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Synopsis 

Energy-dispersive synchrotron diffraction was applied to analyse the near surface residual stress state 

in polycrystalline materials. A RIETVELD based formalism is introduced which permits a full triaxial 

data evaluation and, therefore, even the detection of out-of-plane 𝜎33(𝑧) gradients. 

Abstract 

A method for the evaluation of strongly inhomogeneous residual stress fields in the near surface 

region of polycrystalline materials is introduced, which exploits the full information content contained 

in energy-dispersive (ED) diffraction patterns. Based on RIETVELD’s data analysis concept the macro-

stress induced diffraction line shifts ∆𝐸𝜓
ℎ𝑘𝑙  observed in ED sin² 𝜓 measurements are described by 

modeling the residual stress state 𝜎𝑖𝑗(𝑧) in the real space. Therefore, the proposed approach differs 

substantially from currently used methods for residual stress gradient analysis such as the ‘Universal 

plot’ method, which enable access to the LAPLACE stress profiles 𝜎𝑖𝑗(𝜏). With the example of shot-

peened samples made of steel 100Cr6 and Al2O3, respectively, it is demonstrated that the 

simultaneous refinement of all diffraction patterns obtained in a sin² 𝜓 measurement with hundreds of 

diffraction lines provides very stable solutions for the residual stress depth profiles. Furthermore, it is 

shown that the proposed evaluation concept even allows for considering the residual stress component 

𝜎33(𝑧) in the thickness direction, which is difficult to detect by conventional sin² 𝜓 analysis. 
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1. Introduction 

Residual stress fields in the near surface region of polycrystalline materials and thin films play an 

important role regarding the material properties (e.g. mechanical properties) under service conditions. 

During the past decades, various concepts and methods for X-ray residual stress analysis (XSA) based 

on angle-dispersive (AD) and ED diffraction have been developed and successfully applied, see for 

example the summaries (Hauk, 1997; Genzel, 2003; Welzel et al., 2005; Birkholz, 2006; Reimers et 

al., 2008; Mittemeijer & Welzel, 2012). Based on the definition of an average depth 〈𝑧〉 to which the 

information extracted from the diffraction lines has to be ascribed the different methods can be 

classified into two groups: the ‘real space’ and ‘LAPLACE space’ methods (Genzel et al., 2012).  

The basic idea of the real space methods is to define a gauge volume by slits in the primary and the 

diffracted beam, respectively. In this way, the origin of the diffracted intensity within the material is 

assigned to the absorption-weighted centroid of the gauge. By scanning the gauge volume under one 

or more orientations into or within the sample, strain or stress depth profiles can be obtained (Reimers 

et al., 1998, Withers & Webster, 2001, Genzel et al., 2011a). Very high resolution with respect to the 

analysis of real space depth gradients can be achieved by employing micro- and nano-beam 

techniques provided at 3rd generation synchrotron radiation sources (Di Fonzo et al., 2000; Ice et al., 

2011; Stefenelli et al., 2013). Krywka et al. (2012) and Keckes et al. (2012) used these methods 

successfully to study lattice strain gradients in thin nanocrystalline hard coatings. 

The LAPLACE space methods, on the other hand, make use of BEER-LAMBERT’s law which describes 

the exponential attenuation of X-rays by matter. Performing diffraction experiments in reflection 

geometry, depth resolution is achieved by stepwise variation of tilt and rotation angles, respectively, 

leading to a variation of the so called 1/e information depth 𝜏 which is defined by the condition that 1 

– 𝑒−1 = 63% of the total diffracted intensity originates from. Due to the exponential beam attenuation 

all strain and residual stress depth distributions obtained from such experiments are not profiles in the 

real space but profiles in the LAPLACE space, 𝜎(𝜏). Consequently, access to the corresponding real 

space profiles, 𝜎(𝑧), requires the application of the inverse LAPLACE transform (ILT). Numerical 

approaches, however, in most cases fail because the numerical inverse LAPLACE transform (INLT) 

leads to rather ill-conditioned systems of equations which have to be solved (Craig & Thomson, 

1994). Therefore, it is common practice to describe the 𝜎(𝑧)  depth profiles by polynomial 

(Ruppersberg et al., 1995) or exponentially damped (Hauk & Krug, 1988) functions which can be 

easily transformed into the LAPLACE space. The unknown profile parameters are determined by a least 

squares fit to the experimentally obtained, discrete LAPLACE stress depth distributions. The stability of 

the solutions achieved by this procedure, however, strongly depends on the quality of the discrete 

LAPLACE stress data. (Denks et al., 2009) showed that very similar profiles 𝜎(𝜏) in the LAPLACE 
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space which were obtained by fitting polynomials of different order to the data may differ 

significantly with respect to the corresponding real space, 𝜎(𝑧). 

In this paper a new method for ED residual stress depth gradient analysis based on a recently 

developed ED RIETVELD program (Apel et al., 2011) is presented. With the example of two 

mechanically surface treated samples, which differ significantly with respect to their near-surface 

residual stress distribution, the introduced approach is shown to be applicable to long-range and steep 

stress gradients as well as to the evaluation of triaxial residual stress fields. The paper is organized as 

follows: In chapter 2 the fundamental relations of the RIETVELD method for the ED diffraction mode 

are introduced and a formalism is presented for the refinement of a model which describes the full 

triaxial near surface residual stress state. Experimental details are given in chapter 3. Here, we also 

show with the example of a macro stress free standard powder that full ED diffraction pattern 

refinement needs a correction of the detector dead time induced line shift rather on the channel scale 

than on the energy scale. The new approach for residual stress depth gradient analysis is tested in 

chapter 4 on two samples with a different near surface residual stress state to show the general 

applicability of this new method. 

2. Fundamentals of RIETVELD-based energy-dispersive residual stress gradient analysis 

2.1. Application of the RIETVELD method to lattice strain evaluation 

The fundamental equation of ED diffraction is obtained from BRAGG’s equation  

𝑛𝜆 = 2𝑑ℎ𝑘𝑙 sin 𝜃 and PLANCK’s energy equation 𝐸 = ℎ𝑐 𝜆⁄  by eliminating the wavelength 𝜆: 

𝐸ℎ𝑘𝑙(keV) =
6.199

sin 𝜃
 

1

𝑑ℎ𝑘𝑙(Å)
. (1) 

It correlates the position 𝐸ℎ𝑘𝑙  of a diffraction line hkl on the energy scale with the lattice plane 

distance 𝑑ℎ𝑘𝑙. The BRAGG and the diffraction angle, 𝜃 and 2𝜃, respectively, remain fixed during the 

measurement and can be selected freely. 

Recently, a RIETVELD program for the evaluation of the ED diffraction data measured at the materials 

science beamline EDDI@BESSY II was developed (Apel et al., 2011). The first investigations 

primarily focused on the determination of microstructural parameters like domain size and microstrain 

in some standard samples. The program is now enhanced in order to be able to analyse diffraction line 

shifts for the analysis of residual stress depth gradients. The principle of the RIETVELD method 

(RIETVELD, 1967, 1969) is to minimize the weighted sum of squared residuals (WSS) of the observed 

intensities 𝑦𝑖
𝑜𝑏𝑠 of a diffraction pattern and the calculated intensities 𝑦𝑖

𝑐𝑎𝑙𝑐 of a model which describes 

the crystal structure and microstructural properties: 
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𝑊𝑆𝑆 = ∑ 𝑤𝑖(𝑦𝑖
𝑜𝑏𝑠 − 𝑦𝑖

𝑐𝑎𝑙𝑐)
2

𝑖  (2) 

with 𝑤𝑖 = 1 𝜎𝑖⁄  being the weighting factor of the intensity for the 𝑖𝑡ℎ  measuring point in the 

diffraction pattern. The intensities of the ED diffraction patterns are calculated according to the 

following ansatz: 

𝑦𝑖
𝑐𝑎𝑙𝑐 =  

𝑆 ∑ {𝑊(𝐸ℎ𝑘𝑙)𝐴(𝐸ℎ𝑘𝑙)𝑃(𝐸ℎ𝑘𝑙 , 𝜃)𝑀ℎ𝑘𝑙|𝐹ℎ𝑘𝑙|
2

(𝐸ℎ𝑘𝑙)
−3

𝐺(𝐸𝑖 − 𝐸ℎ𝑘𝑙)}ℎ𝑘𝑙 + 𝑦𝑖
𝑏𝑘𝑔

 (3) 

(S - scale factor, 𝑊(𝐸ℎ𝑘𝑙) - correction factor for the wiggler spectrum, 𝐴(𝐸ℎ𝑘𝑙) - energy dependent 

absorption correction, 𝑃(𝐸ℎ𝑘𝑙 , 𝜃) - polarization factor, 𝑀ℎ𝑘𝑙 - multiplicity of the Bragg reflection hkl, 

𝐹ℎ𝑘𝑙 - structure factor, 𝐺(𝐸𝑖 − 𝐸ℎ𝑘𝑙) - line profile function, 𝑦𝑖
𝑏𝑘𝑔

 - background intensity). 

The line profile 𝐺 is described by the generalized THOMPSON, COX & HASTINGS (TCH) pseudo-Voigt 

model (Thompson et al., 1987) which was modified for the ED case of diffraction (Apel et al., 2011): 

(𝛤𝐺
ℎ𝑘𝑙)

2
= 𝑃 + 𝑈 ∙ (𝐸ℎ𝑘𝑙)

2
, (4) 

Γ𝐿
ℎ𝑘𝑙 = 𝑋 + 𝑌 ∙ 𝐸ℎ𝑘𝑙, (5) 

where 𝛤 is the full width at half maximum (FWHM) of the line profile, P, U, X, and Y are refinable 

parameters related to size (P, X) and strain (U, Y) broadening, and G and L denote Gauss and Lorentz 

profiles, respectively (see (Apel et al., 2011) for details). The calculation of the structure factors 𝐹ℎ𝑘𝑙 

was done using the LE BAIL method (Le Bail et al., 1988). 

A macroscopic lattice strain defined by: 

𝜀ℎ𝑘𝑙 = (𝑑ℎ𝑘𝑙 − 𝑑0
ℎ𝑘𝑙) 𝑑0

ℎ𝑘𝑙⁄  =  Δ𝑑ℎ𝑘𝑙 𝑑0
ℎ𝑘𝑙⁄  (6) 

(𝑑0
ℎ𝑘𝑙 – strain free lattice parameter) leads to shifts of the diffraction lines, which are given on the 

energy scale by: 

Δ𝐸ℎ𝑘𝑙 = 𝐸ℎ𝑘𝑙 − 𝐸0
ℎ𝑘𝑙 = −𝜀ℎ𝑘𝑙 ∙ 𝐸0

ℎ𝑘𝑙, (7) 

where 𝐸0
ℎ𝑘𝑙 is the line position that corresponds to the diffraction performed on the unstrained lattice 

with the parameter 𝑑0
ℎ𝑘𝑙. With the above equation the line profile function 𝐺 of any reflection hkl in 

equation (3) can be written as: 

𝐺(𝐸𝑖 − 𝐸ℎ𝑘𝑙) = 𝐺[𝐸𝑖 − 𝐸0
ℎ𝑘𝑙(1 − 𝜀ℎ𝑘𝑙)] . (8) 
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In general, the lattice strain in polycrystalline samples is anisotropic on the macroscopic as well as on 

the microscopic (i.e. crystallite) scale. Therefore, the shifts of different lines 𝐸ℎ𝑘𝑙 in one and the same 

ED diffraction pattern will differ by their magnitude and, in special cases, even by their sign 

(Greenough, 1949). In the next chapter it is shown how the RIETVELD formalism outlined above can 

be used to evaluate residual stress depth profiles 𝜎𝑖𝑗(𝑧)  from ED diffraction lattice strain 

measurements performed in different orientations with respect to the sample reference system. 

2.2. Modeling residual stress-strain relations for depth-resolved RIETVELD data evaluation 

Residual stresses in polycrystalline materials are not homogeneous but occur in the form of gradients 

on different length scales (Macherauch et al., 1973). As a consequence of mechanical surface 

treatment, for example, the macroscopic and phase specific residual stresses are generated in the 

topmost material regions that vary with the distance z from the surface, resulting in more or less 

pronounced gradients 𝜎𝑖𝑗(𝑧) of individual components of the stress tensor. The correlation between 

the residual stress fields and the lattice strains 𝜀ℎ𝑘𝑙 caused by these residual stress fields is given by 

HOOKE’s law, which reads in a compact form: 

𝜀𝜑𝜓
ℎ𝑘𝑙(𝑧) = 𝐹𝑖𝑗

ℎ𝑘𝑙(𝜑, 𝜓) ∙ 𝜎𝑖𝑗(𝑧). (9) 

In this equation the azimuth angle 𝜑  and the inclination angle 𝜓  define the orientation of the 

diffraction vector 𝒈ℎ𝑘𝑙 (i.e. of the measuring direction) with respect to the sample reference system, 

and 𝐹𝑖𝑗
ℎ𝑘𝑙 are the so-called stress factors. For quasi-isotropic polycrystalline materials with random 

crystallographic texture the 𝐹𝑖𝑗
ℎ𝑘𝑙 can be expressed by the diffraction elastic constants (DEC) 𝑆1

ℎ𝑘𝑙 and 

1

2
𝑆2

ℎ𝑘𝑙. Assuming, for further considerations, a triaxial residual stress state with rotational in-plane 

symmetry, i.e. 𝜎11 = 𝜎22 = 𝜎∥ : 

𝝈(𝑧) = (

𝜎||(𝑧) 0 0

0 𝜎||(𝑧) 0

0 0 𝜎33(𝑧)

), (10) 

equation (9) takes the form: 

𝜀𝜓
ℎ𝑘𝑙(𝑧) = 𝐹||

ℎ𝑘𝑙(𝜓) ∙ 𝜎||(𝑧) + 𝐹33
ℎ𝑘𝑙(𝜓) ∙ 𝜎33(𝑧)  

              = (
1

2
𝑆2

ℎ𝑘𝑙 sin² 𝜓 + 2𝑆1
ℎ𝑘𝑙) ∙ 𝜎||(𝑧) + (

1

2
𝑆2

ℎ𝑘𝑙 cos² 𝜓 + 𝑆1
ℎ𝑘𝑙) ∙ 𝜎33(𝑧)  (11) 

Due to the exponential attenuation of the X-rays by matter given by BEER-LAMBERT’s law the lattice 

strain profiles 𝜀 𝜓
ℎ𝑘𝑙(𝑧) are not directly accessible from diffraction experiments. Instead, the measured 

signal has to be assigned to an average information depth 𝜏 which is defined by the condition that 1 – 
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𝑒−1 = 63% of the total diffracted intensity originates from a surface layer of thickness 𝜏. For the 

symmetrical Ψmode of X-ray stress analysis 𝜏 is given by: 

𝜏(𝐸ℎ𝑘𝑙 , 𝜃, 𝜓) =
sin θ

2𝜇(𝐸ℎ𝑘𝑙)
cos 𝜓 . (12) 

Since the effective linear absorption coefficient 𝜇 depends on the photon energy, the lattice strain 

obtained from different reflections 𝐸ℎ𝑘𝑙 in the ED diffraction pattern has to be assigned to different 

information depths 𝜏(𝐸ℎ𝑘𝑙, 𝜃, 𝜓). The correlation between the experimentally accessible lattice strain 

and residual stress depth profiles 𝜀𝜓
ℎ𝑘𝑙(𝜏) and 𝜎𝑖𝑗(𝜏), respectively, and the actual (real space) profiles 

𝜀𝜓
ℎ𝑘𝑙(𝑧) and 𝜎𝑖𝑗(𝑧) is given by the transform: 

𝜀𝜓
ℎ𝑘𝑙(𝜏) = ∫ 𝜀𝜓

ℎ𝑘𝑙(𝑧) 𝑒−
𝑧

𝜏𝑑𝑧
∞

0 ∫ 𝑒−
𝑧

𝜏𝑑𝑧
∞

0
⁄  (13) 

𝜎𝑖𝑗(𝜏) = ∫ 𝜎𝑖𝑗(𝑧) 𝑒−
𝑧

𝜏𝑑𝑧
∞

0 ∫ 𝑒−
𝑧

𝜏𝑑𝑧
∞

0
⁄  (14) 

For bulk samples of thickness 𝐷 ≫ 𝜏  the above integral equation has the form of a LAPLACE 

transform. Therefore, the strain and stress depth profiles which are directly obtained from diffraction 

experiments are called ‘LAPLACE-profiles’. 

Taking into account the depth dependency of the strains and stresses, and making use of equations 

(13) and (14) the line profile function (8) becomes: 

𝐺(𝐸𝑖 − 𝐸𝜓
ℎ𝑘𝑙) = 𝐺{𝐸𝑖 − 𝐸0

ℎ𝑘𝑙[1 − 𝜀𝜓
ℎ𝑘𝑙(𝜏)]} 

                       = 𝐺 {𝐸𝑖 − 𝐸0
ℎ𝑘𝑙 [1 − 𝐹𝑖𝑗

ℎ𝑘𝑙(𝜓) ∙ ∫ 𝜎𝑖𝑗(𝑧) 𝑒−
𝑧

𝜏𝑑𝑧 ∫ 𝑒−
𝑧

𝜏𝑑𝑧⁄ ]}. (15) 

This equation correlates the peak position 𝐸𝜓
ℎ𝑘𝑙 of any diffraction line hkl in an ED diffraction pattern 

obtained for a measuring direction 𝜓 directly with the actual depth profiles of the residual stress 

tensor components 𝜎𝑖𝑗 in the real or z-space. 

The RIETVELD strategy for residual stress gradient analysis from ED diffraction experiments is 

illustrated in Fig. 1. The main feature of this approach is that all diffraction patterns and, therefore, all 

diffraction lines measured for sin² 𝜓-based XSA are refined simultaneously by a non-linear least-

squares method using the ‘trust-region-reflective’ algorithm to determine the parameters a0, a1 … an. 

According to equation (12) each diffraction line 𝐸ℎ𝑘𝑙 can be ascribed to a different information depth 

𝜏. Considering, for example, the case that diffraction patterns have been measured under 30 different 

𝜓 angles and that 8 diffraction lines 𝐸ℎ𝑘𝑙 per diffraction pattern are available for analysis this would 

mean that the parameters a0, a1 and a2 are refined based on the information of 240 diffraction lines or 
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about 5∙105 data points (cf. Fig. 1). The refined parameters then can be used directly to calculate the 

residual stress depth distribution in real space, 𝜎𝑖𝑗(𝑧). Typical functions used to describe 𝜎||(𝑧) and 

their LAPLACE transform are summarized in Tab. 1. 

[Figure 1] 

The ‘goodness’ of the refined model is assessed by (a) the residuals obtained for the fitted diffraction 

patterns and (b) the closeness of agreement between the 𝑑𝜑𝜓
ℎ𝑘𝑙  vs. sin² 𝜓 plots evaluated from the 

experiment and the 𝑑𝜑𝜓
ℎ𝑘𝑙(sin² 𝜓)-curves recalculated from the refined model according to: 

𝑑𝜓
ℎ𝑘𝑙 = (

1

2
𝑆2

ℎ𝑘𝑙 sin² 𝜓 + 2𝑆1
ℎ𝑘𝑙) 𝜎||(𝜏ℎ𝑘𝑙)𝑑0

ℎ𝑘𝑙 + 𝑑0
ℎ𝑘𝑙, (16) 

if a biaxial residual stress state of rotational symmetry is assumed for the near surface material region. 

During the RIETVELD refinement the lattice parameter is held constant at a previously determined 

value. The so-called ‘strain-free lattice parameter’ is determined by interpolation of the respective 

𝑑𝜓
ℎ𝑘𝑙–sin² 𝜓–distribution in the strain-free direction 𝜓∗,ℎ𝑘𝑙, which is given by: 

𝜓∗,ℎ𝑘𝑙 = sin−1 √−2𝑆1
ℎ𝑘𝑙 (1

2
𝑆2

ℎ𝑘𝑙)⁄  , (17) 

or, if available, from a standard (unstrained) reference sample of the material under investigation. The 

𝑑𝜓
ℎ𝑘𝑙–sin² 𝜓–distribution is determined through least-squares refinement of 𝜀𝜓

ℎ𝑘𝑙(𝜏) (equation (13)), 

with 𝜀𝜓
ℎ𝑘𝑙(𝜏) being treated as a single refinable parameter for each diffraction line 𝐸ℎ𝑘𝑙. That means 

that no model to describe the residual stress depth distribution 𝜎||(𝑧) is assumed and that the shift of 

each diffraction line is determined separately. 

In general, the traditional XSA methods assume a biaxial stress state in the volume sampled by the X-

ray beam, whereas stress components in the direction of the surface normal are neglected. However, it 

has been shown in several studies (Dölle & Cohen, 1980; Cohen et al., 1980, Ruppersberg, 1997) that 

this assumption is not justified in either case. It is known that the presence of shear stress components 

𝜎13 and 𝜎23 results in a splitting of the 𝑑𝜓
ℎ𝑘𝑙–sin² 𝜓–distribution, i.e. the 𝑑𝜓

ℎ𝑘𝑙–sin² 𝜓–distributions 

have opposite curvature for positive and negative 𝜓. By (Noyan, 1983) it was shown that a normal 

stress component 𝜎33 perpendicular to the surface in absence of shear stresses leads to a curvature of 

the 𝑑𝜓
ℎ𝑘𝑙–sin² 𝜓–distribution and no 𝜓-splitting occurs. It was shown further that neglecting even 

small curvatures caused by 𝜎33 could lead to appreciable errors in the calculated surface stress. 

The stress component 𝜎33 in the direction of the surface normal has to obey the boundary conditions 

𝜎33(𝑧 = 𝜏 = 0) = 0  and 𝜕𝜎33(𝑧 = 0)/𝜕𝑧 = 0 .We do not consider here the shear components 
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𝜎13 and 𝜎23, because they can be extracted (separated) easily from the fundamental equation of XSA 

by adding (subtracting) the strain or lattice spacing profiles measured in the positive and negative 

direction, respectively. The following functions, which fulfill the requirements imposed by the 

boundary conditions, were used to model the 𝜎33  component in real space and LAPLACE space, 

respectively: 

𝜎33(𝑧) = 𝑎𝑧3𝑒−𝑏𝑧, (18) 

𝜎33(𝜏) = 6𝑎𝜏3 (𝑏𝜏 + 1)4⁄ , (19) 

where a and b are refinable parameters. According to the characteristics of this function, it is assumed 

that the 𝜎33 component reaches a maximum below the materials surface and then approaches zero 

going further away from the surface into the material. Thus, the amplitude of the curve is specified by 

the parameter a and the damping of the curve is specified by parameter b. Simultaneously refining all 

parameters of the functions used to describe 𝜎||(𝑧) and 𝜎33(𝑧), respectively, permits a full triaxial 

residual stress gradient analysis. 

