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For simulating single-particle trajectories, the derivation of final coordinates from known initial
coordinates through arbitrary electromagnetic fields is of key interest in accelerator physics. We address
this task in the case of straight stationary magnetic fields, using generating functions via a perturbative
ansatz for the corresponding Hamilton-Jacobi equation. Such an approach is always symplectic,
independent of the expansion order. We set up the Hamiltonian by static fields, represented by Fourier
series, and outline this approach for the correct and complete set of 3D-multipole fields. Different types of
multipoles can be treated with the same formalism, combining them with a specific table of Fourier
coefficients characterizing their fields. The resulting particle-tracking routine maps the multipole in a single
step. Results are compared with analytical estimations and high-resolution integration methods.
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I. INTRODUCTION

Particle tracking is a well-established tool to estimate the
dynamic aperture in particle accelerators. Many thousands
of turns around a circular machine need to be simulated,
and the results depend very sensitively on the correct
modeling of nonlinear devices such as insertion devices or
fringe fields in end poles of multipoles. Despite the high
computing capacity nowadays, efficient tracking algo-
rithms are of great importance in multiparameter scans.
Among other methods, the particle tracking based on
generating functions (GFs) is extremely efficient in the
case of undulators [1].
Having an analytic field description of the device under

consideration, analytic GFs can be established [2]. These
descriptions can be derived for typical magnetic fields by
fitting a Fourier series to the magnetic fields, which has
been demonstrated for permanent magnet undulator
structures [1]. The method is extremely useful for the
complicated magnetic structure of APPLE II type undu-
lators [3] which produce arbitrary polarization and, thus,
have a huge parameter space. The usual kick-map approach
can be rather tedious for these devices, because the kick
maps have to be established for each gap and each state of

polarization individually. Contrarily, the analytic GF
approach permits a complete parametrization with respect
to an arbitrary gap and state of polarization which sim-
plifies the tracking studies significantly. The energy
dependence of the particle path is simply included by
scaling the field strength. Other approaches use numerical
fitted GFs; see the discussion in Refs. [4–7].
An analytic GF for particle tracking passing APPLE

undulators was implemented into the code ELEGANT which
is freely available [8]. It was demonstrated that the new
method outperforms a symplectic integration tracking
scheme by at least one order of magnitude in terms of
CPU time [9].
Based on this success, the idea arose to adopt the method

of analytic GF-based particle tracking to 3D multipoles. In
third-generation storage rings, the multipoles (higher than
dipoles) are often treated as 2D devices. With the advent of
diffraction-limited light sources with multibend achromats,
compact magnet designs with enhanced fringe field effects
are getting more and more interesting [10]. In future
designs, fringe field and cross talk effects will play an
important role, and efficient codes for a realistic assessment
of the beam performance via particle tracking are needed.
In this paper, we construct and present the use of GFs

to set up a mapping routine through arbitrary stationary
magnetic fields with a straight reference axis, which
includes cases like fringe fields of 3D multipoles, sole-
noids, combined function magnets, or taper. Hereby we
provide the complete set of differential equations to
arbitrary orders for the expansion functions, which is not
covered in Refs. [1,11], in Sec. II. Magnets with dipole
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components leading to curved reference orbits are not
considered here; they require a more refined calculation.
In our application to multipoles, we apply the method to

the cylindrical field descriptions given in Refs. [12,13]. We
prefer a cylindric geometry for a simplification of the
equations; in this case, the coordinates can be separated,
and the longitudinal dependency is described as a Fourier
series. This is not necessarily the case in Cartesian
coordinates: For example, in the analytic Cartesian for-
mulas for fringe fields in Ref. [14], the longitudinal
“falloff” functions still involves the transversal coordinates.
The drawback of cylinder coordinates is, however, the
appearance of a singularity at r ¼ 0, which must be
handled carefully. Regardless of this approach, we will
see that most of the formulas can also be represented in a
Cartesian system.
The 3D-field descriptions are derived by fitting Fourier

