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Abstract
The average temporal (longitudinal) and spatial (transverse) coherence of free electron laser

pulses in the extreme ultraviolet (XUV) at FLASH is measured by interfering two time-delayed

partial beams directly on a CCD camera. Wavelengths between λ = 32nm and λ =8 nm are

examined. A decrease of the coherence time for the fundamental wavelengths from τc = (6 ± 0.5)

fs at 32 nm to τc = (2.9 ± 0.5) fs at 8 nm is measured. At λ = 8 nm the fundamental wavelength

and the third harmonic of 24 nm are compared to each other. For 8 nm radiation as third harmonic

of 24 nm a coherence time of τc = (2.5 ± 0.5) fs is observed. The spatial coherence of 24 nm

and 8 nm fundamental pulses are found to be very similar. The visibility decreases to 50% of the

maximum visibility at about 3.2 mm overlap of the partial beams, which corresponds to 42% of the

beam diameter (FWHM) at a distance of 90 m from the exit of the undulator. These results are

analysed in terms of the Gaussian Schell-model (GSM) resulting in six contributing modes to the

total radiation. In addition, the correlation of the visibility between the fundamental radiation at

24 nm and its third harmonic at λ = 8 nm is investigated for identical shots.

PACS numbers: 41.60.Cr, 41.60.Ap, 41.50.+h, 42.25.Hz, 42.25.Kb, 42.50.Ar
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I. INTRODUCTION

Among the light sources available in the XUV and soft x-ray regime self-amplified spon-

taneous emission (SASE) generated by free electron lasers (FEL) provides widely tunable

ultrashort light pulses with high pulse energies [1]. Since 2005 FLASH at DESY in Hamburg

is operating as a user facicilty, by now providing radiation down to 4.12 nm. In 2009 the first

hard x-ray FEL Linac Coherent Lights Source (LCLS) started its operation in Stanford [2].

The intense radiation generated by such sources enables innovative experiments in various

fields of research such as single shot coherent diffraction imaging [3, 4], cluster physics [5],

and surface reaction dynamics [6]. For the first type of experiments in particular, but not

only, a precise knowledge of the longitudinal and transverse coherence of the light pulses is

required. Further, an understanding of the formation of coherence during the SASE process

is important for the optimisation of electron bunch formation.

Substantial contributions to the theoretical description of the FEL process have been pub-

lished in recent years [7–11]. Still an experimental verification of the essential temporal and

spatial beam properties for different operating parameters of the FEL in particular at differ-

ent wavelengths is of great interest. Recently, measurements of the average pulse duration

of the Free Electron Laser in Hamburg (FLASH) yields values around 30 fs, both by means

of two-photon double ionization of helium [12] and for single shots by electric field streaking

driven by THz radiation from synchronized undulator pulses [13]. First measurements of the

temporal coherence of FLASH pulses at λ = 24 nm using a linear autocorrelation revealed

a coherence time of τc=6 fs and a multiple pulse sub-structure [14]. Schlotter et al. sup-

plemented these findings at longer and shorter wavelengths of λ = 33.2 nm and λ = 9.6 nm

[15]. Measurements of the spatial coherence of FLASH pulses applying a Young double-slit

experiment at λ=13.7 nm at a distance of z= 20m from the source showed a coherence

length of about ξ = (300± 15)µm in the horizontal and vertical direction. The beam radius

(half-width at half maximum of a Gaussian function) at this distance from the source is

about 890µm [16].

In this paper a characterization of the temporal and spatial coherence of FLASH generating

fs pulses at different wavelengths from λ = 32 nm to λ = 8 nm is presented in order to investi-

gate the dependence of the coherence properties as a function of wavelength. The results are

compared to theoretical predictions. In addition the temporal coherence of third harmonic
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radiation at λ = 8 nm is determined when FLASH is set to operate at the fundamental at

λ = 24 nm.

II. EXPERIMENTAL

As an essential pre-requisite for coherence measurements one has to ensure that the

overlapping partial beams do not show any jitter both temporally and spatially. In the

present set-up this is achieved by single pulse measurements at defined spatial overlap and

time delay. To provide such jitter-free replica pulses for x-ray pump/x-ray probe experiments

a split-and-delay unit (autocorrelator) has been developed for the use with FLASH, based

on geometrical wavefront beam splitting by a sharp mirror edge. Employing grazing incident

angles for the XUV radiation it covers the fundamental photon energy range of FLASH from

hν = 20 eV to more than 200 eV with an efficiency of larger than 50%. A schematic drawing

of the lay-out of the autocorrelator is shown in Fig. 1. Grazing angles of 3◦ and 6◦ for

the fixed and variable delay arms, respectively, are employed to ensure a high reflectivity in

the soft x-ray regime. The left part of the incoming FEL pulse is reflected horizontally by

the beam splitter with a sharp edge into the fixed beam path. The other part of the beam

passes the beam splitter unaffected and is then reflected vertically by the second mirror into

a variable delay line. There, a delay between -5 ps and +20 ps with respect to the fixed beam

path can be achieved with a step size of nominally 40 as. The seventh and eighth mirror

reflect the partial beams again into their original direction. Small angles between both

beams can be introduced in order to vary the spatial overlap. Consequently the distance

between two points of the spatial beam profile interfering with each other is varied. Thus

not only the temporal but also the spatial coherence of the FEL pulses can be measured.