3. Experimental 

3.1. Energy-dispersive synchrotron diffraction 

The ED diffraction experiments were carried out using the white high energy synchrotron radiation 

provided at the materials science beamline EDDI@BESSY II in Berlin, details on the experimental 

setup may be found in (Genzel et al., 2007). A N2 (liq.)-cooled energy-dispersive solid state low 

energy germanium detector (Canberra model GL0110) was used for data acquisition. The 

applicability for ED experiments and properties of this detector were studied in detail by (Denks & 

Genzel, 2007, Denks & Genzel, 2008; Genzel et al., 2011). In (Denks & Genzel, 2008) it was shown 

that the variation of the detector dead time DT - during a sin² 𝜓 measurement leads to systematic 

diffraction line shifts giving rise to ‘ghost-stresses’ which would falsify the XSA results. The DT 

denotes the timespan immediately after the detection of an event in which the detector is not ready to 

detect another event, i.e. the minimum time needed to separate two successive events. In the case of 

an energy-dispersive detector the event to be detected is measuring the incoming photons. Usually, 

the DT is given in percent [%], calculated according to the formula 

𝐷𝑇 [%] = (1 − life time measurement time⁄ ) × 100% (20) 

where the life time [s] denotes the actual time where photons are being measured and the 

measurement time [s] denotes the total time used to accumulate the spectrum. During the experiments 

described in this paper it was noticed that the currently applied dead time correction needs to be 
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improved. Therefore a modified approach to correct for the variation of the detector dead time during 

a sin² 𝜓 measurement is introduced in this paper (section 3.2). 

The ED measurements focused on sin² 𝜓-based residual stress investigations performed in the Ψ-

mode of XSA. ED diffraction data were recorded within an energy range of approximately 15 -

 80 keV. For the measurements on the 100Cr6 steel sample and the Al2O3 sample diffraction angles 

2𝜃 = 16°  and 2𝜃 = 11° , respectively, were chosen. The measurement time for the diffraction 

patterns was 30 s for the 100Cr6 sample and 300 s for the Al2O3 sample. The primary beam cross 

section was set to 0.5 x 0.5 mm² and on the secondary side the apertures of the two-slit system were 

adjusted to 0.03 x 5 mm² (equatorial x axial) in order to prevent geometrically induced line-

broadening and to restrict line-shifts to ∆2𝜃  < 0.01°. For the determination of the instrumental 

broadening the reference material LaB6 SRM660b (NIST) was measured using the identical 

diffraction setup that was used for the sin² 𝜓 measurements on the samples discussed in this paper. 

3.2. Enhanced dead time correction 

The evaluation of the actual (i.e. lattice strain and stress induced) energy diffraction line positions, 

which are corrected for all instrumental effects, in particular for those being related to the detector 

electronics is of utmost importance for the ED residual stress analysis. The analysis of residual 

stresses requires the determination of lattice strains in the range of 𝜀 =  [10−3 … 10−5]. Therefore, the 

determination of energy positions for the photon energies available at the EDDI beamline (up to 

100 keV) must be accurate within ≤ 10 eV. 

To investigate the influence of the dead time on the measured energy positions, sin² 𝜓 measurements 

on a standard gold powder ( 𝑎0
𝐴𝑢  = 0.4078 nm) were conducted. In Fig. 2 the shift Δ𝐸 =

(𝐸𝜓
ℎ𝑘𝑙 − 𝐸0

ℎ𝑘𝑙) 𝐸0
ℎ𝑘𝑙⁄  with regard to the theoretical energy positions 𝐸0

ℎ𝑘𝑙 of the Au diffraction lines is 

shown as a function of dead time. For the determination of Δ𝐸 the uncorrected raw data as received 

from the ED detector were used. It can be seen that there is a significant deviation from the theoretical 

energy positions not only as a function of dead time but also depending on the reflections hkl, i.e. on 

the absolute energy positions. The currently applied dead time correction only corrects successfully 

for the dead time induced shift of the individual energy positions whereas the obvious hkl dependency 

was first noticed when the RIETVELD method was applied to the ED diffraction data. The latter would 

indicate different lattice parameter values 𝑎ℎ𝑘𝑙  for the individual diffraction lines 𝐸ℎ𝑘𝑙  of Au. The 

deviations between the diffraction lines are more or less independent of the dead time. This finding 

indicates that the assignment of the channel number ch of the multichannel analyzer (MCA) to the 

actual photon energy E is incorrect. 

[Figure 2] 
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Therefore, to assign the channel number ch to the actual photon energy E the following equation is 

used: 

𝐸(𝑐ℎ) = 𝑎 + 𝑏 ∙ 𝑐ℎ + 𝑐 ∙ 𝑐ℎ2, (21) 

where the parameters a, b and c are determined using different energy standards, e.g. the emission 

lines of radionuclides like 241Am or 133Ba as well as the fluorescence lines of different elements where 

the theoretical energy positions are known with sufficient accuracy. It will be shown in the following, 

that the erroneous assignment of the channel numbers ch to the actual photon energies E is due to the 

procedure used so far for detector calibration. Until now the channel (energy) positions of the 

emission and fluorescence lines of the different standards were determined for different dead times. 

Instead of applying the dead time correction to the shift Δ𝐸 of the diffraction lines on the energy scale 

(Genzel et al., 2011) it is more convenient to apply it to the shift Δ𝑐ℎ observed on the channel scale. 

The approach used to determine the proper dead time correction reads as follows: The radionuclides 

were taped together directly in front of the detector window and a spectrum was recorded. The 

resulting dead time and the channel numbers determined from this spectrum are used as reference 

values. By varying the distance of the standard materials to the detector window and carrying out 

sin² 𝜓 measurements different dead times between 0.08 % and 33 % were realized. Then, for each 

dead time the peak maximum channel numbers of the emission and fluorescence lines were 

determined. In the next step, these values were corrected using the respective channel positions 

determined for the reference dead time. The resulting dead time induced shift Δ𝑐ℎ of the channel 

number shows no systematic deviation in one specific direction. Therefore, the shift Δ𝑐ℎ  can be 

considered independent of energy. To describe to describe the line shift vs. dead time distribution the 

following exponential function was fitted to the experimental data: 

𝑦 = 𝑦0 + 𝐴1exp(−𝑥/𝑡1), (22) 

resulting in the values 𝑦0 = -2.91412, 𝐴1 = 6.34603 and 𝑡1 = 7.44829 [s]. These parameters were used 

for the dead time correction of all experiments presented in this paper. By using this correction 

function a line shift Δ𝑐ℎ can be calculated for the dead time x of the respective measurement under 

investigation. This shift Δ𝑐ℎ is then added to the channel numbers of the emission and fluorescence 

lines determined for the reference dead time. The corrected channel numbers are then used to 

determine the parameters a, b and c of equation (21) that is used to assign the channel numbers to the 

actual photon energies. Whereas the dead time correction applied so far used only one set of 

parameters a, b and c for all dead times the new dead time correction yields a set of parameters for 

each dead time. In Fig. 3 the dead time dependency of the parameters of equation (21) is shown. It 
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can be seen that only the parameter a strongly depends on the dead time whereas the parameters b and 

c are independent of the dead time. 

[Figure 3] 

Applying the enhanced dead time correction to the calibration measurement shown in Fig. 2, the 

deviation Δ𝐸  from the theoretical energy positions 𝐸0
ℎ𝑘𝑙  was reduced significantly not only with 

regard to the dead time but also with regard to the absolute energy position, as shown in Fig. 4. This is 

particularly important in view of the application of the RIETVELD method to the analysis of ED 

diffraction spectra, since the energy positions of all diffraction lines are calculated using one and the 

same lattice parameter 𝑎0. The deviation Δ𝐸 of the different diffraction lines from the theoretical line 

positions inside a single spectrum, which was obtained as a consequence of the dead time correction 

used up to now (cf. Fig. 2), would make a reliable refinement of the materials structure almost 

impossible. 

[Figure 4] 

3.3. Samples 

 

The main goal of this paper is to introduce the enhancement of the RIETVELD program developed by 

(Apel et al., 2011) with regard to the analysis of residual stress depth gradients. Investigations were 

performed on a steel 100Cr6 and an 𝛼-Al2O3 ceramic, which differ significantly with respect to the 

residual stress state that was introduced by mechanical surface treatment. Both materials were ground 

and subsequently shot-peened to generate residual stress fields within the near surface region which 

are inhomogeneous with respect to the depth z. Details of the sample treatment are summarized in 

Table 2. 

[Table 2] 

Preliminary X-ray diffraction and EBSD investigations revealed that the samples are free of preferred 

crystallographic texture. The residual stress state of both samples was extensively studied using both 

AD and ED diffraction analysis methods (Genzel et al., 2011). The studies showed that the in-plane 

residual stress state of both samples is of rotational symmetry but significant differences were found 

with respect to the magnitude, extension and steepness of the gradients, respectively. Thus, the 

samples are well suited to test the applicability of the RIETVELD model for the analysis of residual 

stress depth gradients for a rather long-range and an extremely steep residual stress gradient. The 

diffraction elastic constants 𝑆1
ℎ𝑘𝑙  and 

1

2
𝑆2

ℎ𝑘𝑙  needed for residual stress evaluation were calculated 
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using the single crystal elastic constants (Landolt-Börnstein, 1979) on the basis of the Eshelby-Kröner 

model (Eshelby, 1957; Kröner, 1958). 

 

4. Results and discussion 

4.1. Residual stress distribution with moderate gradient: Shot-peened steel 100Cr6 

Preliminary X-ray diffraction investigations including the stress-scanning method (Denks, 2008) and 

the layer removal method (Manns, 2010) (on a sample from the same batch), that allow for 

determination of the real space residual stress depth profile 𝜎||(𝑧) , revealed the introduction of 

compressive residual stresses in the near surface region of the sample. The 𝜎||(𝑧) profiles obtained by 

both methods are shown in Fig. 5. The residual stress depth profile 𝜎||(𝑧) is characterized by a 

pronounced maximum of about -1250 MPa compressive stress at about 30 µm below the surface 

followed by a decrease of the compressive stresses with increasing depth. The 𝜎||(𝑧) profiles obtained 

by the real space methods provide the basis for the assessment of the residual stress depth profile 

obtained by means of residual stress depth gradient analysis on the basis of the RIETVELD method 

introduced in this paper. 

[Figure 5] 

The results of the simultaneously RIETVELD refined ED diffraction patterns according to the concept 

outlined in Section 2.2 are shown in Fig. 6 for selected 𝜓 angles. For 𝜓 ≤ 82° six diffraction lines and 

for 82° > 𝜓 ≤ 85° two diffraction lines (110 and 211) were used for the analysis. That results in a total 

of 156 diffraction lines or about 500.000 data points that were used simultaneously for the evaluation 

of the residual stress depth gradient. To model 𝜎||(𝑧) an exponentially damped polynomial function of 

first order, 𝜎||(𝑧) = (𝑎0 + 𝑎1𝑧)𝑒−𝑎2𝑧, was used. The strain-free lattice parameter 𝑎100 = 0.28679 nm 

was used for the refinement, predetermined using the strain-free direction 𝜓∗ (see equation (17)). As 

can be seen from the residuals of the refined ED diffraction patterns, the energy positions of the 

different diffraction lines are all well-matched, even under grazing diffraction conditions (𝜓 = 82° –

 86°). 

[Figure 6] 

From the RIETVELD refinement the residual stress depth profiles in both, the LAPLACE- and real space 

are available. Fig. 7 compiles the residual stress depth profiles evaluated by means of the RIETVELD 

method and the direct real space approach, i.e. the stress scanning method. A good match between the 

real space profile 𝜎||(𝑧)  obtained by the stress scanning method and the RIETVELD method is 



Journal of Applied Crystallography  research papers 

 

 

  13 

 

observed. This applies at least for the ‘main 𝜏-range’ marked in the diagram, which indicates the 

range where the major part of the experimentally accessible diffraction information originates from. 

For depths larger than about 70 µm the RIETVELD refinement yields results which differ considerably 

from the direct real space approach. The deviations between the real space profiles obtained from the 

stress scanning method and the RIETVELD method for large 𝜏 values can be explained considering the 

accessible information depth (𝜏, z) of each method. The stress scanning method is based on through 

surface strain scanning in the ED diffraction mode using a small gauge volume of about 10 µm height. 

It yields a discrete profile of the residual stress component even in large depths z without changing the 

orientation between the gauge volume and the sample. The accessible information depth achieved by 

the RIETVELD method, on the other hand, is limited by the exponential attenuation of the X-rays by 

matter. In this case the maximum information depth 𝜏 refers to the 321 diffraction line at 𝜓 = 0°. 

Furthermore, the data density of the LAPLACE stress data being used for the evaluation is much higher 

for smaller information depths 𝜏 than in the deeper material zones, see Fig. 7. Consequently, deeper 

material zones are ‘not well represented’ in the evaluation leading to the observed differences in 

larger depths z. 

[Figure 7] 

The correctness of the refined model can be assessed by comparing the discrete 𝑑𝜓
𝑒𝑥𝑝

 vs. sin² 𝜓 

distributions, which are obtained from whole pattern fitting without assuming a residual stress model, 

with the 𝑑𝜓
ℎ𝑘𝑙(𝜏) curves that are to be calculated from the refined model 𝜎||(𝑧). The corresponding 

plots are shown in Fig. 8. It can be seen that the calculated 𝑑𝜓
ℎ𝑘𝑙(𝜏) curves are in good agreement with 

the experimental 𝑑𝜓
𝑒𝑥𝑝

 vs. sin² 𝜓 curves, throughout the whole 𝜓 range. Even the curvature at higher 

𝜓  angles, resulting from the residual stress gradient, is well described by the refined model. 

Additionally, the observed deviation between the refined model function and the experimental data is 

expressed in terms of energy, Δ𝐸, in order to have another criterion to assess the quality of the model. 

It can be seen that the deviations are not larger than 10 eV – 15 eV, except for the 321 diffraction line 

(Δ𝐸 ≤ 20 eV), which is the one with the lowest intensity at all 𝜓 angles. Therefore, the deviations are 

reasonable within the total experimental error and the refined model for 𝜎||(𝑧)  can be regarded 

reliable. 

[Figure 8] 

The RIETVELD refinement was repeated using exponentially damped polynomial functions of higher 

order (P2 and P3 from Tab. 1) to model 𝜎||(𝑧) and the results are shown in Fig. 9. It is seen that the 

evaluation yielded almost identical 𝜎(𝑧)𝑅𝑖𝑒𝑡𝑣𝑒𝑙𝑑-profiles, showing the stability of the residual stress 

analysis using the RIETVELD method. When applying methods which calculate the real space profile 

𝜎(𝑧) by fitting their LAPLACE transform to the experimentally determined, discrete LAPLACE stress 
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data 𝜎(𝜏), the stability of the back transform is often problematic (Denks et al., 2009). In many cases, 

strongly scattering LAPLACE space data prevent from finding stable and reliable solutions. By using 

all the available experimental data simultaneously for the least-squares fit procedure of the RIETVELD 

method the scattering of the experimental data can be compensated and the evaluation procedure is 

less influenced by the scattering than other LAPLACE space methods, as with e.g. the universal-plot 

method (Ruppersberg et al., 1989), where the amount of data that can be used for the evaluation is 

further restricted due to numerical problems that arise for residual stress data obtained for small 𝜓 

angles as well as 𝜓 positions close to the strain-free direction 𝜓∗. 

[Figure 9] 

For the determination of the out-of-plane component 𝜎33(𝑧) the two parameters a and b from equation 

(18) were refined. As described in section 2.2 the refinement was done the following way: both 

parameters of equation (18) were refined together with the parameters of the model function used to 

describe 𝜎||(𝑧). The in-plane component 𝜎||(𝑧) was again described using the function P1 from Tab. 

1. The resulting parameter values from the RIETVELD refinement of the respective stress tensor 

components are summarized in Tab. 3. The parameters of 𝜎||(𝑧) refined together with 𝜎33(𝑧) show 

only small deviations from the parameters obtained from the refinement without considering the out-

of-plane component 𝜎33(𝑧). Furthermore, it should be noted that the parameters a and b take on very 

small values. Considering the fit uncertainties being almost of the same magnitude as the refined 

parameters one can conclude that no significant 𝜎33(𝑧) component is present in the mechanically 

treated surface zone of this sample. This finding agrees with theoretical considerations based on 

continuum mechanics. Since the amount of cementite in this sample, which would act as second phase 

and, therefore, give rise to the occurrence of "pseudo-macro" (PM) stresses 𝜎33
𝛼 (𝑧) (Noyan & Cohen, 

1987) can be neglected, one can assume a homogeneous macrostress tensor. This means that the 

boundary conditions 𝜎33(𝑧 = 𝜏 = 0) = 0 and 𝜕𝜎33(𝑧 = 0)/𝜕𝑧 = 0 being valid for the (almost) single 

phase ferritic steel must result in 𝜎33 ≡ 0 at any depth below the surface of this single-phase material. 

[Table 3] 

 

4.2. Residual stress distribution with steep gradient: Shot-peened Al2O3 

The Al2O3 ceramic sample has been the subject of many investigations regarding the application of 

established and newly developed methods for ED residual stress depth gradient analysis (Genzel et 

al., 2011; Meixner et al., 2013). Therefore, the near surface residual stress state of the sample is well 

known and it is particularly suited to test the applicability of the RIETVELD method to an “extreme” 
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case of a residual stress gradient. The residual stress state is characterized by a very steep gradient 

showing high compressive stresses at the surface up to about -8 GPa which are balanced by tensile 

stresses within the first microns below the surface. This kind of residual stress state (very high 

compressive stresses balanced by tensile stresses within the first few microns below the sample 

surface) was also found in ceramic multilayer systems (Klaus et al., 2008). The origin of the steep 

gradient of residual stress is not yet fully understood but it would be beyond the scope of the present 

paper to elucidate this phenomenon. Here, further studies are necessary, which have to be 

accompanied by other analytical techniques. 

The very short range of the gradient only affects the diffraction lines 𝐸ℎ𝑘𝑙 corresponding to a small 

information depth 𝜏. In the present case, the most affected reflections are the 012, 104 and 110 

diffraction lines. Consequently, only few data points in the “zone of interest” below the surface are 

available for the analysis of the residual stress depth gradient. Therefore, only the aforementioned 

three diffraction lines are used for the evaluation. Since the stress gradient is limited to small 

information depths, only diffraction patterns recorded at 𝜓 angles 𝜓 > 70° are used for the RIETVELD 

refinement. Results of the RIETVELD refinement for selected 𝜓 angles are shown in Fig. 10. The 

agreement between the calculated and the observed profiles is good, even for the highest inclination 

angle 𝜓 = 89° . The stress free lattice parameters used for the RIETVELD refinement were 

𝑎100 = 0.475609 nm and 𝑐001 = 1.29902 nm, previously determined from the strain-free direction 𝜓∗. 

An exponentially damped polynomial of first order (P1 in Tab. 1) was used to describe the real space 

residual stress depth profile 𝜎||(𝑧). 

[Figure 10] 

The LAPLACE and real space residual stress depth profiles calculated using the refined parameters a0, 

a1 and a2 from the model function 𝜎||(𝑧) are shown in Fig. 11. The refined real space profile 𝜎||(𝑧) 

reveals a very steep gradient of compressive residual stress in the sample. At the surface z = 0 a 

compressive stress of about -8.5 GPa is observed which is balanced by tensile stresses within a depth 

of 2.5 µm below the surface. At a depth z of about 10 µm the in-plane residual stress approaches zero. 

These findings are in very good agreement with the results from previous investigations (see e.g. 

(Meixner et al., 2013)). 

[Figure 11] 

To assess the quality of the fit the 𝑑𝜓
𝑒𝑥𝑝

 vs. sin² 𝜓 distributions obtained by RIETVELD refinement of 

the ED diffraction patterns without assuming a residual stress state are compared again to the 𝑑𝜓
ℎ𝑘𝑙(𝜏) 

curves calculated from the refined model 𝜎||(𝑧). The corresponding plots are shown in Fig. 12. It can 
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be seen that the calculated 𝑑𝜓
ℎ𝑘𝑙(𝜏) curves are in very good agreement with the experimental 𝑑𝜓

𝑒𝑥𝑝
 vs. 

sin² 𝜓 plots throughout the whole 𝜓 range, although the diffraction patterns for 𝜓 < 70° have not been 

used for the evaluation. This confirms the assumption about the small depth range of the residual 

stress gradient, which led to the exclusion of the diffraction patterns recorded for 𝜓 < 70°. The strong 

curvature at higher 𝜓 angles (𝜓 > 82°), which results from the very steep residual stress gradient, is 

well described by the refined model 𝜎||(𝑧) for all three diffraction lines. The observed deviations Δ𝐸 

between the refined model function and the experimental data is less than about ±5 eV up to 

sin² 𝜓 ≈ 0.99 and about ±10-20 eV for higher 𝜓 angles 𝜓 > 85°. Therefore, the refined model for 

𝜎||(𝑧) can be regarded as accurate. 

[Figure 12] 

To check the stability of the results of the RIETVELD method the refinement was repeated using 

exponentially damped polynomials of higher order (P2 – P4, see Tab. 1). The resulting LAPLACE and 

real space residual stress depth profiles are shown in the inset of Fig. 11. The different functions yield 

almost identical results for the residual stress depth profile indicating that the order of the polynomial 

function used to model 𝜎||(𝑧) has a negligible influence on the results obtained by the RIETVELD 

refinement. This highlights the robustness of the analysis method applied here, as already observed 

for the 100Cr6 sample in the previous chapter. 

4.3. Simulation and analysis of a triaxial residual stress state 

In section 4.1 the refinement of the out-of-plane stress tensor component 𝜎33(𝑧) showed that this 

component is negligible for the ferritic steel sample. In order to investigate how the RIETVELD based 

approach for residual stress gradient analysis works in presence of a triaxial stress state, a simulation 

for strongly non-uniform triaxial residual stress distributions 𝜎𝑖𝑖(𝑧) (𝑖 = 1,2,3) was performed. The 

simulations were carried out for a polycrystalline steel sample (strain-free lattice parameter 𝑎0 =

0.28679 Å) with random texture. A depth gradient of the chemical composition which would give rise 

to a gradient 𝑑0(𝑧) of the strain-free lattice parameter was excluded from the considerations, because 

it would have the same effect as a hydrostatic residual stress component. As a consequence, additional 

information on the depth profile of the chemical composition of the material is required in order to 

separate compositional and residual stress gradients.  

The following stress tensor 𝜎(𝑧) in the z-space, which was also used in (Genzel et al., 2004) for 

simulation experiments, was assumed for the simulations: 

�⃗�2 (𝑧)(MPa)  
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= (
(−1000 + 50𝑧2)𝑒−0.4𝑧 0 0

0 −500 0
0 0 20𝑧3𝑒−0.4𝑧

). (23) 

For the components 𝜎11 and 𝜎33 steep residual stress gradients was assumed, where the latter has to 

obey the boundary conditions 𝜎33(𝑧 = 𝜏 = 0) = 0  and 𝜕𝜎33(𝑧 = 0)/𝜕𝑧 = 0 . The component 𝜎22 

was assumed to be constant in depth. The respective depth profiles are shown in Fig. 13. The 

corresponding stresses in the 𝜏 − or Laplace space, 𝜎𝑖𝑖(𝜏), were calculated by means of Eq. 14.  

[Figure 13] 

The diffraction patterns were calculated according to Eq. 3 using the atomic scattering factors from 

(Brown et al., 2006) considering the 110, 200, 211, 220, 310, 222 and 321 diffraction lines. The 

simulations were carried out for the ED diffraction mode and the symmetrical Ψ mode of the XSA for 

2𝜃 = 16° in the azimuths 𝜑 = 0° and 90° with 32 steps in 𝜓, with 0° < 𝜓 ≤ 89°, respectively. This 

means a total of 64 diffraction patterns were taken onto account for the simulations. In order to get a 

realistic idea of the situation, some noise was superimposed to the intensity profiles and additionally, 

the scale factors were chosen in a way that they decrease with increasing 𝜓 angle, resulting in more or 

less realistic diffraction patterns (see Fig. 15). 

[Figure 14] 

For the RIETVELD refinement all 64 diffraction patterns were refined simultaneously using an 

exponentially damped polynomial function of 4th order  

𝜎𝑖𝑖(𝑧) = [ 𝑎0
(𝑖𝑖)

+ 𝑎1
(𝑖𝑖)

𝑧 + 𝑎2
(𝑖𝑖)

𝑧2 + +𝑎3
(𝑖𝑖)

𝑧3 + 𝑎4
(𝑖𝑖)

𝑧4] 𝑒−𝑎5
(𝑖𝑖)

𝑧 (24) 

to describe each of the three components in the stress tensor �⃗�2 (𝑧). This means that the refinement 

was done with "flexible" models for the residual stress depth distribution, i.e. without assuming 

profiles that are similar to the defaults. First, all six parameters of the polynomial functions of the 

individual stress tensor components (for the 𝜎33 component the parameter  𝑎0
(33)

 was set to zero, due 

to the boundary conditions) were each refined separately. In the next step the parameters of the 

polynomial functions of all stress tensor components were refined together. After each refinement 

circle the resulting residual stress depth profiles were assessed graphically. An overshooting of the 

residual stress depth profiles was observed during the initial stages of the refinement. Therefore, the 

number of parameters of the polynomial functions was reduced stepwise and separately for each stress 

tensor component. After each refinement circle the residual stress depth profiles were assessed again 

graphically till no more overshooting was observed. The refined diffraction patterns are shown in Fig. 
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14. The final refinement result for the residual stress depth profiles of the individual stress tensor 

components and the results of some intermediate steps are shown in Fig. 15. 

[Figure 15] 

The stress tensor 𝜎(𝑧) obtained from the RIETVELD refinement is: 

�⃗�2 (𝑧)(MPa)  

= (
(−1051.3 + 217.5𝑧)𝑒−0.26𝑧 0 0

0 −522.4 0
0 0 35.4𝑧2𝑒−0.23𝑧

). (25) 

Although the stress tensor obtained from the RIETVELD refinement is slightly different compared to 

the default one, a good agreement of the residual stress depth profiles between the two of them is 

found, see Fig. 16. The differences result from the fact that the refinement was carried out without any 

specific assumptions with respect to the profile shape of the individual stress components. The results 

shown in Fig. 16 imply that the approach for the depth dependent analysis of stress tensor components 

introduced in this paper is a promising alternative to the methods used in (Genzel et al., 2004) for the 

analysis of multiaxial residual stress fields. Moreover, to the author’s knowledge, this is the first time 

that it is described in literature how to use the RIETVELD method and conventional sin² 𝜓 data for this 

kind of analysis. 

[Figure 16] 

For the simulations the same refinement strategy was chosen as it would have been used for the 

analysis of a real sample with an unknown residual stress tensor. At this point, besides the graphical 

assessment of the quality of the refined model, the assessment based on the comparison of the 

experimentally obtained 𝑑𝜓
𝑒𝑥𝑝

 vs. sin² 𝜓 distributions and the 𝑑𝜓
ℎ𝑘𝑙(𝜏) curves recalculated from the 

refined model 𝜎(𝑧) displays its usefulness. In Fig. 17 the simulated 𝑑𝜓
𝑒𝑥𝑝

 vs. sin² 𝜓 distribution and 

the recalculated 𝑑𝜓
ℎ𝑘𝑙(𝜏) curves of the 110 diffraction line are shown for some intermediate steps and 

the final step of the refinement. It can be seen that after the first step of the refinement the deviations 

between both curves are fairly large indicating that the refined model is not good enough to describe 

the actual residual stress state. With further steps of the refinement the agreement between both 

curves improves leading to a very good agreement for the final step of the refinement. It follows that 

by applying these two "quality controls", a proper refinement strategy to obtain the actual residual 

stress tensor can be found. 

5. Concluding remarks 
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A new approach for the analysis of residual stress depth gradients from ED diffraction patterns using 

the recently developed RIETVELD program (Apel et al., 2011) is introduced. The RIETVELD method is 

used to analyze complete diffraction patterns, which makes this method particularly suitable to be 

used for the evaluation of ED diffraction data. Furthermore, an enhanced detector dead time 

correction is introduced to correct the ED diffraction data to avoid electronically introduced 𝐸ℎ𝑘𝑙 

dependent diffraction line shifts. 

The approach introduced here makes use of the fact that each diffraction line 𝐸ℎ𝑘𝑙  in the ED 

diffraction pattern is subject to a different attenuation and therefore, has to be assigned to a different 

information depth. During the RIETVELD refinement, parameters related to models describing the 

depth dependence of the stress tensor components 𝜎𝑖𝑗(𝑧) in the real space are adjusted together with 

other refinable parameters to fit multiple diffraction patterns (measured under different specimen 

orientations) simultaneously. The approach was tested on samples with well-known residual stress 

states which differ in range and magnitude, respectively. By comparing the results from the RIETVELD 

refinement with results from real space (100Cr6 sample) and conventional LAPLACE space methods 

(𝛼-Al2O3 sample) it could be shown that very stable and reliable results can be obtained applying the 

RIETVELD method for the analysis of residual stress depth gradients. Furthermore, the results from the 

previous sections show that since the new approach based on the RIETVELD method evaluates a much 

larger quantity of data (some 105 intensities) it is less prone to scattering of the experimental data 

compared to conventional LAPLACE space methods which calculate the real space profile 𝜎(𝑧) by 

fitting their LAPLACE transform to the discrete LAPLACE stress data. Therefore, the RIETVELD method 

yields more stable and robust results. 

With a simulated example, it has been shown that the new approach for residual stress gradient 

analysis introduced here can be used in principle for a full analysis of a triaxial residual stress state. 

However, the more stress tensor components are considered, the more parameters have to be adjusted 

during the refinement, which is why the refinement strategy needs to be chosen carefully. 

Nevertheless, by applying the proposed graphical as well as computational quality controls a proper 

refinement strategy can be found even for complex residual stress states. 

As residual stress gradients are often entailed with changes in the microstructure, current studies deal 

with the development of models to describe the depth dependence of microstructural features, like 

microstrain and domain size. Those models can be easily implemented in the RIETVELD program to 

increase its versatility. 
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Table 1 Approaches to the description of residual stress depth profiles in real space 𝜎(𝑧) and their 

Laplace transform 𝜎(𝜏). 

𝝈(𝒛) 𝝈(𝝉) Expression 

∑ 𝑎𝑘𝑧𝑘

𝑁

𝑘=1

 ∑ 𝑘! 𝑎𝑘𝜏𝑘

𝑁

𝑘=1

  

𝑎0 + 𝑎1𝑒−𝑎2𝑧 𝑎0 +
𝑎1

𝑎2𝜏 + 1
 P0 

(𝑎0 + 𝑎1𝑧)𝑒−𝑎2𝑧 
𝑎0

𝑎2𝜏 + 1
+

𝑎1𝜏

(𝑎2𝜏 + 1)2
 P1 

(𝑎0 + 𝑎1𝑧 + 𝑎2𝑧2)𝑒−𝑎3𝑧 
𝑎0

𝑎3𝜏 + 1
+

𝑎1𝜏

(𝑎3𝜏 + 1)2
+

2𝑎2𝜏2

(𝑎3𝜏 + 1)3
 P2 

 

 

Table 2 Characteristics of the investigated samples. 

Sample Geometry Material treatment 

100Cr6 
slice 

(24.4 x 4 mm²) 

quenched and tempered (2h at 165°C), surface treatment: grinding 

+ shot peening (Almen intensity: 0.15 – 0.17 mmA, grit: S 110H, 

coverage: 200%) 

𝛼-Al2O3 
plate 

(25 x 25 4 mm³) 

Surface treatment: grinding + shot peening (grit: HMG, pressure: 

2 bar, distance nozzle-sample: 24 mm, peening time: 560 s) 

 

Table 3 Refined values of the parameters of the functions used to describe the in- and out-of-plane 

stress components 𝜎||(𝜏) and 𝜎33(𝜏), respectively, for the shot-peened steel sample. Additionally, the 

parameters of 𝜎||(𝜏) without refining 𝜎33(𝜏) are shown. 

