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Abstract. The basic process at the surface of the Si electrode is characterized by a cyclic 

oxidation of a thin silicon layer and the subsequent removal of the oxide by etching. Here, the 

oxide thickness evolves not uniformly due to cracks and nanopores. The mathematical model 

used to describe the phenomenon is based on a sequence of time dependent (oxide thickness) 

oscillator density functions that describes the passing of the (infinitesimal) oscillators through 

their minimum at each cycle. Two consecutive oscillator density functions are connected by a 

second order linear integral equation representing a Markov process. The kernel of the integral 

equation is a normalized Greens Function and represents the probability distribution for the 

periods of the oscillators during a cycle. Both, the oscillator density function and the two-

dimensional probability density for the periods of the oscillators, define a random walk. A 

relation between the oscillator density functions and solutions of the Fokker-Planck equation 

can be constructed. This allows a connection of the oscillations, originally considered only for 

the description of a photo-electrochemical observation, to the Schrödinger equation. In 

addition, if the trajectory of a virtual particle, located at the silicon oxide electrode surface, is 

considered during one oscillatory cycle, then it can be shown that the displacement of the 

particle measured at the electrode surface performs a Brownian motion. 

1. Introduction 

Oscillation phenomena of silicon electrodes in electrochemical systems have been known for a long 

time [1]. In photo-electrochemistry and electrochemistry, oscillatory behaviour has been extensively 

studied on Si photo-electrodes [2]. Various models for the oscillation phenomena were discussed 

based on self-oscillating domains [3], the so-called current bursts [4], and oxide-induced interfacial 

stress [5] where the latter model explains sustained current oscillations with the existence of two types 

of oxides with different nanopore densities. The observation of nano-dimensioned pores, fluctuating 

with the phase of the oscillating (photo) current of Si electrodes immersed in dilute ammonium 

fluoride solutions motivated the further development [6-8] of the original stress model, also to spatial 

resolution, by applying cellular automates [7]. If the model is presented by a special phase space 

analysis based on the holographic principle [9-10], then an analogy between the spectral energy 

densities of the black body radiation and that obtained from the model for current oscillations can be 

shown [10]. We first describe (section 2) the mathematics of the model and the relation to the Fokker-

Planck and Schrödinger equation. The Brownian motion of a virtual particle, which position is defined 

by an infinitesimal point located at the silicon surface, is discussed in section 3. 
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2. Mathematical model and the Fokker-Planck equation 

The basic process at the electrode surface domain 2R  is characterised by a cyclic oxidation of a 

small silicon layer and the following removal of the oxide by etching (figure 1). Lattice mismatch 

between silicon and its oxide leads to stress, cracks, and nanopores resulting in a not uniformly 

evolution of the oxide thickness. The oxide thickness ),,( yxtd  is considered at a fixed point (x,y) at 

the electrode surface in dependence on the time t. Here the phase ),,( yxt   propagates nonlinearly 

 

 

Figure 1. Schematic representation of the oxide thickness evolution at a fixed point (x,y) at the 

electrode surface (left) and the corresponding oxide thickness oscillator and phase (right). 

 

and monotonically increasing for  2)1(),,(2  iyxti , ,...2,1,0i . The so called phase oscillator 

  is discretized by using the holographic principle [9-10]. Therefore the oxide thickness is registered 

periodically only once during one cycle. In the phase space },),(|),,{(  Ryxyx   that 

corresponds to a registration of the phase   at the so-called snap-shot (holographic) screens 

}),(|)2,,{(  yxiyxSi   for ,...2,1,0i . The result is the time dependent oscillator density 

function )(tpi
  [9] defining the differential number of phase oscillators   passing 

iS  at the time t at 

the i-th time.  Here the fixed parameter   )20(    determines the position of the 
iS  in the phase 

space. For instance, 0  )(   ) corresponds to the registration of the oxide thickness at its 

minimum  mind  )( maxd   at the times ),( yxti , ,...2,1,0i (figure 1 right) . Assuming that all oscillators 

  pass 
iS during the time interval ],[ max

,
min
,  ii tt  at the i-th cycle, then two consecutive oscillator density 

functions are connected by a Markov process represented by a linear integral equation (figure 2 left) 
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The kernel )(, stq si   of the integral equation is a normalized Greens Function [8] and represents the 

probability density for the periods st   of the oscillators in dependence on the starting times s of the 

oscillators during the i-th cycle. Both together, the oscillator density function )(spi
  and the two-

dimensional probability density )(, stq si   for the periods of the oscillators, define a random walk 

[10]. By equation (1), a temporal evolution of the probability density function )(tpi
  is given (figure 2 

right). Moreover, this probability density function is also a solution of the Fokker-Planck equation [11] 
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Figure 2. A sketch related to the integral equation (1) (left) and the evolution of the probability 

density function )(1 tpi

  shown for  20 3210   (right). 

 

with time-independent drift coefficient )(A  and diffusion coefficient )(B . In this case the 

Fokker-Plank equation can be transformed to the Schrödinger equation [11]. 

3. Brownian motion of a virtual particle 

In the following the trajectory of a virtual particle located at the silicon oxide electrode surface is 

considered during one oscillatory cycle. The trajectory is determined (figure 3 left) using the 

microscopic nanopore model [5, 9] at which in dependence on the starting time s the evolution of a 

nanopore as the mean of the evolution of real nanopores during one cycle is regarded. For simplicity, 

we set 0min d , 0  and can omit   in the corresponding notations. In the case of sustained 

oscillations we choose for q a normalized Greens Function [8, 10] (figure 2 left) i.e. 
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for ],[ max
1

min
1  ii tts , min

1
max

1   ii ttL  and T  denotes the macroscopic oscillation period. Based on the 

oxide etching process [7], for a fixed  ],[ max
1

min
1  ii tts  and ],[ minmax

ii ttt  the hyperbolic oxide surface 

)(, rd st  and the always perpendicularly crossing hyperbolic particle trajectory )(, rd st
  are defined by 

 

       max1
, ))(1()( drtrrd sst

        for all r with sis rrtr ,)(                                                            (4) 

and 
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Here 2/12max2 ))()(()( dtrtr ss   for sis rtrd ,
max )(   and 0)( trs  for max)(0 dtrs   determine the 

radius of the starting point of the particle at the oxide surface. 2/1

0
,, ))(()(  dsqrtr

t

sisis    defines 

the radius of the end point of the particle at the bottom of the nanopore where the oxide is removed at 

the time t and )))()((1()( 2/11min
1

max
1

min
1minmaxmin,


  iiisi tttsrrrr  reflects the decreasing of the 

(half) nanopore distance towards the end of the cycle [9]. Hence, the displacement r  of a particle is 

defined by 
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Figure 3. For a fixed oxide growth starting time s of a nanopore, the trajectory (blue line) of a virtual 

particle crosses the t-dependent oxide surfaces (red lines) always perpendicularly. Here, the oxide is 

etched away and hence the oxide surface decreases during the time t (left). The probability density for 

the displacement r  of a virtual particle shows a Lévy like distribution (right). 

 

Finally, using the nanopore model the probability density w for a displacement r  of a particle 

located anywhere at the oxide surface during a cycle is given by 
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Here, for a fixed r , the path of integration is given by the contour lines of rtrs  )(  for 

max
1

min
1   ii tst , maxmin

ii ttt   and c is a normalization factor. Figure 3 right shows the probability 

density for a particle displacement for sTL 30 , nmd 10max  , nmr 20min  , and nmr 60max  .  

4. Conclusions and Outlook 

The mathematical concept of the discretization of phase oscillators is based on the holographic 

principle and leads to a linear integral equation representing a Markov process and a random walk. 

The solution of the integral equation is an oscillator density function whose relation to the Fokker-

Planck equation and hence to the Schrödinger equation is shown. Further, a virtual particle located at 

the silicon oxide surface at the electrode performs a Brownian motion during one cycle. In summary, 

the model shows analogies to quantum mechanics. Because of the link to the Schrödinger equation and 

to particle trajectories, the relation to the Bohmian Mechanics [12] should be investigated in future. 
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