A more detailed description of the autocorrelator can be found in [14]. The autocorrelator

is assembled at beamline BL3 at a distance of 70m downstream from the undulator. The

coherence properties of FEL pulses with wavelengths of λ=32 nm, 24 nm, 13nm, 8 nm

(fundamental), and 8 nm (3rd harmonic of λ=24 nm) are investigated.

The experimental set-up is shown in Fig. 2. In order to increase the propagation distance

behind the autocorrelator both partial beams are reflected by a plane multilayer mirror

(Mo/Si) under an angle of incidence of θ = 10◦ directly onto a XUV sensitive CCD camera
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FIG. 1: Scheme of the autocorrelator. (a) The FEL pulse is divided by the wavefront beam splitter.
One partial beam is reflected horizontally into a fixed arm of the autocorrelator, the other partial
beam passes the beam splitter and is vertically reflected into the delay stage. With the last mirror
the beams are recombined. Different overlap angles on a CCD camera can be set by rotating the
last mirror.(b) The reflectivity of a carbon coated silicon mirror is shown as a function of photon
energy (green line). The dashed lines represent the total transmission of the fixed (dark blue) and
the variable delay arm (light blue).

at a distance of 20m behind the autocorrelator. The mirror shows a reflectivity of R1 =3.0

% at λ=8 nm and R2 =2.0 % at λ=24 nm, with spectral bandwidths of ∆λ =0.5 nm

and more than 1.5 nm at λ=8nm and 24 nm, respectively. For λ=13 nm and λ=32nm a

mirror coated with chromium was used, showing a reflectivity of R3 = 0.14% at λ=13nm

and R4 = 0.9% at λ = 32nm, respectively. The low reflectitivity of the mirrors was used

in order to attenuate the FEL radiation so that the CCD camera is not destroyed. Further

attenuation is achieved by a gas absorber filled with N2 to ensure that the full dynamic range

of the 16 bit CCD is available. Due to the finite read-out time of the CCD a fast shutter

is used to separate individual FEL pulses. The initial repetition rate of 5 Hz is thereby

reduced to 0.5 Hz.

The partial beams are brought to an overlap directly on the chip of the CCD camera at a

distance of Ld = 20 m from the last mirror of the autocorrelator. This distance is required

to ensure that a sufficient number of pixels of the CCD camera are illuminated by one

interference fringe. The width d of the interference fringes observed is inversely proportional

to the angle α under which the partial beams overlap, according to

d =
λ

sinα
. (1)
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For a wavelength of λ = 8 nm and a typical angle of α = 70 µrad this yields a spacing of

FIG. 2: The experimental set-up: Behind the autocorrelator the partial beams are reflected back
by a multilayer mirror to overlap at a distance of 20 m on a x-ray CCD camera.

the interference fringes of d = 114 µm. The spatial resolution of the CCD camera amounts

to s = 13.5 µm per pixel. Thus even for short wavenlengths each interference fringe is sam-

pled by about 8 pixels. For the measurements of the spatial coherence the overlap angle

is increased up to 200 µrad yielding a fringe width of only 40 µm with about 3 pixels per

fringe. A decrease of the ratio between the width of the interference fringes d and the pixel

size s (sampling rate) causes a degradation of the measured visibility compared to the real

visibility by a factor k, which is defined by the modulation transfer function (MTF) of the

camera due to the pixel size. This factor has been calculated and used to correct the visi-

bility, see Fig 3.

For the measurement of the harmonic radiation a suppression of the intensity of the fun-

damental radiation is necessary. Therefore, a Zr filter (d=200 nm) with a transmission of

T=55% at λ=8 nm and T=0.02% at λ=24 nm was used. In order to detect interference

fringes from the fundamental and harmonic radiation simultaneously D-shaped filters are

applied, which block only part of the beam. Here again Zr is used to suppress the fundemen-

tal, while Al (d=400 nm, T=49% for λ=24nm and T= 3 ·10−3 % for λ=8nm) suppresses

the third harmonic radiation.

In the experiments presented here the electron bunches are accelerated by superconducting

cavities to 442MeV for SASE radiation at λ = 32 nm, to 511MeV for λ = 24 nm and up to

890MeV for λ = 8 nm radiation. For the SASE process the electron bunches are compressed

5



FIG. 3: Dependence of the modulation transfer function on the ratio between the fringe width d of
the interference pattern and the pixel size s of the CCD camera.

to a short spike with a peak current of I = (1-2.5) kA followed by a longer tail. Undulators

with an undulator period of λu=2.73 cm, a length of l= 27m, 989 elements, and an undu-

lator parameter of K=1.18 are installed. Other essential operating parameters of FLASH

can be found in [1, 17].

III. METHODS

A. Temporal coherence

Coherence is a property of electromagnetic waves with all partial waves in phase. This

property enables the waves to generate stationary interferences. A profound description of

the coherence properties of light is given in terms of statistical optics. Here the second-order

correlation functions play a prominent role, since for most practical cases of SASE FEL

radiation they sufficiently describe the statistical properties of the electromagnetic wave.

The mutual coherence function Γ(r1, r2, τ) describes the correlations of an electromagnetic

wave field E(r, t). It is defined by the correlation function of the wave field E(r, t) at two
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positions r1 and r2 at two different times t and (t + τ) [18]:

Γ(r1, r2, τ) = 〈E(r1, t)E∗(r2, t + τ)〉 (2)

For a fixed distance of two positions in the radiation field (r1 - r2) this expression simplifies

to the mutual time correlation function

Γ12(τ) = 〈E1(t)E∗2(t+ τ)〉. (3)

The absolut value of the normalised correlation function

|γ12(τ)| =

∣∣∣∣∣ Γ12(τ)√
Γ11(0)Γ22(0)

∣∣∣∣∣ (4)

can be measured via the visibility V of the interference fringes of two interfering partial

beams. This visibility is given by the maximum and adjacent minimum intensity of the

interference pattern

V =
Imax − Imin
Imax + Imin

= |γ12(τ)|{2
√
I1I2/(I1 + I2)}, (5)

where I1 and I2 are the intensities of the interfering partial beams and Imax and Imin are the

maximum and minimum intensities of the interference fringes. The coherence time τc can be

defined as the half width at half maximum [HWHM] of |γ12(τ)|. A more general definition

for an arbitrary function is given by the r.m.s value [18]

τc,rms =

∫ ∞
−∞
|γ12(τ)|2dτ. (6)
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For a Gaussian function this results in a coherence time of τc,rms ≈ 0.85 · τc.

B. Spatial coherence

The correlation properties between two different spatial points of an electromagnetic

wave at the fixed time delay τ are described in terms of the spatial coherence. The spatial

coherence can be measured by spatially overlapping these two points of the wave. The

intensity of the interfering partial beams at the detector is given as

I(xd, τ) = 〈|E1(xd, t) + E2(xd, t+ τ)|2〉 (7)

where xd is the position in the detector plane (see Fig. 4 b), and

E1(xd, t) = E01(xd, t) e
ikz, (8a)

E2(xd, t+ τ) = E02(xd, t+ τ) ei(kz+kαxd) (8b)

are the amplitudes from different partial beams. The additional phase, kαxd, accounts for

the slightly different angle of incidence of the second beam, see Fig. 2. This angle is given

as

α ≈ tanα =
D + ∆xd

Ld
, (9)

where ∆xd denotes the width of the beam overlap, D the separation of the two beams at

the exit of the autocorrelator, and Ld the distance between the autocorrelator and the CCD

camera. In fig. 4 the geometrical quantities discussed are illustrated. Figure 4 a) shows the

distance ∆xm of two points of the FEL beam on the splitting mirror of the autocorrelator.
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FIG. 4: (a) The beam at the splitting mirror and (b) at the detector with an overlap ∆xd. Due to
the propagation distance of Ld=20m the beam appears larger here.

The intensity on the detector is

I(xd, τ) = [I1(xd) + I2(xd)] (10)

+2
√
I1(xd)I2(xd) |γ12(xd, τ)| cos (kαxd + α12(xd, τ))

where I1,2(xd) = 〈E2
1,2(xd, t)〉, γ12(τ) is the complex degree of coherence (eqn. (4)) and

α12(xd, τ) is the phase of the complex degree of coherence. The first term accounts for the

intensities of the two partial beams which can be understood as a constant background. The

second term introduces a modulation via the cosine function. Since γ12(τ) decreases with

increasing time delay τ , this term vanishes for long delays. To determine the transverse

coherence of the FLASH pulses at the entrance of the autocorrelator the divergence of the

beam has to be taken into account. At the large distance from the undulator source of 70m

the beam size and the transverse coherence length are considered to change approximately

linearly with the propagation distance. The overlap of the two partial beams on the CCD
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camera, ∆xd (see fig. 4 b)), corresponds to a separation at the splitting mirror, ∆xm, via

∆xm =
Ls
L

∆xd, (11)

where L = Ls + LAC + Ld is the total distance between the source and the detector. Here

Ls denotes the distance between the source and the autocorrelator, LAC the length of the

autocorrelator, and Ld the already mentioned distance between the autocorrelator and the

detector. A measurement of the visibility at different overlap widths ∆xd corresponds to

double pinhole measurements with pinhole seperations of ∆xm. From eqn. (11) and

xm =
Ls
L
xd, (12)

the dimensions of the beam on the splitting mirror can be retrieved from the dimensions

measured on the CCD camera. In analogy to the coherence time of the light pulse the degree

of transverse coherence ζ is defined as [11, 19]

ζ =

∫ ∫
|γ(r1, r2)2|〈I(r1)〉〈I(r2)〉dr1dr2

(
∫
〈I(r)〉dr)2

. (13)

Instead of this transverse degree of coherence which is often referred to in theoretical dis-

cussions, here an experimentally easily accessible value for the transverse coherence is given

by the (rms) coherence length ξx,y in horizontal (x) and vertical (y) direction. This value is

determined by measuring the visibilities as a function of the spatial beam overlap ∆xd.

From the mutual coherence function Γ(r1, r2, τ) the cross spectral density W(r1, r2, ω) is

defined as

W (r1, r2, ω) =

∫ ∞
−∞

Γ(r1, r2, τ) eiωτdτ. (14)
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From this expression one can readily recognize that it forms a Fourier pair with the mutual

coherence function Γ(r1, r2, τ). The cross spectral density constitutes a measure between

the spectral amplitudes of any particular frequency component ω of the electromagnetic field

at the spatial points r1 and r2. When the cross spectral density W(r1, r2, ω) is evaluated

for one point r1 = r2 = r it equals the power spectrum S(r, ω) of the light. Analogous to

the mutual coherence function Γ(r1, r2, τ) also the cross spectral density W(r1, r2, ω) can

be normalised

µ(r1, r1, ω) =
W (r1, r2, ω)√

S(r1, ω)
√
S(r2, ω)

(15)

For a stationary field the cross spectral density W(r1, r2, ω) can be represented by a sum of

independent coherent modes [20]

W (r1, r2, ω) =
n∑
j=0

βjψ
∗
j (r1)ψj(r2), (16)

where βj and ψj are the eigenvalues and eigenfunctions of the Fredholm integral equation

∫
W (r1, r2)ψj(r1)dr1 = βjψj(r2). (17)

If the intensity distribution I(r) and the complex coherence factor |µ(∆x)| are both Gaussian,

the cross spectral density W(r1, r2, ω) can be represented by the well known Gauss-Hermite

polynoms. If the intensity profile and the complex coherence factor are not Gaussian, the

modes have to be found by solving the Fredholm integral equation (17) with the correspond-

ing cross spectral density and will differ from Gaussian-Hermite modes.
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IV. COHERENCE PROPERTIES OF SASE FEL RADIATION

A. Temporal coherence

FLASH is a free-electron laser based on self-amplified spontaneous emission (SASE FEL).

It emits coherent XUV radiation during a single pass of an electron bunch through a suffi-

ciently long undulator. According to FEL theory [7, 8, 10, 11, 21] the emission of spontaneous

undulator radiation is a stochastic process. As a consequence SASE FEL radiation, starting

from shot noise, has the properties of chaotic light [21]. The process of radiation emission

is initiated in the first part of the undulator by a density modulation of the electron bunch

with a period length close to the resonance wavelength λ of the undulator

λ = λu(1 +
K2

2
)/(2γ2). (18)

Here λu denotes the period of the undulator, K is the undulator parameter (at FLASH

the undulator parameter is K = 1.18) and γ = (1 − (v/c)2)−1/2 is the relativistic factor.

The oscillating electrons interact with the radiation produced by themselves. The electric

force of the lightwave causes an energy modulation and subsequently a longitudinal density

modulation in the electron bunch with a period similar to the resonance wavelength, thereby

inducing a micro-bunching of the electrons. The radiation emitted by individual micro-

bunches is phase-locked and therefore adds coherently, leading to a further enhancement

of the micro-bunching. Within this process, known as self-amplified spontaneous emission

(SASE), the intensity of the FEL pulse develops exponentially with the undulator length.

In the saturation regime almost all electrons within the coherence length Lc radiate in-phase

producing coherent radiation. The coherence length Lc is approximatively given by [23]

Lc ≈ λLg/λu, (19)
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where Lg is the gain length in the undulator

Lg = λu/(4πρ). (20)

Here ρ is the FEL parameter [7, 24, 25]

ρ =
1

2γ

[
I

IA

(
AJJKλu

2πσ⊥

)2
]1/3

. (21)

In this expression I describes the peak beam current, IA the Alfvén current and σ⊥ the

r.m.s transverse size of the electron bunch. The coupling factor is AJJ = 1 for a helical

undulator and AJJ = |J0(Q)−J1(Q)| for a planar undulator (AJJ = 0.84 at FLASH), where

Q = K2/[2(1+K2)] and J0 and J1 are Bessel functions of the first kind. At FLASH different

wavelengths are generated by tuning the energy of the electron bunch. Hence, for constant

peak current the FEL parameter ρ basically is inversely proportional to the relativistic factor

ρ ∝ γ−1, (22)

if the other parameters are assumed to be constant for different wavelengths. It should be

noted that the transverse beam size σ⊥ and the peak bunch current I are susceptible to

changes due to the daily optimization of the linear accelerator. However, assuming for a

moment constant values in these parameters, then together with eqns. (18), (19) and (20) a

non-linear dependence of the coherence length Lc on the wavelength λ of the FEL radiation

becomes evident:

Lc ∝ λ1/2 or τc ∝ λ1/2 (23)
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Due to its nature and thus arising from noise, the radiation of SASE FELs consists of

independently radiating transverse and longitudinal modes. In the time domain the radiation

is emitted in short spikes (temporal modes) with duration τc and with a random phase

relationship between the spikes [22]. Time domain and spectral domain of each sub-pulse

are related to each other via a Fourier transformation which leads to narrow spikes (spectral

modes) within the bandwidth of the undulator in the spectral domain, too. In the linear

autocorrelation experiments presented here these independent modes can interact with each

other at longer time delays as a cross correlation. This behaviour causes a slower decay of

the visibility at longer time delays. Hence, calculating the coherence time with eqn. (6) may

yield higher values compared to the HWHM of a Gaussian fit. For a flat-top electron bunch

with a time duration of Tbunch the number of longitudinal modes Ml can be estimated via

Ml =
Tbunch
τc

. (24)

However, in the experiments presented here FLASH was operated in the femtosecond mode,

where it can not be assumed that the bunch follows a flat-top time profile. Instead, the

electron bunch is compressed to a short spike with a peak current of I = 2.5 kA which is

followed by a longer tail [1]. Thus an estimation of the number of modes via eqn. (24) will

not be accurate.

B. Spatial coherence

One of the most outstanding features of SASE FELs is that a high degree of spatial

coherence can be achieved. According to 3-D FEL theory [8] a large number M of transverse

radiation modes is excited when the electron beam enters the undulator, because the fluctu-

ations of the current density in the electron bunch are uncorrelated not only in time but also

in space. Since these different modes have different spatial overlap with the electron beam,

the amplification they experience is different, too. Therefore the number of modes decreases

during the amplification process. As the fundamental mode has the best spatial overlap

with the electron beam the field amplitude is dominated by the fundamental mode, which
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theoretically contributes close to 99.9 % to the radiated power [26]. In the linear regime the

degree of transverse coherence (eqn. (13)) can be approximated by ζ = 1/M . Transverse co-

herence establishes quickly at an early stage of the amplification due to the transverse mode

selection. One could mistakenly deduce that the latter effect proceeds further at larger

distances z of amplification in the undulator and that the degree of transverse coherence

therefore should approach unity exponentially. But it was predicted that at larger values of

the undulator length the degree of transverse coherence approaches unity only asymptoti-

cally as (1− ζ) ∝ 1/z [8]. At this point, one should take a closer look at the spiky temporal

and spectral structure of the FEL pulses. In the high-gain linear regime the radiation of the

SASE FEL consists of spatial fundamental modes, however, at many different frequencies.

The transverse distributions of the radiation field of spatially fundamental modes are also

slightly different for different frequencies. As a result spatial interference of these longitudi-

nal modes can occur and full transverse coherence is not achieved during the SASE process.

To conclude, the interdependence between longitudinal coherence and transverse coherence

is possibly accountable for the fact that full transverse coherence is not achieved even after

completion of the mode selection process. When the fundamental mode reaches saturation

the higher modes are not yet saturaded. Since the amplification process still proceeds with

increasing undulator length, these modes can continue to grow. In consequence, the degree

of transverse coherence may remain then even theoretically below ζ = 0.9.

C. Temporal coherence of the odd harmonics

In SASE FEL employing a planar undulator spontaneous emission induces micro-

bunching at the fundamental resonance frequency of the undulator. Since the trajectory

of the particle motion is not strictly sinusoidal, the emitted radiation also contains higher

odd harmonics of the fundamental wavelength. The properties of the harmonic radiation

are described in [9]. For the fundamental harmonic the coherence time achieves its maxi-

mal value near the saturation point and then decreases. According to [9] the longitudinal

coherence of the higher harmonics evolves in three stages. First, the longitudinal coherence

increases linearly with the undulator length z. When the process of nonlinear harmonic

generation starts to dominate over spontaneous emission, the coherence time drops sharply.
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Before the amplification process reaches saturation at the end of the exponential regime

there is a plateau where the ratio of the longitudinal coherence of the nth harmonic to that

of the first harmonic scales with τc ∝ 1/
√
n. At saturation point the coherence time falls

inversely proportional to the harmonic order τc ∝ 1/n.

V. EXPERIMENTAL RESULTS

A. Temporal coherence

For the measurement of the temporal coherence both partial beams are overlapped only

in the center (∆xd = 0.9mm) and the temporal delay between the two pulses is scanned.

The temporal coherence of the FEL beam is investigated for λ=32nm, 24 nm, 13 nm and

8 nm. Figure 5 displays the observed visibility of the interference fringes (corrected for the

detector MTF) versus the delay between the partial beams, thus representing the temporal

coherence function of FLASH pulses at λ=24nm (Fig. 5a) and at λ=8 nm (Fig. 5b)

fundamental wavelengths. At each time delay the average of the visibility over ten individual

pulses is shown. Error bars give the standard deviation of this average. At zero delay the

visibility reaches an averaged maximum of V=0.89 at λ=24 nm fundamental wavelength,

and V=0.85 at λ=8 nm. Occasionally also complete modulation, i.e., V=1.0, is observed.

The reason why the visibility does not reach unity is an insufficient spatial coherence, see

below and discussion above. The average temporal coherence function of the pulses reveals

two different time scales. First the visibility rapidly decreases showing a Gaussian decay in

the central part. For time delays larger than 10 fs the decrease of the visibility slows down,

revealing a weaker correlation also for longer time scales. This behaviour is a consequence

of the multi-spike structure of the spectra of the FEL pulses which has been discussed

before and in reference [14]. The central part of the data is fitted with a Gaussian function

from which the coherence time can be extracted. For this central part coherence times

of τc = (6 ± 0.5) fs and τc = (2.9 ± 0.5) fs are observed for 24 nm and 8 nm radiation,

respectively. Corresponding values for other wavelengths are given in Table I. We also

give the rms coherence time, τc,rms, to account for the contributions at longer times. A
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FIG. 5: Visibility at 24 nm and 8 nm fundamental wavelength averaged over 10 individual pulses at
each time delay. The solid curve is a Gaussian fit. The insets show single pulse interference fringes
at zero delay with visiblities of V = 0.82 and V = 0.79, respectively.

monotonous decrease of coherence time from τc=6 fs at λ=32nm to τc=2.9 fs at λ=8nm

fundamental wavelength is observed. Similarily, the rms coherence time decreases from

τc,rms=9.2 fs to τc,rms=4.1 fs for the same wavelengths.

Figure 6 displays these results as function of the wavelength. Also shown in Figure 6 as

full line is the development of the coherence time according to eqn. (23). Assuming a gain

length of Lg = 1.4 m for FLASH radiating at 13 nm [1] the gain lengths and resulting

coherence times τc,rms for other wavelenths can be deduced. A good agreement between

the experimental data and this prediction is found. Further, recently observed coherence

times by Schlotter et al. [15] of τc,rms>8 fs at λ=33.2 nm and τc,rms=1.6 fs at λ=9.6 nm
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FIG. 6: Dependence of the coherence times on the wavelength. Red dots: present results for τc
(HWHM), red squares: rms value of the data, green triangles: measurements (rms) from reference
[15]. The line is fitted according to eqn. (23).

are shown for completeness. Also these data generally agree well with the results obtained

in this work. It should be mentioned that the data discussed in this work are averages

of the visibility of randomly selected FLASH pulses, operating in the femtosecond single

bunch mode. The deduced coherence times are based on the assumption of stable operating

conditions of FLASH over the course of data taking of about 1.5 h. Evidently a single shot

measurement of the temporal coherence could serve to enhance the understanding of the

SASE process even better.

B. Spatial coherence

The spatial coherence of the FLASH pulses was measured at λ=24nm and λ=8nm.

During all measurements a 3mm aperture was deployed 20m downstream from the undu-

lator exit, 50m in front of the autocorrelator. The time delay τ was set to zero for this

measurements. By increasing the spatial overlap of the two partial beams on the CCD cam-

era the distance between two points of the spatial beam profile interfering with each other is

increased, see fig. 4. Figure 7 shows the average visibility as a function of the overlap ∆xd

at the detector position and as a fraction of the beam size at the detector (upper scale).

Again averages of ten individual pulses at each overlap are displayed. The insets show typ-

ical individual interferograms at certain overlaps. The visibility decreases with increasing

18



FIG. 7: Spatial coherence at (a) 24 nm and (b) 8 nm fundamental wavelength. The insets show
typical single shot interference pattern at different overlaps. The solid line is a Gaussian fit.

∆xd as expected. The data are fitted well with a Gaussian function. At the detector the

visibility diminishes with a rms value of ξd = 3.0mm at λ=24nm (corresponding to a

HWHM of 3.52mm) and ξd = 2.7mm at λ=8nm fundamental wavelength (corresponding

to a HWHM of 3.2mm). Employing equation (12) this yields a transverse coherence length

(rms) at λ = 24 nm of ξin = 2.3mm (corresponding to a HWHM of 2.7mm) at the entrance
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FIG. 8: Simulations of the beam profile at the detector. (a) The beam transmitted through one arm
of the autocorrelator. (b) Zero overlap of two temporally and spatially coherent beams (γ12(τ) = 1).
(c) A 2 mm overlap of two temporally and spatially coherent beams (γ12(τ) = 1). (d) Zero overlap
of two temporally incoherent beams (γ12(τ) = 0).

of the autocorrelator. Here the beam size (rms) is σin = 2.5mm (corresponding to a FWHM

of 5.88mm).

The mentioned pinhole may cut higher modes and thus gives a higher degree of spatial co-

herence. Thus the values given here do not necessarily describe the coherence properties of

the source, but the coherence properties at the experimental station. Although assuming

simply a Gaussian propagation of the beam, from the beam diameter at the entrance of

the autocorrelator of σin = 2.5mm one deduces a beam diameter (1/e2) of 2.9mm at the

position of the 3mm pinhole. Fig. 8 shows simulations of the beam profile at the detector

taking into account both diffraction from the pinhole and from the edge of the beam split-

ting mirror. It is evident that the results of Fig. 8c resamble the experimental results best.

The experimental coherence data are analysed in the frame of the Gaussian Schell-model

(GSM) by means of the mode decomposition of the correlation function [16, 19] in order to

estimate the number of transverse modes contributing to the beam profile. The GSM is a

good approximation in our case, since the measured modulus of the degree of coherence is

well approximated by Gaussian functions (see Fig. (7)) and the intensity profile observed

in our measurement can also be considered as Gaussian (apart from the fringes due to edge

20



FIG. 9: a): The modulus of the complex coherence factor |µ(∆x)| at the entrance of the autocor-
relator for FLASH pulses at λ = 24 nm (solid line, lower abscissa). The dashed line represents the
intensity distribution I(x) (upper abscissa). The inset shows the ratio βj/β0 of the eigenvalue βj
to the lowest order eigenvalue β0 as a function of the mode number j. b) The contribution of the
transverse modes to the complex coherence factor |µ(∆xm)|.

scattering at the split mirror of the autocorrelator) . The modulus of the degree of coherence

|µ(∆x)| and the corresponding intensity profile of the FLASH pulse at the entrance of the

autocorrelator are shown in Fig. 9a as a function of the spatial beam overlap ∆xm. The

contribution βj of different modes ψj to the total radiated intensity is shown in Fig. 9b in

a logarithmic scale. Evidently six modes with contributions of greater than 1% have to be

considered. It is seen in Fig. 9 that these six modes sufficiently describe also the coherence

properties of the FLASH pulses. It might now be conceived that this result significantly

differs from the theoretical expectation of approximately 1-2 modes contributing to the radi-

ation at the end of the linear regime in the undulator. However, one has to recognize that in

the saturation regime the degree of transverse coherence decreases again due to the fact that

higher modes continue to grow and catch up in intensity. Furthermore, in the theoretical
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description idealized assumptions have to be made, e.g., the transverse distribution of the

electron beam current is assumed to be Gaussian [8, 26]. The description of the beam by

the GSM is an approximation that can be applied to calculate the propagation of the beam.

It does not give information about the generation of the FEL pulse in the SASE process.

C. Coherence properties of the third harmonic

In addition to the measurements at fundamental wavelengths the temporal and spatial

coherence at λ= 8 nm as third harmonic of λ= 24 nm was investigated. Figure 10 shows

the visibility averaged over ten single pulses as a function of the delay between the partial

beams. A maximum averaged visibility of V = 0.55 is observed, with individual pulses

reaching up to V = 0.71. The inset shows a typical interferogram at ∆τ = 0 fs with V =

0.71. The data shows a coherence time of τc= (2.4 ± 0.5) fs (HWHM), as compared to τc

= (6 ± 0.5 ) fs for the fundamental at λ = 24 nm. For the rms temporal coherence a value

of τc,rms = (3.7 ± 0.5) fs is deduced. In comparison, for 8 nm fundamental wavelength a

slightly higher coherence time of τc = (2.9±0.5) fs is found. This result is in good agreement

FIG. 10: Visibility as a function of pulse delay for λ = 8 nm as the third harmonic of 24 nm
fundamental wavelength. The inset shows interference fringes at zero delay with V = 0.71. A
coherence time of τc = 2.4 fs is obtained in this case. The solid line is a Gaussian fit.

with estimations from FEL theory [9], which states that at saturation point the temporal

coherence should scale with 1/n, where n is the harmonic number. Before saturation, in
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the exponential gain regime, the coherence time scales with 1/
√
n. Figure 11 shows for the

third harmonic the averaged visibility as a function of the spatial beam overlap ∆xd at the

detector, or as a fraction of the beam profile. The visibility decreases with increasing ∆xd

as expected. A Gaussian fit to the visibility reveals a transverse coherence length (rms) of

ξd = 2.3 mm. The absolute value of the visibility is slightly reduced due to the circumstance

that this measurement was taken at τ = 2 fs instead of τ = 0 fs.

Employing special filters which transmit in the upper part the fundamental and in the lower

FIG. 11: Spatial coherence of the third harmonic at λ = 8 nm.

part the 3rd harmonic radiation allows to measure the visibility for both simultaneously and

therefore to investigate correlations between both for the same pulse and thus the same

electron bunch. In the present case this is achieved by a combination of Zr and Al filters,

which separate the 8 nm 3rd harmonic and the 24 nm fundamental. Figure 12 shows in

the inset such a typical recording. In this case the visibility of the fundamental amounts

to V(24 nm) = 0.78 and that of the 3rd harmonic to V(8 nm) = 0.33. The spatial overlap

was set to ∆xd=2.5mm, which corresponds to 42% of the beam diameter for the third

harmonic and 33% for the fundamental, respectively. The main diagram in Fig. 12 shows

the correlation of the visibilities between the fundamental and the third harmonic pulses.

Two different delays between the partial beams of τ = -1.5 fs (red dots) and τ =+2.5 fs (green

dots) have been tested. While the visiblity of the fundamental varies only from V=0.6 to

0.85, that of the 3rd harmonic shows values between V=0.075 and V=0.375. Remarkebly,

data points towards the upper end in both visibilities represent FLASH pulses which show
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FIG. 12: Correlation between 24 nm fundamental wavelength and the third harmonic radiation.
The inset shows interference fringes simultanously measured for 24 nm (upper) and 8 nm (lower)
by means of Al/Zr filters. Green dots are taken a ∆t = +2.5 fs, red dots at ∆t =−1.5 fs.

nearly a perfect spatial coherence with only a few modes contributing. At the lower end

of the visibilities significantly more modes are present resulting in a suppressed coherence

for the third harmonic. It should be noted that the recorded visibilities are susceptible

also to fluctuations of the temporal coherence, since these experiments were performed at

finite delays. Because the average temporal coherence of the fundamental with τc=6 fs is

significantly longer than that of the harmonic (τc=2.4 fs), this results in larger visibility

fluctuations for the third harmonic. Therefore, these correlations will be the subject of

further investigations.

VI. CONCLUSION

In this paper a detailed study of the coherence properties of free electron laser radiation

at FLASH lasing at different wavelengths from λ = 32 nm down to λ = 8 nm is presented.

A monotonous decrease of coherence time from τc = 6 fs at λ = 32 nm to τc = 2.9 fs at

λ = 8 nm fundamental wavelength is measured. The temporal coherence is found to scale

with λ1/2 which is in good agreement with FEL theory. A transverse coherence length for

λ = 24 nm of 2.3 mm (rms) at the entrance of the autocorrelator is observed, where the

beam size is 2.5 mm (rms). For the spatial coherence a Gaussian mode decomposition is

performed showing that the transverse coherence properties can sufficiently be described by
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six modes contributing to the radiation field, where the first three modes contribute more

than 90 % to the radiated intensity. Furthermore, the correlation of the visibility between

the fundamental radiation at 24 nm and its third harmonic at 8 nm is investigated for

identical shots. While the visibility of the fundamental varies only from V = 0.6 to 0.85,

that of the 3rd harmonic shows values between V = 0.075 and V = 0.375.
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TABLE I: The coherence time τc at different wavelength.
τc is given as the HWHM of the Gaussian functions shown in Fig. 5; τc,rms is calculated with
eqn.(6).

Wavelength Pulse energy [µJ] τc [fs] τc,rms[fs]
32 nm fund. 25 6 ± 0.5 9.2 ± 0.5
24 nm fund. 25 - 30 6 ± 0.5 7.7 ± 0.5
13 nm fund. 34 - 42 4.5 ± 1 6.8 ± 1
8 nm fund. 3 2.9 ± 0.5 4.1 ± 0.5
8 nm 3rd 0.16 - 0.19 2.4 ± 0.5 3.6 ± 0.5

TABLE II: The transverse coherence at different wavelength. Measured HWHM and rms values of
ξd at the detector position.

Wavelength ξd [mm](rms) ξd [mm] (HWHM)
24 nm fund. 3.0 3.52
8 nm fund. 2.7 3.2
8 nm 3rd 2.3 2.7
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VIII. FIGURE CAPTIONS

Fig. 1: Scheme of the autocorrelator. (a) The FEL pulse is divided by the wavefront

beam splitter. One partial beam is reflected horizontally into a fixed arm of the autocorrela-

tor, the other partial beam passes the beam splitter and is vertically reflected into the delay

stage. With the last mirror the beams are recombined. Different overlap angles on a CCD

camera can be set by rotating the last mirror.(b) The reflectivity of a carbon coated silicon

mirror is shown as a function of photon energy (green line). The dashed lines represent the

total transmission of the fixed (dark blue) and the variable delay arm (light blue).

Fig. 2: The experimental set-up: Behind the autocorrelator the partial beams are

reflected back by a multilayer mirror to overlap at a distance of 20 m on a x-ray CCD

camera.

Fig. 3: Dependence of the modulation transfer function on the ratio between the

period length d of the interference pattern and the pixel size s of the CCD camera.

Fig. 4: (a) The beam at the splitting mirror and (b) at the detector with an over-

lap ∆xd.

Fig. 5: Visibility at 24 nm and 8 nm fundamental wavelength averaged over 10 in-

dividual pulses at each time delay. The solid curve is a Gaussian fit. The insets show single

pulse interference fringes at zero delay with visiblities of V = 0.82 and V = 0.79, respectively.

Fig. 6: Dependence of the coherence times on the wavelength. Red dots: present

results for τc (HWHM), red squares: rms value of the data, green triangles: measurements

(rms) from reference [15]. The line is fitted according to eqn. (23).

Fig. 7: Spatial coherence at (a) 24 nm and (b) 8 nm fundamental wavelength. The

insets show typical single shot interference pattern at different overlaps. The solid line is a

Gaussian fit.
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Fig. 8 Simulations of the beam profile at the detector. (a) The beam transmitted

through one arm of the autocorrelator. (b) Zero overlap of two temporally and spatially

coherent beams (γ12(τ) = 1). (c) A 2 mm overlap of two temporally and spatially coherent

beams (γ12(τ) = 1). (d) Zero overlap of two temporally incoherent beams (γ12(τ) = 0).

Fig. 9 a): The modulus of the complex coherence factor |µ(∆x)| at the entrance

of the autocorrelator for FLASH pulses at λ = 24 nm (solid line, lower abscissa). The

dashed line represents the intensity distribution I(x) (upper abscissa). The inset shows the

ratio βj/β0 of the eigenvalue βj to the lowest order eigenvalue β0 as a function of the mode

number j. b) The contribution of the transverse modes to the complex coherence factor

|µ(∆xm)|.

Fig. 10: Visibility as a function of pulse delay for λ = 8 nm as the third harmonic

of 24 nm fundamental wavelength. The inset shows interference fringes at zero delay with

V = 0.71. Coherence time τc = 2.4 fs. The solid line is a Gaussian fit.

Fig. 11: Spatial coherence of the third harmonic at λ = 8 nm.

Fig. 12: Correlation between 24 nm fundamental wavelength and the third har-

monic radiation. The inset shows interference fringes simultanously measured for 24 nm

(upper) and 8 nm (lower) by means of Al/Zr filters. Green dots are taken a ∆t =+2.5 fs,

red dots at ∆t = -1.5 fs.
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