Refinement a0 a1 a2 a b 

𝜎||(𝑧) -141.65(8.18) -103.00(1.12) 0.0312(4.1∙10-4) - - 

𝜎||(𝑧), 𝜎33(𝑧) -138.75(8.19) -104.33(1.14) 0.0317(4.2∙10-4) 3.787∙10-5 (8.7∙10-5) 0.01155(0.0114) 
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Captions 

Figure 1 Diagram illustrating the procedure to determine the set of refinable parameters of the 

model 𝜎||(𝑧) (and 𝜎||(𝜏), respectively) by means of the RIETVELD method. See text for further details. 

Figure 2 Shift Δ𝐸 of Au diffraction lines with regard to the energy positions calculated from the 

theoretical lattice parameter 𝑎0
𝐴𝑢 = 0.4078 nm (zero-crossing) as a function of dead time. 

Figure 3 Dead time dependency of the parameters a, b and c of the function (20) used to assign the 

channel number ch to the actual photon energy E. The parameters b and c for the linear and the 

quadratic term were found to be constant and take values of 8.207∙10-3 and -1.462∙10-9, respectively. 

Figure 4 Application of the enhanced dead time correction to the calibration measurements shown 

in Fig. 2. See text for further details. 

Figure 5 Real space in-plane residual stress depth distribution in the near surface region of the 

investigated 100Cr6 sample, shown by the example of the 𝜎22 component (Denks, 2008). 

Figure 6 Simultaneously RIETVELD refined ED diffraction patterns (selected 𝜓-positions) of the 

shot-peened 100Cr6 sample. 𝜎||(𝑧) was described using an exponentially damped polynomial of first 

order (P1 in Tab. 1). 

Figure 7 Residual stress depth profiles 𝜎(𝜏)𝑅𝑖𝑒𝑡𝑣𝑒𝑙𝑑 in the LAPLACE space and 𝜎(𝑧)𝑅𝑖𝑒𝑡𝑣𝑒𝑙𝑑 in the 

real space obtained by RIETVELD refinement and real space residual stress depth profile 

𝜎(𝑧)𝑠𝑡𝑟𝑒𝑠𝑠−𝑠𝑐𝑎𝑛𝑛𝑖𝑛𝑔 obtained using the stress-scanning method. The parameters a0, a1 and a2 are the 

refined parameters of the model function used to describe 𝜎(𝑧)𝑅𝑖𝑒𝑡𝑣𝑒𝑙𝑑. The strain-free lattice 

parameter used for the refinement was 𝑎100 = 0.28679 nm. See text for further details. 

Figure 8 Comparison of the 𝑑𝜓
𝑒𝑥𝑝

 vs. sin² 𝜓 distributions obtained by conventional whole pattern 

fitting (see section 2.2 for further details) and the 𝑑𝜓
ℎ𝑘𝑙(𝜏) curves calculated according to 𝑑𝜓

ℎ𝑘𝑙(𝜏) =

[(1

2
𝑆2

ℎ𝑘𝑙 sin² 𝜓 + 2𝑆1
ℎ𝑘𝑙)𝜎||(𝜏) + 1]𝑑0

ℎ𝑘𝑙 with 𝜎||(𝜏) being the LAPLACE transform of the refined 

residual stress model 𝜎||(𝑧). The differences between both curves are shown as a function of energy, 

∆𝐸, in order to be used to assess the quality of the refined model for 𝜎||(𝑧). Notice that 𝜏 depends on 

sin² 𝜓 via equation (12) by substituting cos 𝜓 =  √1 − sin² 𝜓. 

Figure 9 LAPLACE and real space residual stress depth profiles of the 100Cr6 sample obtained for 

exponentially damped polynomial functions of different order (1st, 2nd and 3rd order or P1, P2 and P3, 

according to Tab. 1). 
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Figure 10 Simultaneously RIETVELD refined ED diffraction patterns of the shot-peened Al2O3 

sample, shown for selected 𝜓 angles. The unfitted smaller peaks at 17.3 keV and 21.1 KeV are escape 

peaks from the 110 and 113 diffraction lines, respectively. 

Figure 11 Residual stress depth profiles 𝜎(𝜏)𝑅𝑖𝑒𝑡𝑣𝑒𝑙𝑑 in the LAPLACE space and 𝜎(𝑧)𝑅𝑖𝑒𝑡𝑣𝑒𝑙𝑑 in 

the real space obtained by applying the RIETVELD method. The parameters a0, a1 and a2 are the refined 

parameters of the model function used to describe 𝜎(𝑧)𝑅𝑖𝑒𝑡𝑣𝑒𝑙𝑑. The data points shown in the figure 

were obtained by conventional whole pattern fitting. The refinement was also done using 

exponentially damped polynomials of higher order (2nd, 3rd, 4th order). The corresponding LAPLACE 

and real space residual stress depth profiles are shown in the inset. 

Figure 12 Comparison of the 𝑑𝜓
𝑒𝑥𝑝

 vs. sin² 𝜓 distributions obtained by conventional whole 

pattern fitting and the 𝑑𝜓
ℎ𝑘𝑙(𝜏) curves calculated according to the function 𝑑𝜓

ℎ𝑘𝑙(𝜏) = [(1

2
𝑆2

ℎ𝑘𝑙 sin² 𝜓 +

2𝑆1
ℎ𝑘𝑙)𝜎||(𝜏) + 1]𝑑0

ℎ𝑘𝑙. 

Figure 13 Triaxial residual stress distribution in the z- as well as in the 𝜏-space as given by the 

default stress tensor 𝜎(𝑧) in equation (23). The strain-free lattice parameter 𝑑0 is assumed to be 

independent of depth z. Full lines, 𝜎(𝑧); dashed lines, 𝜎(𝜏). 

Figure 14 Simultaneously RIETVELD refined ED diffraction patterns from the simulation of the 

ferrite steel sample, shown for selected 𝜓 angles (𝜑 = 0°). In total, 64 diffraction patterns were 

refined simultaneously. Due to the noise added to the simulated patterns and due to the decreasing 

scale factor with increasing 𝜓 angle the number of diffraction lines that are available for the 

evaluation reduces with increasing 𝜓 angle. 

Figure 15 Triaxial residual stress distributions for intermediate steps and the final refinement 

obtained by means of the RIETVELD method. (a) All parameters of the 4th order polynomial were 

refined together but separately for each stress tensor component. (b) The parameters for each stress 

tensor component were refined together. (c) For 𝜎11 four parameters (𝑎0
(11)

, 𝑎0´1
(11)

, 𝑎2
(11)

, 𝑎4
(11)

), for 

𝜎22 two parameters (𝑎0
(22)

, 𝑎4
(22)

) and for 𝜎33 two parameters (𝑎3
(33)

, 𝑎4
(33)

) were refined together. (d) 

Shows the residual stress distribution after the final refinement. 

Figure 16 The triaxial residual stress distribution obtained from the RIETVELD refinement 

compared with the residual stress distribution given by the default stress tensor. 

Figure 17 Comparison of the simulated 𝑑𝜑𝜓
110,𝑒𝑥𝑝

 vs. sin² 𝜓 distribution (symbols) and the 

𝑑𝜑𝜓
110(𝜏) curves recalculated using the refined triaxial stress tensor 𝜎(𝑧) for the same steps of the 

refinement as described in the caption of Fig. 15. 
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Figure 3 
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Figure 4 

  

0 5 10 15 20 25
-0.03

-0.02

-0.01

0.00

0.01

0.02

0.03

 111

 200

 220

 311

 222


E

 [
k
e
V

]

dead time [%]Dead time 



Journal of Applied Crystallography  research papers 

 

 

  30 

 

 

Figure 5 
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Figure 6 
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Figure 7 
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Figure 8 
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Figure 10 
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Figure 11 
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Figure 12 
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Figure 13 
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Figure 14 
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Figure 15 
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Figure 16 
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Figure 17 
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