coefficients with respect to an axis parallel to the longi-
tudinal axis with a slight offset. The Maxwell equations
will then determine the entire field, as discussed in
Refs. [12,13]. This approach can be used to approximate
an “Enge-type field falloff” as discussed in Ref. [15]; see
also Fig. 2.
For our first demonstration code, it turns out that the step

size can be in the decimeter range for reasonable field
strengths, as long as the slope of the particle path remains
small along the device. In the presented example, a 3D
quadrupole is mapped by a single step of around 40 cm. We
will also see that the principle of our method is not limited
in the order of the slopes by which the Hamiltonian was
developed: Higher-order results will depend on higher
orders in the transversal derivatives of the fields. All
equations for the implementation into a numeric code
are given.
In the following, we call our demonstration code STGFM,

which means symplectic tracking based on generating
functions applied to multipoles. STGFM is not optimized
for efficiency; rather, it serves for a thorough comparison in
different expansion orders with results from direct integra-
tion. In Sec. IV, numeric results of STGFM are presented,
and some concluding remarks are given in Sec. V.

II. THEORY

A. Hamilton-Jacobi equations

Our starting point will be the well-known HamiltonianH
for time-independent magnetic fields of a linear section. We
express H in Cartesian coordinates ðx; y; zÞ, in which the
longitudinal coordinate z will play the role of the “time”
parameter, x and y are the transversal coordinates, and px
and py are their corresponding conjugate momenta:

−H ¼ pz ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~p2
kin − ðpx − eAxÞ2 − ðpy − eAyÞ2

q
þ eAz:

ð1Þ

Let us denote by x0 the transverse slope or angle or kick
of a moving particle with respect to the x coordinate. It is
given by

x0 ¼ dx=dz ¼ ∂H=∂px ¼ ðpx − eAxÞ=ðpz − eAzÞ
¼ pkin;x=pkin;z

and similarly y0 ¼ pkin;y=pkin;z. If the total (constant)
kinetic momentum pkin ≔ j~pkinj is large in comparison
to pkin;x and pkin;y, which is the case if the slopes are small,
then the square root can be expanded.
In the following, we will assume that the slopes are small

enough along the device so that an expansion ofH up to—
and including—third order is sufficient for the physics we
are dealing with. Later on, it will become clear, however,
that there is no restriction on this order; the method can be
developed completely analogous for higher orders.
With the normalized quantities ~H ≔ H=pkin, ~px ≔

px=pkin, and ~py ≔ py=pkin, it holds that

dx
dz

¼ ∂H
∂px

¼ ∂ ~H
∂ ~px

;
d ~px

dz
¼ −

1

pkin

∂H
∂x ¼ −

∂ ~H
∂x ;

and similarly for the y components. So ~H is a Hamiltonian
with respect to these quantities. Let us denote the truncated
Hamiltonian of ~H by H, and let us also drop the tilde
symbols from now on:

H ≔ −1þ 1

2
ðpx − AxÞ2 þ

1

2
ðpy − AyÞ2 − Az ð2aÞ

¼ −1þ 1

2
ðpr − ArÞ2 þ

1

2

1

r2
ðpφ − rAφÞ2 − Az: ð2bÞ

Here Ax, Ay, and Az are corresponding dimensionless
time-independent vector potentials; i.e., they emerge from
the usual vector potential by multiplication with e=pkin,
and the functions Ar ¼ cosðφÞAx þ sinðφÞAy and Aφ ¼
− sinðφÞAx þ cosðφÞAy are the corresponding normalized
potentials in cylinder coordinates.
We will switch back and forth between Cartesian and

cylinder coordinates whenever it suits best; i.e., we use the
transformation rules for cylinder coordinates, which propa-
gate to their derivative counterparts, if necessary: For 3D
multipoles, cylinder coordinates are the best choice,
because the variables are well separated and partial deriv-
atives are simple. This is important if the code will be
generated automatically. On the other hand, some formulas
like Eq. (6) look more appealing in Cartesian coordinates.
We are looking for a generating function F, which will

be a function of r, φ, z and the cyclic momenta vr, vφ,
satisfying
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pr ¼
∂F
∂r ; pφ ¼ ∂F

∂φ ; ð3aÞ

ur ¼
∂F
∂vr ; uφ ¼ ∂F

∂vφ ; ð3bÞ

and

H ¼ −
∂F
∂z : ð3cÞ

The reason is that if such a generating function can be
constructed, it will provide a canonical transformation
between the original generalized coordinates ðx; y; px; pyÞ
and a set of comoving (cyclic) coordinates ðux; uy; vx; vyÞ
[16,17]. For every particle, these comoving coordinates will,
in general, be different; however, they stay constant along its
motion. If one can establish the relation between the original
coordinates and this new system of cyclic coordinates, one
obtains the sought symplectic map from known (original)
coordinates to unknown (original) coordinates, by express-
ing the unknown ones in dependency of the known ones,
using said relation. We will show this explicitly in Sec. II B.
Inserting (3a) into (2b) yields

− 1þ 1

2
ð∂rF − ϵArÞ2 þ

1

2

1

r2
ð∂φF − rϵAφÞ2

− ϵAz þ ∂zF ¼ 0; ð4Þ

which is the Hamilton-Jacobi equation we will be dealing
with. We introduced a parameter ϵ ∈ ½0; 1� by redefinition
of the potential functions. We can tune ϵ globally to express
solutions in terms of the order in the field strength in
analogy to Refs. [1,11].

B. The recursive differential system

In order to solve (4), we make the following perturbative
ansatz:

F ¼ Ffree þ
X∞
k¼1

gkϵk ð5Þ

with gk ≔
P∞

i;j¼0 fijkv
i
rv

j
φ, where Ffree is the solution (8) in

the drift case and fijk are functions of the parameters r, φ,
and z. Let iþ jþ k be the total order of fijk. Then we see
from the Hamilton-Jacobi equation (4) that the products
forcing an increase of this order; thus, fijk;z will be
determined recursively by all lower-order fijk’s and the
potential functions. The same argument holds ifH emerged
from an expansion in higher orders in the slopes. To make
this precise in our case, we insert the above ansatz into (4)
and perform a coefficient comparison, yielding the follow-
ing system of differential equations (values with respect to
negative indices are treated as zero) [17]:

Zqpk ¼ −
1

2

Xq
α¼0

Xp
β¼0

Xk−1
l¼1

½XαβlXq−α;p−β;k−l

þ YαβlYq−α;p−β;k−l� − Xq−1;p;k − Yq;p−1;k; ð6Þ

where Zqpk ≔ fqpk;z − δq0δp0δk1Az, Xqpk ≔ fqpk;x−
δq0δp0δk1Ax, and Yqpk ≔ fqpk;y − δq0δp0δk1Ay, using
Kronecker symbols. The first couple of equations of (6),
belonging to the lowest total orders, look similar to
Eqs. (29a)–(29k), if one replaces Ax with Ax − f001;x and
Ay with Ay − f001;y together with the additional equation
f001;z ¼ Az. From Eqs. (3a), we obtain

px ¼ vr þ
X∞
i;j¼0

Xijvirv
j
φ; ð7aÞ

py ¼ vφ þ
X∞
i;j¼0

Yijvirv
j
φ ð7bÞ

with Xij ≔
P∞

k¼1 fijk;xϵ
k and Yij ≔

P∞
k¼1 fijk;yϵ

k.
Take an interval I ¼ ½I1; I2� of length L along the z axis

and z0 and zf two positions of interest in the interior of I. Let
us understand coordinates labeled without an index (or a
zero) as the initial or known coordinates and the ones with an
“f” as the final coordinates. Note that in this paper we do not
require that z0 < zf, so the final coordinates may also be
some unknown starting coordinates, if the particle travels in
the positive z direction. For example, in the case of no fields,
the so-called "drift case", one can easily verify that Eq. (4) is
solved by

Ffreeðr;φ; vr; vφ; zÞ
¼ xvr þ yvφ þ ½1 − ðv2r þ v2φÞ=2�zþ α0; ð8Þ

where α0 is a constant, leading to the usual drift solution

pxf ¼ px0; xf ¼ xþ px0ðzf − zÞ;
pyf ¼ py0; yf ¼ yþ py0ðzf − zÞ:

Since the systemof equations (6) determines fqpk only up to a
function hqpk of r and φ, we can set these functions so that
fqpkjzf ≡ 0 holds. Then, we take (7a) and (7b) at the final
position to get vr ¼ pxf and vφ ¼ pyf, i.e., the cyclic
momenta equal the final Cartesian canonical momenta.
To obtain these momenta pxf and pyf, we then have to
consider (7a) and (7b) at the initial position; i.e., we have to
computeXij andYij at the initial coordinates, and then invert
the equations, for example, by a Newton routine in which the
initial momenta px0 and py0 are given by the initial slopes x00
and y00 and the corresponding values of the potentials there.
We choose a Newton routine, because it will be sufficient

for a first demonstration code and is straightforward to be
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implemented. For a first-order expansion in the canonical
momenta, Eqs. (7a) and (7b) can be solved explicitly and
yield a similar form as Eq. (27) in Ref. [1].
Note that since we have vr ¼ pxf ¼ x0f þ ϵAxf and vφ ¼

pyf ¼ y0f þ ϵAyf by the conditions above, Eq. (5) turns out
to be in fact an expansion with respect to these final slopes
x0f and y0f and the field strength parameter ϵ.
Once the canonical momenta pxf and pyf are deter-

mined, we compute the offsets xf and yf using the second
set of equations (3b) for the generating function:

xf ¼ xþ pxfðzf − zÞ

þ
X∞

i¼1;j¼0

ipi−1
xf pj

yf

X∞
k¼1

fijkðr;φ; zÞϵk; ð9aÞ

yf ¼ yþ pyfðzf − zÞ

þ
X∞

i¼0;j¼1

jpi
xfp

j−1
yf

X∞
k¼1

fijkðr;φ; zÞϵk: ð9bÞ

After the offsets are computed, we obtain the slopes x0f and
y0f at the final position from the previous equations, by
inserting the offsets into the potential functions.
In practice, we have to stop the summations at a given

index, which means to force higher-order fijk’s to be zero
in contradiction to (6). This error does not affect symplec-
ticity, because the transformation obtained by such a
truncated generating function belongs to a correspondingly
modified Hamilton-Jacobi equation. The convergence
towards the physical values depend on the normalized
field strength parameter ϵ and the step size, whereas only
the latter one can be freely chosen for real devices.

III. IMPLEMENTATION

A. An iterative solution using Fourier decompositions

Let us assume a Fourier decomposition Br ¼P∞
n¼−∞ bneiknz, Bφ ¼ P∞

n¼−∞ b̂neiknz of the (transversal)
field components within I along the z axis, with kn ≔
2πn=L and in which bn and b̂n are complex functions of r
and φ. We further assume a gauge in which Az ≡ 0. Then
by integration of

~B ¼ ~∇ × ~A ¼
�
−
∂Aφ

∂z ;
∂Ar

∂z ;
1

r

�∂ðrAφÞ
∂r −

∂Ar

∂φ
��

; ð10Þ

the normalized vector potentials Ar and Aφ have the form

Arðr;φ; zÞ ¼ b̂0zþ
X∞

n¼−∞;n≠0

b̂n
iknz

eiknz; ð11aÞ

Aφðr;φ; zÞ ¼ −b0z −
X∞

n¼−∞;n≠0

bn
iknz

eiknz: ð11bÞ

By Eq. (6), higher-order fijk’s are then computed by
successively differentiating lower-order terms with respect
to x and y and then integrating them with respect to z.
During that process, the terms with b0 and b̂0 introduce
more and more mixed expressions involving the quantitiesR
zk expðiknzÞ due to the products in Eq. (6). Although this

does not constitute an essential obstacle, we have chosen to
first expand z into a series in order to keep the resulting
expressions simpler. This will introduce certain errors, as
we will see, and we also do not recommend it for efficient
application. The basic principles, however, can be
demonstrated.
Without loss of generality, assume that I is symmetric

around z ¼ 0 and consider a Fourier decomposition z ¼
limK→∞TKðzