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Abstract

We have performed magnetic susceptibility, dielectric constant, neutron diffraction and syn-

chrotron radiation x-ray diffraction measurements on a spin-lattice coupling system CuFeO2 under

applied uniaxial pressure p up to 600 MPa. We have found that the phase transition temperature

TN1 from the paramagnetic phase to the partially disordered phase increases by as many as 5 K

from original TN1 ≃ 14 K under applied p of 600 MPa and that a lattice constant bm of CuFeO2

remarkably changes. In contrast, the value of q0, which is a magnetic modulation wave number at

TN1 and should reflect ratios of the exchange coupling constants, is not changed even by applied p

of 600 MPa. Based on these results, we show that the explanation using only the exchange striction

effect is not suitable for the magnetic phase transition in CuFeO2. These results suggest that a

lattice degree of freedom via spin-lattice coupling is indispensable for determination of magnetic

properties of CuFeO2. Dielectric anomaly under applied p of 600 MPa is also briefly discussed.

PACS numbers: 75.30.Kz
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I. INTRODUCTION

Geometrically spin frustrated systems provide fertile fields for modern condensed-matter

physics research.1 To lift the degeneracy in the vicinity of a grand state owing to the frustra-

tion, the systems tend to closely connect lattice degrees of freedom with spins. As a result,

the spin-lattice couplings in the geometrically spin frustrated systems give rise to exotic

magnetic phenomena, such as spin-Peierls transition,2,3 spin-driven Jahn-Teller effect4,5 and

spin-driven ferroelectrics.6

Among the spin-lattice coupled systems, delafossite compound CuFeO2 (CFO) is one

of the vastly investigated material to understand the highly rich magnetic phase diagram

including spin-driven ferroelectric phase.7–20 CFO belongs to the R3̄m space group at room

temperature (a = b = 3.03 Å, c = 17.17 Å in hexagonal notation). In CFO, Fe3+ ions (S =

5/2) form the triangular-lattice layers with antiferromagnetic interactions, which are stacked

along the c axis. As shown in Fig. 1, with decreasing temperature (T ) from a paramagnetic

(PM) phase, the system enters a partially disordered (PD) phase with a magnetic modulation

wave vector (q,q,3/2) [q = 0.196-0.220] at TN1 = 14 K, in which the amplitude of spins along

the c axis are sinusoidally modulated.21,22 On further cooling to TN2 = 11 K, a collinear

4-sublattice (4SL) phase (↑↑↓↓) with a magnetic modulation wave vector (1/4,1/4,3/2) is

realized.21,23

These magnetic phase transitions are accompanied by a spontaneous lattice distortion

from rhombohedral R3̄m to monoclinic C2/m.9,11 In the lattice distortion, the monoclinic

b axis (bm) elongates and the monoclinic a axis (am) contracts, resulting in a deformation

from the “equilateral” triangular-lattice in the PM phase to an “scalene” one in the 4SL

phase, through a “isosceles” triangular-lattice in the PD phase,10,19 as shown in Fig. 1.

Hereafter, we add the subscript “m” to the monoclinic notations, and the [110] and the [11̄0]

directions in hexagonal notation correspond to [010]m and [100]m directions in monoclinic

notation, respectively (see Fig. 1). Several researchers have pointed out that the spin-

lattice coupling in CFO systems plays a key role for the realization of the collinear ↑↑↓↓

magnetic structure as the ground state,9,10 which is originally not expected by Heisenberg

spin character of Fe3+ ion. This point is also consistent with theoretical work that the spin-

lattice coupling stabilizes the collinear magnetic structures including the 4SL ↑↑↓↓ structure

even in Heisenberg antiferromagnets.24 Moreover, the nearest-neighbor exchange interaction
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J1 splits into three inequivalent interactions due to the the monoclinic lattice distortion.

The split interactions successfully account for spin wave excitation in the 4SL phase25 and

ESR spectrum.26

As well as the investigations of the origin of the ground state and the value of the exchange

constants at the low temperature, pressure effects for the magnetic properties of CFO have

been investigated.16–19 Because the lattice symmetry is broken by the spontaneous lattice

distortion just at the phase transition temperature TN1, one expects that the application

of pressure at this temperature provides a significant influence for the magnetic properties

of CFO. Thus, we focus on an applied-pressure-impact on the exchange constants at TN1,

hereafter, while pressure effects on the collinear 4SL magnetic structure at the low temper-

ature should be fascinating objects. Although, in the vicinity of TN1, it is rather difficult

to determine the exchange constants from spin waves, a magnetic modulation wave number

“at phase transition temperature”, q0, is determined by a ratio of exchange constants in

general, and thus, it should be a characteristic value.

Using neutron diffraction under an “isotropic” pressure up to 8 GPa, which suppresses

the spontaneous lattice distortion, Terada et al. reported that the temperature variation of

q in the PD phase is suppressed by the isotropic pressure, together with the rise of TN1.
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FIG. 1. (Color Online) Magnetic phase diagram of CFO as a function of temperature. Below

TN2 ≃ 11 K, a collinear 4-sublattice (4SL) phase (↑↑↓↓) with a magnetic modulation wave vector

(1/4,1/4,3/2) is realized. In the range between TN2 ≤ T ≤ TN1 ≃ 14 K, a sinusoidal magnetic

structure with a magnetic modulation wave vector (q,q,3/2) [q = 0.196-0.220] is realized. Triangular

lattices formed by Fe3+ ions in each phases are also schematically illustrated.
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Besides, q0 is varied from 0.195 (0 Pa) to ∼0.185 (5 GPa) (from 0.39 to 0.37 for qm0) by the

isotropic pressure, and finally at 8 GPa, short range order with temperature independent q

remains at the lowest temperature.16,17,27

On the other hand, Nakajima et al. performed neutron diffraction, synchrotron x-ray

diffraction and magnetic susceptibility measurements under an “anisotropic” uniaxial pres-

sure up to 100 MPa along the [11̄0] direction, which is conjugate direction to the spontaneous

lattice distortion in CFO.18,19 They observed the upward shift of TN1, which can be inter-

preted as a result of partial release of the spin frustration in this system by assistance of

the spontaneous lattice distortion, and accompanied increment of structural transition tem-

perature. Taking into account that uniaxial pressure, p, brakes the lattice symmetry, one

can expect that a change in a ratio of the exchange constants by applied p is larger than

those by the isotropic pressure, and that q0, which should reflect the ratio of the exchange

constants, also shows larger change. In previous study, however, pressure change in q0 was

not conclusive, and thus applied p up to 100 MPa is too small to investigate the p variation

of q0. Moreover, a p variation of lattice constant bm is rather indistinguishable to discuss a

change in the exchange constants determining q0 through exchange striction effect.

Quite recently, we have developed a technique that allows the application of the uniaxial

pressure p up to 600 MPa for CFO. In this paper, we report the results of magnetic suscep-

tibility, dielectric constant, neutron diffraction and synchrotron radiation x-ray diffraction

measurements on CFO under applied p up to 600 MPa. We have found that the value of q0

is not changed even by applied p of 600 MPa despite a drastic rise of TN1. Moreover, the

applied p of 600 MPa causes remarkable change in the bm beyond the spontaneous lattice

distortion, which should suggest a change in the exchange constants determining q0 through

exchange striction effect. Nevertheless, the exchange striction effect is not suitable for an

explanation of these results. These results suggest that the lattice degree of freedom via

spin-lattice coupling is indispensable for determination of magnetic properties in CFO.

II. EXPERIMENTAL DETAILS

Single crystals of CFO were prepared by the floating zone method.28 The crystals were

cut into dice-like shapes with typical dimensions of 1.36× 1.44× 1.70 mm3. The three axes

of the dice-like samples are along [110], [11̄0], and [001] directions and the sample was
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mounted in a pressure cell used in ref. [18, 19, and 29] with the [11̄0] axis vertical. The

uniaxial pressure devices used in this work were also the same as used in these previous

works: p along the vertical direction (therefore, p ‖ [11̄0]) is controlled by a SiCr coil spring

and a micrometer attached on top of the cryostat, enabling us to control the magnitude of

p even when the sample is at low temperatures, and p is monitored by a load meter. In

all experiments in this study, p was always applied at 25 K. The temperature dependence

of the magnetic susceptibility at the magnetic field of 100 Oe along the [11̄0] direction

were measured by a SQUID magnetometer (Quantum Design). The dielectric constant ǫ

was measured at 10 kHz using an LCR meter (Agilent 4980A), where the electrodes were

consisted of silver paste painted onto [110] surfaces.

