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Hetero-type dual photoanodes for unbiased solar
water splitting with extended light harvesting
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Metal oxide semiconductors are promising photoelectrode materials for solar water splitting

due to their robustness in aqueous solutions and low cost. Yet, their solar-to-hydrogen

conversion efficiencies are still not high enough for practical applications. Here we present a

strategy to enhance the efficiency of metal oxides, hetero-type dual photoelectrodes, in which

two photoanodes of different bandgaps are connected in parallel for extended light

harvesting. Thus, a photoelectrochemical device made of modified BiVO4 and a-Fe2O3 as

dual photoanodes utilizes visible light up to 610 nm for water splitting, and shows stable

photocurrents of 7.0±0.2 mA cm� 2 at 1.23 VRHE under 1 sun irradiation. A tandem cell

composed with the dual photoanodes–silicon solar cell demonstrates unbiased water splitting

efficiency of 7.7%. These results and concept represent a significant step forward en route to

the goal of 410% efficiency required for practical solar hydrogen production.
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T
he first requirement for efficient conversion of photons to
electrons using a semiconductor is its proper bandgap (Eg).
Photons with energy smaller than Eg pass through the

semiconductor without being absorbed (non-absorption loss),
while photons with energy in excess of Eg lose a part of their
energy by emitting phonons (that is, lattice vibrations and heat)
on absorption (thermalization losses)1. These two fundamental
losses could be minimized by a multi-junction approach as
proven in photovoltaics. Thus, a large Eg semiconductor absorbs
first the high-energy photons of the solar spectrum, and a small
Eg semiconductor placed behind it utilizes the low-energy
photons that transmit through the first absorber. As a result,
the theoretical efficiency of a multi-junction solar cell can reach
68%, breaking the Shockley–Queisser limit of 31% for a single
junction solar cell1,2.

We attempt to apply this concept to solar water splitting by
combining two well-established metal oxide photoanodes, BiVO4

and Fe2O3. Virtues of these metal oxide semiconductors are good
stability in aqueous solutions3–6, low-cost and easy solution-based
processing7. However, BiVO4 could use only photons of
lo510 nm due to its rather large Eg (direct B2.6 eV and
indirect B2.4 eV)5,8–14. In contrast, Fe2O3 has a nearly ideal Eg of
B2.0 eV, and can utilize the longer-wavelength (o620 nm)
photons. Yet, its solar-to-hydrogen conversion efficiencies (ZSTH)
of photoelectrochemical (PEC) water splitting remains modest
because of its notoriously poor electrical properties15–18. Hence,
by combining these two semiconductors, different parts of the
solar spectrum could be utilized. The common way to utilize
different Eg’s for efficient light harvesting is to form a
heterojunction12,19,20. Unfortunately, when BiVO4 and Fe2O3

are combined to form a bilayer-type heterojunction, this
composite photoanode shows an inferior PEC water oxidation
performance relative to either of the single-component
photoanodes as demonstrated in Supplementary Fig. 1. The
ineffective BiVO4/Fe2O3 heterojunction originates from their
straddling (type I) band alignment instead of a desired staggering
(type II) type, which prevents the holes generated in Fe2O3 from
transferring to BiVO4, and thus is not suitable for effective charge
separation.

To enhance the light harvesting in two semiconductors of
different Eg’s, here we introduce a concept of ‘hetero-type
dual photoelectrode (HDP)’ containing two independent
liquid–semiconductor junctions as presented in Fig. 1. By using
the large Eg semiconductor as the top absorber and the small
Eg semiconductor at the bottom, both thermalization and
non-absorption losses could be minimized. The advantage of
our HDP concept is that current-matching of the two electrodes
is not required unlike multi-junction solar cells9 and

heterojunction photoelectrodes. Thus, we can independently
optimize each photoelectrode, and the performance of the HDP
device becomes the simple sum of the individual performance of
the two. As a result, the spectral range of light harvesting in the
solar spectrum utilized for PEC water splitting is extended.

We note that the HDP concept is analogous to a natural
photosynthesis by seaweeds (or marine algae). They develop
varying colours depending on the depth of the sea that they
inhabit due to the availability of different photons at different
depths in the sea—red light can reach only shallow depths
because of its low photon energy (l4600 nm) while blue light
(lo420 nm) can penetrate deeper. Adapting to the availability of
photons of varying wavelengths, the seaweed colony is capable of
selective light utilization for photosynthesis by varying their
habitat depth from green (Chlorophyta), yellow (Phaeophyceae)
and then to red (Rhodophyta) as one goes deeper into the sea21.
Instead of developing an ‘ideal’ single-light absorber that can
handle all range of photons, the seaweeds develop smart
‘wavelength-optimized’ light absorbers for sequential light
utilization. Such resemblance is rather interesting, as the other
commonly used light utilization scheme—so called tandem cell
also resembles PSII/PSI of natural photosynthesis in using
multiple light absorbers.

