
for the detection of isolated small clusters. Thus, small
clusters with a size below a certain limit are removed
where this limit has been set to 1000 voxels since all
clusters (excluding the largest one) have a volume of
less than 1000 voxels. The binarization threshold t is
chosen such that the foreground phase of the binary
image, after removing the dispensable small clusters,
has a volume fraction of 23.5 %. This volume fraction
of the fiber system is known from manufacturers of
non-woven GDL.

In the next step we focus on the extraction of
skeletons, i.e. center lines of single fibers, from
the binarized image. Since there exists many fibers
which touch each other and run parallel (Fig. 2), the
extraction of center lines can not be accomplished
just by a standard skeletonization procedure for binary
images, as described e.g. in Soille (2003); Burger and
Burge (2007).

Fig. 2. 2D slice (left) and small cut-out (right) of
binarized 3D image.

Standard skeletonization algorithms would
recognize touching fibers as one single fiber (Fig. 3).
Thus, these skeletonization algorithms are not
applicable in our case.
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Fig. 3. Fibers running in parallel (left) and standard
skeleton (right).

The basic idea of our approach to the extraction
of center lines is to benefit from the fact that all
fibers have the same radius r = 4.75 µm known from
manufacturers. Thus, the center lines of perfect fibers
should have a minimal distance r to the background
phase. We therefore determine the Euclidean distance
transformation from foreground to background, i.e.,
we associate each voxel of the binarized image B
with its shortest Euclidean distance (given in µm)
to the background phase and denote the resulting
image by DB. Taking e.g. binarization or discretization
artefacts into account, we consider all voxels v ∈ DB
with a shortest distance DB(v) ∈ [r−

√
3 · 0.833,r +√

3 · 0.833] to the background as candidates for
voxels representing the center lines and set those
voxels to foreground. The new image is denoted
by V . Subsequently, the foreground phase of V is
skeletonized. This means that foreground voxels, i.e.,
those belonging to the objects we are interested in,
are changed to background voxels in a way that the
remaining (still voxel-given) paths have a thickness
of one voxel, where the connectivity properties of B
have to be preserved (Soille, 2003; Burger and Burge,
2007).

Fig. 4. Skeleton (left) and elimination of crosspoints
(right).

In order to transform the skeletonized image
into vector data, we first remove the crosspoints of
the voxel-paths with respect to the 26-neighborhood
(Fig. 4) and subsequently represent the remaining
voxel paths by polygonal tracks. For further
information about this transformation the reader is
referred to Gaiselmann et al. (2012). Thus, we end
up with a family of polygonal tracks, which can be
interpreted as a graph structure, representing parts of
the center lines of fibers.

RECONSTRUCTION OF FIBERS
In this section, we discuss a stochastic algorithm

to adequately connect the polygonal tracks, whose
extraction from the 3D synchrotron image has been
explained in the previous section. Recall that these
polygonal tracks, denoted by p1, . . . , pn for some n ≥
1, represent relatively short parts of the center lines
of the fibers to be detected. Our algorithm working
on 3D data is an extension of the 2D extraction
algorithm proposed in Gaiselmann et al. (2012).
Furthermore, a similar approach to connect polygonal
tracks was considered in Jeulin and Kurdy (1992)
in order to reconstruct incomplete grain boundaries.
The algorithm introduced in this manuscript puts us
in a position to construct complete fibers such that
the curvature properties of real fibers are reflected
correctly. Hence, for an adequate reconstruction of
complete center lines, the polygonal tracks considered
in the previous section have to be appropriately
connected, i.e., we seek for sequences of polygonal
tracks (parts of center lines) representing the courses of
complete fibers. The flow-chart of the algorithm shown
in Fig. 5 gives an overview of the consecutive steps of
the algorithm.

Fig. 5. Flow-chart of the random fiber-reconstruction.

More precisely, we first consider the polygonal
track pi with the largest Euclidean length. Then, we
connect pi on either side to other polygonal tracks.
Since, for a given polygonal track, there can be
several possibilities of connecting other polygonal
tracks with it, a decision rule has to be established
which chooses the next polygonal track for connection.
For connecting the end-segment `i of a polygonal track
pi to the end-segment ` j of another polygonal track p j,
say, we are looking for all end-segments {`1, . . . , `k}\
{`i} and {`1, . . . , `k}\{` j} with an endpoint belonging
to a certain cone around the considered endpoint of
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`i and ` j, respectively. If there is no line segment
in these cones, we stop the connection of polygonal
tracks at this stage, where the cone is given as follows.
Note that the task of the cone is to ban connections
which are not suitable. Let |`i j| be the length of the
line segment `i j connecting `i and ` j and �(`i, `i j)
denotes the angle between the line segments `i, `i j
(Fig. 6). Then, an arbitrary line segment ` j is in the
cone of `i, if |`i j| < `max and �(`i, `i j) < αmax(|`i j|)
as well as �(` j, `i j)< αmax(|`i j|), where αmax(|`i j|) =(
`max−|`i j|

`max

)(
π

2 +α
)

for some parameters `max > 0 and
α ∈R. In other words, the maximum angle αmax(|`ip|)
is large if |`ip| is small and vice versa.

Fig. 6. Illustration of the notion `i j and �(`i, `i j).

Suppose that the line segments `i1 , . . . , `im are in
the cone of `i and `i is in the cones of the segments
`i1 , . . . , `im , i.e., a connection of the line segment `i to
one of the line segments `i1 , . . . , `im is possible. Then
the probability that a polygonal track pi is connected to
a polygonal track p j ∈ {pi1 , . . . , pim} via a line segment
`i j depends on

1) the values of �(`i, `i j) and �(` j, ` ji), where the
connection probability increases if the differences
between the directions of `i, ` j and `i j get smaller,
and

2) the length |`i j| of the line segment `i j, where the
connection probability decreases with increasing
length of the line segment `i j.

In particular, a weight ωi j is considered for each line
segment `i j possibly connecting pi and p j, which is
given by

ωi j =exp

(
−1

2

(
|`i j|
`max

)2
)
·

exp

(
−1

2

(
�(`i, `i j)+�(` j, ` ji)

2αmax(|`i j|)

)2
)

.

The weights ωi j are normalized such that the sum
of the normalized weights ω̃i j equals 1. The polygonal
track pi is then connected with p j with probability ω̃i j.

After having connected pi on either side with
other polygonal tracks according to the rule described

described above, we continue connecting the elongated
polygonal track with other tracks until this is not
possible anymore, i.e., we can not find any polygonal
track which end-segments belong to the cones of the
elongated polygonal track, and vice versa. We then end
up with a completely elongated polygonal track.

Since polygonal tracks are connected according to
a random selection rule, it is obvious that the result
of one single run cannot be assured to be optimal.
To find nearly optimal solutions, the simulation of
connections, i.e., the random construction of elongated
polygonal tracks, is repeated 1000 times for the
longest (initial) polygonal track. Among these 1000
random elongated polygonal tracks we choose the
best one according to a certain evaluation criterion.
This evaluation criterion is constructed such that false
connections within the randomly elongated fibers are
penalized. In the present paper, the evaluation of an
elongated polygonal track p is based on the gray-
values of those voxels of the underlying tomographic
image which are hit by p. More precisely, we
discretize the polygonal track p dilated by the unit
sphere b(o,1) ⊂ R3. By I(v1), . . . , I(vk(p)) we denote
the gray-values of the 3D tomographic image at
the voxels v1, . . . ,vk(p) hit by the dilated polygonal
track p ⊕ b(o,1). As evaluation criterion e(p), we
choose the mean of these gray-values, i.e. , e(p) =

∑
k(p)
i=1 I(vi)/k(p). Note that the larger e(p) is the better

the polygonal track p is evaluated. The idea of this
evaluation criterion is that the gray-values of voxels
located on the fibers are larger than the remaining ones.
Also note that the extraction algorithm is not restricted
to the mean gray-value of fibers. Alternative evaluation
criteria could be e.g. the smallest gray-value, the
variance of gray-values or a function introduced in
Teßmann et al. (2010) which takes advantage of the
relation of cylindrical structures to the eigenvalues
of its Hessian matrices and emphasize those voxel
which exhibit the greatest likelihood of belonging to
the center lines of fibers.

Subsequently, each of the (short) polygonal
tracks {pi1 , . . . , pik} belonging to the best elongated
polygonal track p is removed from the original
set {p1, . . . , pn} of polygonal tracks, i.e., the fiber
reconstruction procedure described above is now
applied to the reduced set {p1, . . . , pn} \ {pi1 , . . . , pik}
of polygonal tracks. This procedure is repeated until
the reduced set of (short) polygonal tracks is empty.
The computational time of the algorithm strongly
depends on the number of existing parts of center
lines to be connected. In our case, we observe 6053
segments which leads to a computational time of
83 minutes on a desktop computer with a quad-core
processor and 12 GB ram.
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VALIDATION OF THE ALGORITHM

FITTING OF PARAMETERS

To find appropriate values for the parameters α and
`max of the fiber-extraction algorithm described in the
previous sections, we use a pragmatic fitting technique.
In a first step, we manually choose values for α and
`max such that the segmentation algorithm generates
fibers which are realistic in the following sense. The
fibers extracted for given values of α and `max from the
experimental data set of non-woven GDL are used to fit
a stochastic single-fiber model, where synthetic fibers
drawn from this model are composed to a random 3D
system of non-overlapping fibers, see e.g. Gaiselmann
et al. (2012). Then, in order to obtain realistic gray-
value images, we add random noise to the synthetic
fiber system and choose values of α and `max such
that the morphology of the resulting simulated 3D
image is in a good visual accordance with that of the
tomographic 3D image for non-woven GDL gained by
synchrotron tomography (Fig. 7).

Fig. 7. 3D synchrotron data (left) and synthetic fiber
system with random noise (right).

CHECKING THE QUALITY OF
SEGMENTATION

The quality of the segmentation algorithm
proposed in this paper is validated by applying it
to simulated test data. The starting point for this
is the simulated 3D system of non-overlapping
fibers considered in the previous sections. The
major advantage of this virtual data set is that the
morphological properties, e.g. the curvature, of its
fibers are known. This allows us to perform an exact
validation of the fiber-extraction algorithm described
in the previous sections, where we applied our
algorithm to a noisy version of the synthetic 3D image
described above for different values of the parameters
α and `max.

Fig. 8. Simulated (left) and corresponding extracted
(right) fibers.

It turned out that α = 0.4 and `max = 60 is
an optimal choice of parameters which yields the
best results with respect to the reconstruction of
connections between the extracted (short polygonal)
fragments of center lines of fibers, i.e., for this choice
of α and `max, the most correct and the fewest wrong
connections between the extracted fragments of center
lines of fibers have been obtained. More precisely,
in this case the algorithm correctly sets 89% of
connections, where 7% of connections are not set, and
4% are set wrongly. For a visual comparison of the
simulated 3D system of non-overlapping fibers and the
system of fibers extracted from a noisy version of this
3D image (Fig. 8). In morphological analysis of fiber-
based materials, it is of great importance that from
a statistical point of view the extracted fiber tracks
have the same structural characteristics as the original
fibers. As first characteristic to validate the single-
fiber extraction algorithm, we consider the number of
fibers in the simulated and extracted fiber systems.
Since 7% of connections are not set, we extract
a larger number of fibers (903) by the introduced
algorithm as existing simulated fibers (781). But when
considering only the fibers with an Euclidean length
larger than 50 µm (which is the minimum length of
the 95% largest simulated fibers), then the number of
extracted fibers is equal to 767 and the number of
simulated fibers is 742. The small fibers can be seen as
artefacts of the proposed segmentation algorithm. In
order to check if curvature properties are adequately
represented by the extracted fibers, we only compute
a curvature characteristic for simulated and extracted
fibers larger than 50 µm. More precisely, in order to
validate our extraction algorithm, we considered the
tortuosity τ(p) of a polygonal track p = (a0, . . . ,ak),
given by the starting and end points a0, , . . . ,ak of its
line segments `1, . . . , `k, which is defined by τ(p) =
∑

n−1
i=1 d(ai,ai+1)/d(a1,an), where d(a,b) denotes the

Euclidean distance between a,b ∈ R3. Fig. 9 and
Table 1 show that the tortuosity is very well reflected
by the polygonal tracks extracted from the noisy
version of simulated tracks.

61



GAISELMANN G ET AL: Extraction of Curved Fibers

Fig. 9. Histogram of τ(p) for simulated (top) and
corresponding extracted (bottom) fibers.

Table 1. Mean and variance of tortuosities computed
for simulated and extracted fibers.

mean variance
simulated fibers 1.28 0.31
extracted fibers 1.28 0.29

APPLICATION TO EXPERIMENTAL DATA

Finally, for the optimal parameter values α =

0.4 and `max = 60, we applied our fiber-extraction
algorithm to the experimental 3D data of non-woven
GDL, gained by synchrotron tomography. By visual
inspection (Fig. 10), we found that the experimental
data and the fiber system extracted from it are in
good accordance. Notice that the extracted (polygonal)
fibers are an important basis in order to develop and
fit stochastic 3D models to the microstructure of fiber-
based materials (Gaiselmann et al., 2012).

Fig. 10. Binarized real data (left) and extracted fiber
system (right).

CONCLUSIONS

We introduced a method of structural image
segmentation for fiber-based materials which
automatically extracts single fibers from tomographic
3D data. To provide an example, we applied the
algorithm to 3D synchrotron data of non-woven gas-
diffusion layers which are a key component of polymer
electrolyte membrane fuel cells. Additionally, the
quality of the structural segmentation algorithm has
been validated by applying it to simulated test data.
The proposed segmentation algorithm has shown to be
robust even in the presence of strongly curved fibers
and image noise. Moreover, the algorithm is also able
to handle tightly packed fiber systems.
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