Neutron-diffraction measurements under applied pwere carried out at the two-axis diffrac-

tometer E4 installed at the Berlin Neutron Scattering Center in the Helmholtz Centre Berlin

for Materials and Energy. The wavelength of incident neutron was 2.44 Å. The synchrotron

radiation x-ray diffraction measurements under applied p was carried out at the beamline

BL-3A in Photon Factory in High Energy Accelerator Research Organization, Tsukuba,

Japan. The energy of the incident x-ray was tuned to 14 keV. Since the direction of p is

parallel to the [11̄0] direction, the scattering plane is the (H,H,L) plane in both of the

diffraction measurements. Basically, we have performed these diffraction measurements in

the same manner as in the previous experiments.18,19

III. RESULTS

Figure 2(a) shows a temperature dependence of magnetic susceptibility under ambient

pressure and applied p of 600 MPa. At zero applied pressure, the T dependence of magnetic

susceptibility is consistent with previous results.18,30 With increasing p, TN1 drastically in-

creases. The rise of TN1 under applied p of 600 MPa reaches 5 K from original TN1 ≃ 14 K.

The p dependence of TN1 are summarized in an inset of Fig. 2(a), which is linear extension

of the previous result.18 We have also found that the application of p = 600 MPa results in

the upward shift of TN2 by ∼ 1 K, whereas the upward shift of TN2 is only ∼ 0.2 K up to 80

MPa.18

Figures 3(a)–3(d) show the typical neutron diffraction profiles on cooling under ambient

pressure and applied p of 600 MPa. At 19.4 K, which is consistent with TN1(p = 600MPa)
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FIG. 2. (Color Online) Temperature dependence of (a) magnetic susceptibility χ, (b) magnetic

modulation wave number q, (c) integrated intensity of the magnetic Bragg reflections, (d) (real

part of) dielectric constant ǫ along the [110] axis, of CFO under the selected-applied p. Open and

closed symbols denote the data for increasing and decreasing temperature processes, respectively.

The figure extending over (a) and (b) shows a p - T phase diagram of CFO. The data indicated by

black square symbols are redrawn from the data in Ref. 18.

obtained by the magnetic susceptibility, the magnetic reflection is observed at (q,q,3/2),

where q ∼ 0.196 under applied p of 600 MPa. With decreasing T , the peak position shifts

toward higher q value as shown in Fig. 3(a). These features correspond to the T dependence

of the magnetic diffraction profiles in the PD phase under ambient pressure. Around 12 K

under applied p of 600 MPa, the magnetic reflection at (1/4,1/4,3/2) corresponding to the

4SL magnetic order coexists with the PD magnetic reflection, while they coexist at 11.2 K
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FIG. 3. (Color Online) Typical neutron diffraction profiles at (a) 15 K, (b) 12 K, (c) 11.2 K, (d) 2

K on cooling. The filled and open symbols denote the data measured under ambient pressure and

applied p of 600 MPa, respectively.

at ambient pressure, as shown in Figs. 3(b) and 3(c). Finally below 11.8 K, the 4SL phase

is realized under applied p of 600 MPa as shown in Fig. 3(d). The T dependence of q and

the integrated intensity under selected applied p are summarized in Figs. 2(b) and 2(c).

We did not observe any other magnetic reflections corresponding to an emergence of other

magnetic ordering even under applied p of 600 MPa.

Here, we emphasize that the value of q0 ∼ 0.196, which is a magnetic modulation wave

number at TN1, is almost not changed even by applied p of 600 MPa, as shown in Fig.

2(b), despite the drastic rise of TN1. Taking into account that q0 should reflect ratio of the

exchange constants, the p-independent q0 would provide a strict condition for the p variation

of the exchange constants due to the exchange striction effect. We will discuss this point

later.

In order to investigate the lattice constants of CFO under p = 600 MPa, we have also per-
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FIG. 4. (Color Online) (a) Temperature dependence of bm under p = 0 and 600 MPa. Error bars

of the p = 600 MPa data are within the size of the symbols. The data p = 0 are redrawn from

Ref. 19. After we checked consistency in previous results from present-rough-mesh T dependence

of bm, we have shifted the p = 0 data to modify a tiny difference of offset scattering angle, using

the present reflection data (p = 0 MPa, T = 25 K) shown in an inset. Note that we show the

T dependence of bm under p = 600 MPa on cooling process, while that at ambient pressure in

previous study was obtained on warming process.19 We have observed, however, that there is no

thermal hysteresis. (b) Typical x-ray profiles of the (0, 3, 0)m superlattice reflection under p = 600

MPa at 14.9 K and 1.66 K. (c) Integrated intensity of the (0, 3, 0)m superlattice reflection under p

= 600 MPa as a function of temperature.

formed synchrotron radiation x-ray diffraction measurements similar to the previous study.19

Figure 4(a) shows the temperature variations of bm obtained by (0, 4, 0)m reflections under p

= 0 and 600 MPa. At TN1(p = 600 MPa), which is determined by the magnetic susceptibility

and neutron diffraction experiments, the structural transition is smeared by the application
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of p, as was reported by T. Nakajima et.al..19 With further decreasing T under applied p =

600 MPa, in contrast, bm shows discontinuous jump near TN2(p = 600 MPa). Moreover, bm

under applied p = 600 MPa elongates from the equilateral bm even at 25 K, at which the

system is in the PM phase. The elongation of bm at 25 K is almost comparable with those

by the spontaneous lattice distortion at ambient pressure.

Figures 4(b) and 4(c) show typical diffraction profiles of the (0, 3, 0)m superlattice re-

flections under p = 600 MPa, which arise from the correspondence to the scalene triangle

distortion in the 4SL phase, and ther integrated intensity as a function of T , respectively.

As shown in Fig. 4(c), the (0, 3, 0)m superlattice reflection emerges at 12.8 K close to

TN2(p = 600 MPa), even though bm(T = 14 K) ∼ 3.033 Å under p = 600 MPa is larger than

bm(T = 4 K) ∼ 3.032 Å in the 4SL phase at zero applied pressure. This result indicates that

the mere support of the only isosceles lattice distortion does not achieve the emergence of

the 4SL magnetic ordering; the scalene triangle distortion is a key factor for the emergence

of the 4SL magnetic ordering, as have been pointed out by several researchers.9,10

IV. DISCUSSION

Now, we consider an uniaxial pressure effect for the spin-lattice coupled phase transition in

CFO. When p is applied, a displacement of magnetic ions should modify a spin Hamiltonian

due to the exchange striction effect:24,31,32

H = Hmodified exchange +Hlattice({ui})

= J
∑

<ij>

(1− αuij)Si · Sj +Hlattice({ui}), (1)

where ui is the displacement of site i, uij = (ui −uj) · êij is the relative change in length of

the bond ij (êij is the unit vector from site i to j), and α = J−1∂J/∂r is the constant. In the

spin-lattice coupled system, integrating Hmo. ex.+Hlattice with ui or uij generates an effective

spin Hamiltonian including spin-lattice coupled term.24,31,32 In the case of non spin-lattice

coupled system, in contrast, Hlattice can be neglected even when exchange striction is affected

by some external field at phase transition, and thus magnetic properties in the system (the

phase transition temperature, a magnetic field or T dependence of magnetic modulation

wave number and so on) can be explained by only the change in the exchange constants.

For such an example, S. Kobayashi et al. quite recently reported that, in geometrically
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frustrated but non spin-lattice coupled system CoNb2O6, q0 in CoNb2O6 is easily modified

by applied p.33 Moreover, p variation of exchange constants estimated by p variation of

q0 are consistent with those estimated by p variation of phase transition fields, and thus,

these results are well explained by the analysis using the mean-field approximation and only

Hmo. ex. in CoNb2O6.
34
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−0.05, J
(1)
3 = −0.159, J

(2)
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In contrast, the discussion using only Hmo. ex. is not suitable for the case of CFO. Here,

we show that the enhancement of TN1 is not explained by the exchange striction effect with

only Hmo. ex. in the following. From our experiments, a temperature enhancement factor,
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αobs, is

αobs ≡
TN1(p = 600 MPa) = 19 K

TN1(p = 0 Pa) = 14 K
≃ 1.36 (2)

Within the mean-field approximation, the magnetic phase transition temperature TN1 is

written by 3kBTN1 = S(S + 1)|Jmax(Q0)| in general, where kB is the Boltzmann constant,

S = 5/2 for CFO, Q = Ha∗ + Kb∗ + Lc∗ is the magnetic modulation vector, |Jmax(Q0)|

is a Fourier transformed maximum value of exchange constants and Q0 is Q providing the

maximum value of |J(Q)|. Therefore,

αcalc ≡
|Jp=600MPa

max (Q0)|

|Jp=0Pa
max (Q0)|

(3)

should coincide with the temperature enhancement factor, as far as the exchange striction

with only Hmo. ex. is concerned.

We define the exchange constants in CFO as those shown in Fig. 5(a)35 for a (110)

domain stabilization by the application of p ‖ [11̄0], as described below in detail. Taking

spin wave analysis by Nakajima et al. into consideration,25,36 we have chosen the exchange

constant values in meV unit as J
(1)
1 = J

(2)
1 = -0.147, J2 = -0.05, J

(1)
3 = J

(2)
3 = -0.15 and

Jz = -0.05 for the p = 0 Pa state. As expected the definition of the exchange constants,

their Fourier transformation J(Q) with these parameter values shows the six fold symmetry

along the c axis as shown in Fig. 5(b).

Owing to the trigonal symmetry along the c axis, CFO has two other magnetic modulation

vectors of (-2q,q,3/2) and (q,-2q,3/2), which are equivalent to (q, q, 3/2). As a result, three

magnetic domains exist. When we apply p to the sample along to the [11̄0] direction,

however, only the domain with (q, q, 3/2) magnetic modulation vector, called (110) domain,

is stabilized.37,38 Therefore, we assume the single (110) domain state for the calculation of

|Jmax(Q0)|, hereafter. When the (110) domain is stabilized, the peaks on the (110) axis grow

and the other peaks shrink, as shown in Fig. 5(c) (see red arrows). Taking into account

the experimental result that the magnetic diffraction peak in the (110) domain is on the

(H ,H ,3/2) line, we can write J(Q = (q, q, 3/2)) as J(q):

J(q) = −4J
(1)
1 cos(2πq)− 2J

(2)
1 cos(4πq) (4)

−2J
(1)
3 cos(4πq)− 2J

(2)
3 cos(8πq)

−2J2(cos(6πq) + 1) + 2Jz(2 cos(2πq) + 1),

11



Then, we obtain |Jmax(Q0)| = |Jmax(q0)|, and q0 is just the measurement value in our experi-

ments. The parameter sets for the p = 0 Pa state described above provide J(q) curve shown

in Fig. 5(d) and consistently reproduce the experimental value q0 = 0.1960.39 |Jp=0Pa
max (q0)| is

0.673408.

Next, on the assumption that p = 600 MPa is applied along to the [11̄0] direction, we

prepared parameter sets by independently varying values of J
(1)
1 , J

(2)
1 , J

(1)
3 and J

(2)
3 within

±5 %, which are considered to the most influencing parameters for J(q) and q0. Using these

parameter sets, we calculated J(q), q0, and |Jp 6=0Pa
max (q0)|. Then, we surveyed parameter sets

with consistency in the experimental result 0.1958 ≤ q0 ≤ 0.1962. In addition, we eliminated

the parameter sets destabilizing (110) domain. For simplicity, J2 and Jz were fixed.

We show one of calculation result in Fig. 5(d). This J(q) curve is obtained by the

parameter set providing the largest |Jp 6=0Pa
max (q0)| = 0.71953 (the value of parameters are

shown in a caption of Fig. 5). As mentioned above, q0 is determined by the ratio of the

exchange constants. We can consider that a ratio of J
(2)
3 to J

(2)
1 is the most dominant for

J(q), because they are interactions in the [110] direction. Thus, we can assume by intuition

that, if this interaction ratio is not changed under applied p, q0 is also constant for applied

p. Our calculation includes the parameter sets matching such naive scenario. However, αcalc

is limited to 1.07 and does not explain αobs, although obtained parameter sets may contain

unphysical values. This means that the exchange striction effect using Hmo. ex. explains only

about 20 % of αobs at the most.

From our experimental results, bm elongates by 0.2 % at 25 K. Taking into account the

fractional change in the lattice parameters at ambient pressure reported by Terada et al.,10

we assumed that am and c contract by 0.13 % and 0.06 %, respectively, at 25 K. Using these

values, we roughly estimated a change in one of the Fe-O-Fe bond angles, and found that it

is 0.05 %. Therefore, we conclude that the ±5 % variation of J1 and J3 is relatively large,

although there are no reason from the electronic bonding orbital theory. Nevertheless, αobs is

limited to 20 % at the most within the mean-field approximation and the exchange striction

effect using only Hmo. ex.. Thus, our results suggest that Hlattice somehow contributes to

even determination of TN1.

Several specific expressions of Hlattice have been proposed and biquadratic term gener-

ated by integration of Hmo. ex. + Hlattice plays important role for the realization of spin-

lattice-coupled exotic state.24,31,32 As for CFO, this biquadratic term reasonably explains
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the existence of the collinear 4SL phase as the ground state. Besides the collinear magnetic

structure of the ground state in CFO, several researches have pointed out the importance of

the spin-lattice couplings for the phase transition even at TN1. For example, Quirion et al.

have suggested that the transition at TN1 is primary pseudoproper ferroelastic, with the spin

acting as a secondary order parameter, from the ultrasonic velocity measurements and the

analysis using Landau free energy.11 Klobes et al. have also suggested that the magnetoelas-

tic coupling persists in the PM phase as well, using nuclear resonance scattering.20 Keeping

these studies in mind, the magnetic properties of CFO such as TN1,2, q0 or T dependence

of q should also be treated by a theory including the appropriate spin-lattice coupling, in

addition to the magnetic structures.

Finally, we show the temperature dependence of dielectric constant under applied p in

Fig. 2(d). We have found that the temperature dependence of dielectric constant is dras-

tically changed with large thermal hysteresis by applied p of 600 MPa. However, we have

not observed the ferroelectric polarization and the T dependence of an imaginary part of

dielectric constant remains 0 even under applied p of 600 MPa. Recently, N. Terada et al.

reported that spiral magnetic ordering with ferroelectricity is induced by isotropic pressure

∼ 3 GPa.17 Taking into account this report, one possible explanation of this anomalous

dielectric property is that the drastic change in T dependence of ǫ may reflect the precur-

sor of emergence of spiral magnetic ordering with ferroelectricity. The application of larger

magnitude of p may be a promising way to investigate the spin-lattice coupled multiferroic

phase.

V. CONCLUSIONS

In conclusion, we have found that the value of q0 in CuFeO2 is not changed even by applied

p of 600 MPa despite a drastic rise of TN1, using magnetic susceptibility, neutron diffraction

and synchrotron radiation x-ray diffraction measurements under applied uniaxial pressure

up to 600 MPa. This result suggests that, in addition to the magnetic structures, magnetic

properties such as magnetic phase transition temperature, magnetic modulation wave num-

ber at phase transition and its T dependence should be treated by a theory including the

appropriate spin-lattice coupling. Moreover, we have found that he temperature dependence

of dielectric constant is drastically changed with large thermal hysteresis by applied p of 600

13



MPa. To investigate this dielectric anomaly, the application of larger magnitude of p would

be helpful.
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