Here we implement the concept of the HDP using BiVO4 as
the front and a-Fe2O3 as the back photoanodes for PEC water
splitting. To extract the best possible performance of the single
photoanodes, we need bulk and surface modifications by doping
and co-catalyst, respectively, to improve the charge separation/
transfer properties of these semiconductors. As a result, a PEC
device made of modified BiVO4 and a-Fe2O3 as dual photo-
anodes shows stable photocurrents of 7.0±0.2 mA cm� 2 at
1.23 VRHE under 1 sun irradiation utilizing visible light up to
610 nm. A tandem cell composed of HDP–silicon solar cell
demonstrates unbiased water splitting efficiency of 7.7%.

Results
Fabrication of photoanodes and their PEC properties. The base
BiVO4 electrode was fabricated by a metal-organic deposition
method. Then, 1 at% (optimized) Mo doping and partial
reduction treatment were performed to increase mainly the bulk
charge separation efficiency as reported in our recent work8. The
reduction treatment via a borohydride decomposition method
induced Vo.. defects that effectively increase the charge carrier
density in BiVO4 lattice. Hence, the partial reduction and
extrinsic Mo doping treatments synergistically improve the
n-type conductivity of BiVO4. The other photoanode, haematite
Fe2O3, was synthesized by a nitrate decomposition method. This
photoanode was doped with 0.5 at% (optimized) Ti, and also
partially reduced by the borohydride decomposition. As shown
by scanning electron microscopy (SEM) images in Supplementary
Figs 2 and 3, BiVO4 and Fe2O3 have nanoporous, well-connected
and non-isotropic morphologies with typical feature sizes of
B50 and B10 nm, respectively. Finally, co-catalysts of NiOOH/
FeOOH and Ni2FeOx with a thin TiO2 overlayer were deposited
on the surface of BiVO4 and haematite, respectively, to improve
the charge carrier injection efficiency to the electrolyte. The SEM
images in Supplementary Figs 2 and 3 show that the co-catalyst
nanoparticles are well dispersed on each semiconductor surface.
The X-ray diffraction crystal structures of the photoanode films
are standard monoclinic BiVO4 and haematite a-Fe2O3 as shown
in Supplementary Fig. 4. The X-ray photoemission spectroscopy
(XPS) spectra in Supplementary Fig. 5 show binding energies at
typically expected positions for BiVO4 and Fe2O3. See the
Methods section and Supplementary Discussion for detailed
procedures and discussion for synthesis, optimization and
characterization of the two modified photoanodes.
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Figure 1 | Wavelength-selective solar light absorption by hetero-type

dual photoanode. HDP made with different bandgap materials (for

example, BiVO4 and Fe2O3).
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The bulk-modified films were tested first as photoanodes for
PEC oxidation of a sacrificial sulphite (SO3

2� ) solution in a
standard three-electrode PEC cell to evaluate their light
absorption capability and bulk charge separation efficiency
(Zbulk). As shown in Supplementary Fig. 6, doping with Mo
(or Ti) combined with reduction treatment greatly increases the
photocurrent and Zbulk. For BiVO4, reduced 1% Mo:BiVO4 shows
Zbulk B 90% at 1.23 VRHE, which is comparable to the reported
state-of-the-art BiVO4 photoanodes6,8,22. Doping and partial
reduction treatments are also found to reduce the photocurrent
gap between front and back illumination, indicating improved
bulk electron transport8,23. The same tendency was also observed
for Fe2O3, although the highest Zbulk was only 41% at 1.23 VRHE.
The incident photon to current efficiency (IPCE) values of bare
haematite above 400 nm in Supplementary Fig. 7 are relatively
low as they originate from an inefficient indirect d–d transition of
Fe3þ (ref. 18). But the Ti doping and reduction treatments are
especially effective in increasing the IPCE of the indirect
transition near the absorption edge. As demonstrated by the
Mott–Schottky (MS) plots in Supplementary Fig. 8, the main
effect of the doping and reduction treatments is to increase the
charge carrier density of BiVO4 and Fe2O3, and thereby to
improve their bulk charge transfer properties.

Using these two optimized photoanodes, a HDP denoted as
BiVO4||Fe2O3 was fabricated by placing the haematite electrode
(H, TiO2/0.5% Ti:Fe2O3) behind the BiVO4 electrode (H, 1%
Mo:BiVO4) in parallel connection as depicted in Figs 1 and 2a.
As shown in Fig. 2b, the fabricated BiVO4, Fe2O3 and
BiVO4||Fe2O3 electrodes are all highly transparent with a
transmittance of 75% at 550 nm for BiVO4, 70% at 650 nm for
haematite and 50% at 650 nm for the HDP (Fig. 2f and
Supplementary Fig. 9). Hence, B50% of the incident light
remains available for the third absorber (double c-Si) placed
behind the HDP, which is needed to generate sufficient bias
photovoltage to split water spontaneously as described below.

The PEC performance of the photoanodes (without
co-catalysts) was investigated first in a three-electrode configura-
tion (with Pt counter electrode) under AM1.5 illumination. An
aqueous solution containing a sacrificial agent (0.5 KPiþ 0.5 M
Na2SO3) was used as an electrolyte. Since the photo-oxidation of
sulphite is so facile, the hole injection efficiency (Zsurface) is
essentially 100%. Hence, we can compare bulk photoactivities of
the photoanodes by these measurements while avoiding any
complications of the hole injection at the semiconductor–
electrolyte interfaces. As shown in Fig. 2c, photocurrents of
5.0±0.2, 4.5±0.2, 2.2±0.1 and 7.1±0.2 mA cm� 2 at 1.23 VRHE

were obtained for BiVO4, Fe2O3, Fe2O3 behind BiVO4 (with no
BiVO4 contribution), and BiVO4||Fe2O3, respectively. These
photocurrents are optimized values by adjusting the thickness
of BiVO4 and Fe2O3, which can be easily regulated by changing
the quantity of precursor solution. (See Fig. 2d, Supplementary
Figs 10 and 11 and Methods part for details).

Overall, the HDP shows an increased photocurrent by B29.3%
from that of a single BiVO4 photoanode. Its photocurrent is
almost the same as the sum of photocurrents generated by BiVO4

and Fe2O3 behind BiVO4, indicating that the HDP concept is
indeed operating. It is also noteworthy that the onset potential of
the BiVO4||Fe2O3 combination is B0.2 VRHE, which is the same
as that of BiVO4 alone and far lower than that of a single
haematite photoanode (B0.4 VRHE).

The IPCE of BiVO4 in Fig. 2e is significantly higher than that
of haematite in the range of 300–450 nm, justifying BiVO4 as the
first absorber. The IPCE of the HDP further increases up to
B95% in this region due to the additional photocurrent
generated from haematite using the transmitted light through
the BiVO4 electrode. In the range of 450–510 nm, IPCE of BiVO4

drops sharply due to the reduced light-harvesting efficiency close
to its absorption threshold and indirect band transition (direct:
B2.6 eV; indirect: B2.4 eV)14. This is an important reason why
the theoretical maximum photocurrent (7.5 mA cm� 2) of BiVO4

is very difficult to achieve with a single BiVO4 absorber. However,
haematite can utilize the transmitted light in this region efficiently
as an additional absorber. In the region of 510–610 nm, only
haematite contributes to the overall performance of HDP. Even
though the IPCE values in this region drop below 20%, the effect
is very significant since more than 50% of the solar energy
exploitable by a photoelectrode lies in this region. The theoretical
maximum photocurrent of Fe2O3 is B13.6 mA� 2, and nearly a
half of it comes from photons with 500–620 nm range24. Thus,
this region has to be exploited to further improve the
performance of HDP.

PEC water splitting with an external bias. The performance of
the photoanodes is now studied for water oxidation under 1 sun
illumination in a three-electrode PEC cell without any sacrificial
agent. When used as a single photoanode, electrolytes of pH 7
and 412 are optimal for BiVO4 and Fe2O3, respectively, for their
high activity and stability. Hence, the first important task to apply
the HDP for PEC water splitting is to find an optimum electrolyte
suitable for both BiVO4 and Fe2O3. In a screening test sum-
marized in Supplementary Figs 12 and 14, we found that pH 9.2
(1.0 M bicarbonate KCi solution) was a good compromise for the
two semiconductors and selected co-catalysts. Next step is to find
the best co-catalysts to promote the PEC water oxidation activity
and stability by accelerating the hole injection to the electrolyte to
avoid surface charge recombination, and to protect the semi-
conductor from photochemical corrosion. Thus, the co-catalyst
selection process shown in Supplementary Figs 12–14 and
described in the Supplementary Information yielded NiOOH/
FeOOH for BiVO4 and Ni2FeOx/TiO2 for Fe2O3 as the best
oxygen evolution co-catalysts. In particular, the thin TiO2 layer
deposited on the surface of Fe2O3 passivates the surface states of
haematite (Supplementary Fig. 13) that cause undesired electron–
hole recombination and potential drop within the Helmholtz
layer25. Hence, the treatment not only improves photocurrent
generation but also brings a negative shift of the onset potential
and a greater photovoltage from the electrode.

The water oxidation photocurrents of completed BiVO4, Fe2O3

and Fe2O3 behind BiVO4 photoanodes were 5.0±0.1,
4.0±0.2 and 2.0±0.1 mA cm� 2 at 1.23 VRHE, respectively. The
BiVO4||Fe2O3 HDP photoanode recorded stable photocurrents of
7.0±0.2 and 8.0±0.2 mA cm� 2 at 1.23 VRHE and 1.5 VRHE,
respectively. This PEC performance represents the highest ever
reported for stable metal oxide photoelectrodes to the best of our
knowledge. The benchmarking results against other studies are
presented in Supplementary Table 1, in which it can be seen that
not only HDP but also the individual BiVO4 and Fe2O3

photoanodes are among the top performers within their classes.
The performance was highly reproducible as demonstrated in
Supplementary Fig. 15 and most of the photocurrents came from
water splitting to 2H2þO2 gases with almost complete faradaic
efficiency (Fig. 3d). The HDP utilized visible light up to 610 nm
for water splitting as shown by action spectra in Fig. 3e–g. The
photocurrents and IPCEs for water oxidation show similar values
to those in Fig. 2 for sacrificial sulphite oxidation, indicating
that used co-catalysts are highly effective, with hole injection
efficiencies (Zsurface) of 89–100%.

Unbiased solar water-splitting tandem cell. Eventually, the
developed HDP must be successfully applied to a practical solar
water splitting system that operates without external energy
supply. Thus, unbiased solar water splitting was demonstrated
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with a tandem cell fabricated by integrating a thin film Si solar
cell behind the HDP BiVO4||Fe2O3 photoanode as schematically
shown in Fig. 4a. We also fabricated monolithic version of the
tandem cell (artificial leaf) that could perform overall water
splitting (Fig. 4b, Supplementary Fig. 16 and Supplementary
Movies 1 and 2 operating under simulated and actual outdoor
sun illumination). The monolithic device possesses simplicity and
versatility for small scale or mobile applications24. By using a
series-connected two parallel (2p) c-Si solar cell with a
photovoltage of B1.2 V as the bottom absorber, this system can
be classified as a ‘Q6’ system, that is, quadruple absorbers that
need six photons for production of a H2 molecule8,11,17,24,26.
The crossing points of performance curves of photoanodes
and the solar cell give the expected operation photocurrents of
BiVO4, Fe2O3 and BiVO4||Fe2O3 photoanodes at 4.5, 3.2 and
6.3 mA cm� 2, which correspond to solar-to-hydrogen conversion

efficiency (ZSTH) of 5.6%, 3.9% and 7.7% (Fig. 4c, Supplementary
Figs 17 and 18), respectively. As shown in Supplementary Fig. 18,
the actual tandem cell reproduces these expected values, which
represent one of the highest ZSTH obtained from unbiased solar
water splitting in a tandem PEC cell using stable metal oxide
photoelectrodes (see Supplementary Table 2 and Supplementary
Fig. 19 for benchmarking)8,9,27,28. There was no sign of decay
during the continuous run (8 h) of the tandem cell, indicating a
complete isolation of the solar cell component from the
electrolyte (Fig. 4d). Thus, we present the highest performing
HDP photoanode and tandem cell for unbiased solar water-
splitting system.

Discussion
In summary, we presented a HDP as a new strategy to fabricate a
stand-alone, highly efficient solar water-splitting system. With a
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Figure 2 | BiVO4 and Fe2O3 HDP (BiVO4||Fe2O3) in a sacrificial sulphite solution. (a) Schematic working principle of a PEC cell with HDP BiVO4||Fe2O3

as the photoanode. (b) Photographs of fabricated films. (c) Steady-state I–V curves of BiVO4, Fe2O3, Fe2O3 behind BiVO4, and BiVO4||Fe2O3.

(d) Optimization of the loading amount of BiVO4 and Fe2O3 precursor solution (ml) on 5.0 cm2 of FTO glass for the highest photocurrent generation

(Supplementary Fig. 11). (e) IPCE. (f) Utilization of light in AM 1.5G spectrum by different photoanodes. Analyses were conducted in 0.5 M KPi and 0.5 M

Na2SO3 of pH¼ 7.0.
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HDP of BiVO4||Fe2O3, we obtained a water oxidation photo-
current density of 7.0±0.2 mA cm� 2 at 1.23 VRHE, which sets a
new performance benchmark for metal oxide photoanodes. As
summarized in Fig. 5 and Supplementary Table 1, it is the first
metal oxide photoanode to break the barrier of 7.0 mA cm� 2 at
1.23 VRHE. It is also meaningful that the result demonstrates how
to move forward beyond BiVO4 photoanode, which is the current
forerunner material in solar water-splitting performance but is
hampered by its relatively large bandgap. The HDP photoanode
was successfully incorporated into a tandem cell with a c-Si solar
cell for unbiased solar water splitting to demonstrate a stable and
reproducible ZSTH of 7.7%. There are two easily conceivable ways
to reach ZSTH higher than 10%, which is required for practical
solar water splitting and the goal of most solar fuel research
projects in progress worldwide. First, the saturated photocurrent
of the current HDP is already over 8.3 mA cm� 2 (Fig. 3a) and

thus ZSTH410% (8.1 mA cm� 2) could be obtained by further
reducing the onset potential of the photoanode. Second, if the
bulk charge separation efficiency of the Fe2O3 electrode increases
from its current 40% to a modest 50%, a photocurrent of
8.1 mA cm� 2 or ZSTH of 10.1% is expected. Considering the rapid
progress made in the last decade as depicted in Fig. 5, it seems
highly likely that those two issues can be solved and that the goal
of 10% ZSTH can be achieved within the foreseeable future. Hence,
the HDP concept proposed here represents a significant step
forward en route to practical solar hydrogen production.

Methods
Preparation of BiVO4 films. All chemicals used in this study were of analytical
grade and used without further purification. BiVO4 film was prepared by a
modified metal-organic decomposition method with a slight modification from our
previous procedure8. Thus, 0.2 M Bi(NO3) � 5H2O (99.8%; Kanto Chemicals)

8
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Figure 3 | Solar water splitting in a biased PEC cell. (a) Steady-state I–V curves. (b) IPCEs at 1.23 VRHE. (c) Stability test and (d) gas evolution from PEC

water splitting of photoanodes at 1.15 VRHE. The solid lines in d are calculated values that correspond to the measured photocurrent. Action spectra for

(e) BiVO4, (f) Fe2O3 and (g) HDP (BiVO4||Fe2O3) showing correspondence between IPCE, light-harvesting efficiency (LHE) and transmittance.

Photoanodes BiVO4 and Fe2O3 denote NiOOH/FeOOH/H, 1% Mo:BiVO4 and Ni2FeOx/H, TiO2/0.5% Ti:Fe2O3, respectively. All data were obtained using

an electrolyte of 1.0 M KCi at pH¼9.2 under 1 sun illumination.
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dissolved in acetic acid (99.7%; Kanto Chemicals), 0.03 M VO(acac)2 (98.0%; Sigma
Aldrich) and 0.03 M MoO2(acac)2 (98.0%; Sigma Aldrich) in acetyl acetone
(499.0%; Kanto Chemicals) were prepared as a precursor solution. Then
stoichiometric amount of each precursor was mixed to complete a precursor
solution. For Mo doping, Bi:(VþMo)¼ 1:1 atomic ratio was applied for 1%
Mo:BiVO4 films. For fabrication of a BiVO4 film, 60 ml of solution was dropped on
a fluorine doped tin oxide (FTO) glass (2 cm� 2.5 cm) and dried for 15 min in Ar
atmosphere. Depending on synthesis condition, 10–80 ml of precursor was used.
The FTO glass (TEC 8; Pilkington) was cleaned by using KOH (0.1 M)þ ethanol
with ratio of 1:5, and washed with copious amount of deionized water and finally
stored in acetone before usage. The greenish transparent precursor film was
calcined at 550 �C for 25 min to form a yellow BiVO4 film. After annealing process,
2 cm� 2.5 cm BiVO4/FTO was split to obtain photoanodes with a net irradiation
area of 0.24 cm2 connected by silver paste and copper wire and sealed with
epoxy resin.

Preparation of Fe2O3 films and TiO2 surface treatment. A haematite (Fe2O3)
film was prepared by a polymer-assisted nitrate decomposition method.
Thus, 0.5 M Fe(NO3)2 � 3H2O (99.0%; Kanto Chemicals) was dissolved in

2-methoxyethanol (98.0%; Kanto Chemicals) and acetyl acetone (499.0%; Kanto
Chemicals). Volume ratio of 2-methoxyethanol and acetyl acetone was 7:3. Then,
500 mg of polyethylene glycol 8000 (polymer mass) (499.0%; Sigma Aldrich) was
added in 10 ml of precursor solution as a polymer binder. Prepared solution was
sonicated for 1 h to achieve a homogeneous but opaque red wine-like coloured
solution. Then, a Ti precursor solution was added as dopant with a Fe:Ti atomic
ratio of 0.995 : 0.005 for 0.5% Ti concentration. The Ti precursor was 0.5 M Ti(IV)
propoxide (99%; Sigma Aldrich) and 2-methoxyethanol (98.0%; Kanto Chemicals)
solution. For the Fe2O3 film formation, 6 ml of the prepared solution were dropped
on FTO glass (2 cm� 2.5 cm), and dried in Ar atmosphere for 15 min. After full
drying (colour of precursor film became violet), the film was preheated at 80 �C for
10 min (the precursor film became brown) in Ar atmosphere and heat-treated at
500 �C for 10 min in the furnace. To obtain a desired film, the process was repeated
for three times and finally the film was annealed at 500 �C for 75 min.

For TiO2 surface treatment, 0.05 M titanium oxy acetylacetonate (90%; Sigma
Aldrich) and 2-methoxyethanol (98.0%; Kanto Chemicals) solution was used.
The as-prepared Fe2O3 film was coated with a Ti(IV) precursor by spin coating
(1,000 r.p.m., 20 s, 2 times) and heat-treated at 500 �C for 10 min.

Reduction treatment of metal oxide films. Reduction treatment was conducted
using a borohydride decomposition method. First, 16 mmol of NaBH4 (498%;
Sigma Aldrich) was put in a 200 ml alumina crucible and another smaller alumina
bottle (15 ml) was put on the NaBH4 powder. In this smaller bottle, the as-prepared
metal oxide film (2 cm� 2.5 cm) was placed and finally the 200 ml alumina crucible
was covered with an alumina cover. This reactor was put in a preheated furnace at
500 �C for 30 min. Then the crucible was immediately taken out from the furnace
and cooled down naturally.

NiOOH/FeOOH co-catalyst deposition on the BiVO4 film. The NiOOH/
FeOOH co-catalysts were deposited utilizing photo-assisted electrodeposition
(PED) under AM 1.5G illumination. FeOOH was deposited from a 0.1 M
Fe(SO4)2?7H2O (Z99%; Sigma Aldrich) solution previously purged with Ar for
15 min at 0.25 V versus Ag/AgCl. Subsequent deposition was made with NiOOH
from a 0.1 M Ni(SO4)2?6H2O (99%; Sigma Aldrich) solution of pH B7.0 (by
adding 0.1 M KOH) at 0.11 V versus Ag/AgCl. Optimum deposition times for
FeOOH and NiOOH were 15 and 6 min, respectively. Before the PED process for
FeOOH, the electrode was put on idle for 5 min, with vigorous stirring to minimize
bubble attachment during the deposition process. For both co-catalysts, after PED
process, constant current mode (0.03 mA cm� 2 recording a potential of B1.3 V
versus Ag/AgCl and potential gradually went down) was used for 2 min in the dark
to completely cover surface of electrodes (especially to cover possible pinholes).
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NiFeOx co-catalyst deposition on Fe2O3 film. To deposit Ni2FeOx, Ni3FeOx and
NiFeOx co-catalysts on the Fe2O3 film, a single-solution method was used following
Berlinguette et al.29 for similar configuration. Precursor solutions of
Ni(NO3)2 � 3H2O (99.0%; Sigma Aldrich) and Fe(NO3)2 � 3H2O (99.0%; Kanto
Chemicals) were prepared with 2-methoxyethanol (98.0%; Kanto Chemicals) and
mixtures of Ni:Fe of proper ratios were made. The mixture of Niþ Fe solutions was
diluted to a concentration of 0.01 M before usage. For deposition of the
electrocatalyst, 1 ml of the mixture solution was dropped on Fe2O3 photoelectrode
(0.24 cm2) and dried in air, and the photoelectrode was rinsed with 0.1 M KOH
for 10 s.

For electrochemical analysis, above precursors with a thicker concentration
(0.2 M) were used for NiOx, FeOx and Ni2FeOx preparation on FTO. The
deposition procedure was the same as above except FTO electrode (0.5 cm2) was
used instead of photoelectrode.

Loading additional co-catalysts on Fe2O3. Cobalt phosphate (Co-Pi) was
deposited by PED using illumination (100 mW cm� 2) at 0.4 V (versus Ag/AgCl) in
0.3 mM Co(NO3)2 � 6H2O (Z98%; Aldrich) and 100 ml of 0.5 M potassium
phosphate (K2HPO4) at pH 7. A very small deposition photocurrent was observed
during deposition (B15 mA cm� 2) and deposition was conducted for 120 s.
FeOOH was deposited by PED at the same conditions used for BiVO4 but with
higher potential 0.45 V (versus Ag/AgCl) for 600 s.

Fabrication of HDP (BiVO4||Fe2O3)–c-Si tandem cell. A tandem cell was made
with HDP and c-Si solar cell, following a similar protocol used for our previous
work with BiVO4 photoanode and CH3NH3PbI3 perovskite solar cell8. A piece of
c-Si solar cell was cut in small pieces to make parallel connection (2p). Then, two
pieces of c-Si were filed up on Al side (hole transfer side) and FTO (electron
transfer side) with Ag paste. The area of two pieces became 0.30 cm2

(0.5 cm� 0.6 cm). And BiVO4 and Fe2O3 films were attached sequentially by glue
with the c-Si solar cell at the bottom. Distance between BiVO4 and Fe2O3 film was
adjusted to 0.3 cm by glue and they were electrically attached by Ag paste and
copper sheet to backside of 2p c-Si solar cell (Al side, hole transfer side). This made
electron generated from HDP travels to hole transfer side of 2p c-Si solar cell.
Finally, exposed FTO side of bottom 2p c-Si solar cell was connected to copper wire
and all possible electrical connections were covered with epoxy (Locktit, cured in
room temperature, 1 h) for isolation. For monolithic artificial leaf structure, much
larger piece of c-Si solar cell and photoanode was prepared and final active area was
5.0 cm2. As the counter electrode, Pt/FTO (1.0 cm2) was prepared by spin coating
of 0.5 mM H2PtCl6 � 6H2O (Z99%; Aldrich) diluted in ethanol (1,000 r.p.m., 10 s)
on FTO and annealed for 30 min at 450 �C. This piece was directly connected on
solar cell anode for electron intake.

Characterization. X-ray diffraction measurements were carried out with X-ray
diffractometer using Ni-filtered Cu Ka (l¼ 1.54178 Å) radiation from a rotating
anode source (X’Pert PRO MPD, PANalytical, 30 mA, 40 kV). Ultraviolet–visible
absorbance was measured with a UV/Vis spectrometer (UV-2401PC, Shimadzu).
As a reference, BaSO4 powder attached on FTO was used. The morphology of the
samples was observed using a field-emission (JEOL JMS-7400F, operated at
10 keV), and composition was examined by energy-dispersive X-ray spectroscopy
(EDX). The chemical state of BiVO4 and other films were probed by XPS with an
ESCALAB 250Xi spectrometer. Detailed microscopic structure and corresponding
energy-dispersive X-ray spectroscopy data were observed using Cs-corrected
high-resolution scanning transmission electron microscope (JEOL, JEM 2200FS,
200 kV).

Measurements of PEC performance. PEC measurements of photoelectrodes
were performed with a standard three-electrode configurations; photoanode as the
working electrode, Pt mesh as the counter electrode and Ag/AgCl (3 M NaCl) as
the reference electrode. The scan rate for the current–voltage (J–V) curve was
20 mV s� 1. For water oxidation experiments, 1.0 M potassium bicarbonate (KCi)
electrolyte (499.0%, Sigma Aldrich; pH B9.2) was used as the main electrolyte,
and comparison experiment was conducted by using 1.0 M potassium phosphate
(K2HPO4) buffer (pH B7.0) and 1.0 M KOH (pH 13.6). To measure the degree of
charge separation, 1.0 M Na2SO3 (498%, Sigma Aldrich) was added to the pH 7,
0.5 M phosphate buffer electrolyte. Potentials were recorded with correction by the
Nernst relation ERHE¼ESCEþ 0.0591 pHþ 0.209, in which EAg/AgCl is applied bias
potential and 0.209 is a conversion factor from the Ag/AgCl electrode to the
reversible hydrogen electrode (revisible hydrogen electrode (RHE)) scale. All
electrochemical data were recorded by using a potentiostat (IviumStat, Ivium
Technologies). A 300 W Xenon lamp was used to make simulated 1 sun light
irradiation condition (AM 1.5G, 100 mW cm� 2) by using a solar simulator (Oriel
91160) with an AM 1.5G filter calibrated with a reference cell certified by the
National Renewable Energy Laboratories, USA.

IPCE measurement was conducted using the 300 W Xe lamp as the light source
with liquid IR filter and a monochoromator (Oriel Cornerstone 130 1/8 m
monochromator) with a bandwidth limit of 5 nm. The intensity of light was
measured before IPCE measurements by photodiode detector (Oriel 70260).

Calculation of IPCE was carried out by the formula

IPCE %ð Þ ¼ 1; 240�J
l�P

�100 ð1Þ

where J¼ photocurrent density (mA cm� 2), P¼ light power density (mW cm� 2)
at l, and l¼wavelength of incident light (nm).

The MS plot was used to determine electrochemical properties using the
equation;

1
C2
¼ 2ðV �Vf � kT=eÞ

eeeoNDA2
ð2Þ

where C¼ capacitance of photoanode (metal oxideþ electrolyte double layer and
so on), e¼ charge of electron (C), e¼ dielectric constant of BiVO4 and Fe2O3,
eo¼ permittivity of vacuum, V¼ applied bias (versus RHE), Vf¼ flat band
potential (versus RHE), k¼Boltzmann constant, ND¼ donor density for n-type
semiconductor (cm� 3), A¼ surface area of photoanode and T¼ temperature (K).

PEC H2 and O2 evolution measurements. Using Ar as a carrier gas, the amounts
of H2 and O2 gases evolved from the PEC cell were analysed using a gas
chromatograph (HP5890, molecular sieve 5 l column) equipped with a thermal
conductivity detector. Light source and electrolyte were the same as those used for
above PEC measurements, and the gas products were sampled every 20 min.

Characterization of BiVO4 and a-Fe2O3 on doping and H2 treatment.
The X-ray diffraction crystal structures of the photoanode films were standard
monoclinic BiVO4 and haematite a-Fe2O3 as shown in Supplementary Fig. 4. In
the XPS spectra of Supplementary Fig. 5, the binding energies of Bi (4f5/2 at
164.3 eV and 4f7/2 at 159.1 eV) and V (2p1/2 at 523.5 eV and 2p3/2 at 515.9 eV)
correspond to standard BiVO4. A B0.3 eV shift to lower binding energies was
observed after hydrogen treatment due to the partial reduction of Bi3þ and V5þ , as
reported previously for metal oxide semiconductors treated with H2 or N2 (refs 8,22).
No clear shift is observed for Mo 3d (3d3/2 at 235.9 eV and 3d5/2 at 232.6 eV)
showed near absent change due to small XPS signal8. Fe 3d also showed a lower
energy shift (B0.3 eV) as an indication of reduction. Interestingly, Ti 2p, derived
from dopant and surface treatment for Fe2O3 also showed a shift to lower binding
energies (B0.4 eV). The binding energy of Ti 2p was lower than that of the
standard TiO2 (2p3/2 at 459.0 eV)30 because it was in a doped state or interaction
with Fe2O3.

Effects of the combined doping and hydrogen treatment on the charge carrier
density (ND) were studied by MS analysis in Supplementary Fig. 8 in connection to
PEC water oxidation performance. Thus, ND (cm� 3) was calculated assuming that
the geometric area (1 cm� 2 in the present case) was the same as the actual surface
area of material for all samples according to the equation;

ND ¼
2

eeeo

dð1=C2Þ
dV

� �� 1

ð3Þ

where e¼ charge of electron (1.6� 10� 19 C), e¼ dielectric constant of BiVO4

(B68), eo¼ permittivity of vacuum and V¼ applied bias versus RHE8,31,32. In
agreement with previous reports, Mo doping for BiVO4, Ti doping for Fe2O3 and
H2 treatment for both metal oxides, decreased the slope of 1/C2 indicating the
increased charge carrier density8,22,30,33,34. Oxygen vacancies formed by hydrogen
treatment introduce excess majority carriers as Vo

. ., which acts as an n-type
dopant in metal oxides22,33–36. The reduced XPS-binding energies for the metallic
elements observed for BiVO4 and Fe2O3 (Supplementary Fig. 5) are consistent with
the reduced oxidation state one would expect for oxygen deficient metal oxides.

Co-catalyst loading and the characterization. To promote water oxidation
further, oxygen-evolving co-catalysts were used. For BiVO4, Co-Pi is known to be
one of the most active co-catalysts8,19, but its stability is poor. Hence, NiOOH/
FeOOH was selected here, and our NiOOH/FeOOH/H, 1% Mo:BiVO4 photoanode
showed an photocurrent of 5.0±0.2 mA cm� 2 at 1.23 VRHE. This is close to the
state of the art, and corresponds to an applied bias photon-to-current efficiency
(ABPE) of 2.08% as shown in Supplementary Fig. 9, which is comparable to the
highest value recorded for metal oxide photoelectrodes (NiOOH/FeOOH/
N2:BiVO4, ABPE of 2.2% (ref. 22)). For Fe2O3, Ni2FeOx showed the highest activity
among co-catalysts tested in this work, including Co-Pi, FeOOH, NiFeOx and
Ni3FeOx. In particular, Ni2FeOx produced by our new synthesis method using drop
casting of a nitrate salt solution and in situ activation during PEC operation
showed the best results. XPS analysis in Supplementary Fig. 5 indicates that the
NiOOH/FeOOH co-catalyst has oxidation states close to Fe3þ and Ni2þ /3þ as
reported37. The oxidation state of Ni in Ni2FeOx is also likely to be mixed Ni2þ /3þ

(refs 10,38). The O1s signal for the NiOOH/FeOOH-modified photoanodes shows
a pronounced extra peak at 531.3 eV, which confirms that the NiOOH/FeOOH and
Ni2FeOx co-catalysts are in the oxy hydroxide form10,39.

Surface modification of a-Fe2O3 and the PEC water-splitting performance.
Recombination at surface states is a well-known issue for unmodified Fe2O3

photoanodes (Supplementary Fig. 13). In addition to lowering the photocurrent,
these states can also cause Fermi level pinning, which causes part of the potential
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drop to fall across the Helmholtz layer. This leads to a lower photovoltage (VPh)
and an undesired positive shift of the photocurrent onset potential40. Recently,
there have been many successful examples of passivating the surface states of
haematite by depositing metal oxide overlayers25,40–42. Here we passivate these
surface states by depositing a thin TiO2 layer on the surface of hydrogen-treated
0.5% Ti:Fe2O3 using a facile solution-based method. As shown in Supplementary
Fig. 13, this increases the photocurrent density markedly from 0.88 to 3.0 mA at
1.23 VRHE in a 1.0 M NaOH electrolyte and shifted the onset potential cathodically
by B115 mV. There was no obvious change in the carrier density of haematite on
TiO2 loading and the flat band potentials are similar, as demonstrated by the
MS plots (Supplementary Fig. 8e,f). Thus, our optimized Ni2FeOx-catalysed,
hydrogen-treated and TiO2-modified 0.5% Ti:Fe2O3 photoanodes showed
photocurrents of 3.5–4.1 mA cm� 2 at 1.23 VRHE in a pH 9.2 KCi electrolyte,
which is the amongst the highest ever recorded for Fe2O3-based photoanodes in
near-neutral electrolytes, and comparable with reported top-performing
NiFeOx/Fe2O3 (ref. 4), NiFeOx/Al2O3/Si : Fe2O3 (ref. 10) photoanodes.
Interestingly, loading of the Ni2FeOx co-catalyst on Fe2O3 photoanode significantly
reduced the performance gap between pH 9.2 (1.0 M KCi) and pH 13.6 (1.0 M
KOH) (Supplementary Fig. 14). In the meantime, it would be more effective for
practical application as water oxidation efficiency (especially Fe2O3) can be
maximized if HDP can be operated in highly basic solution, owing to pH gradient
problem in mild electrolyte condition43.

Data availability. The data that support the findings of this study are available
from a corresponding author (J.S.L.) on request.
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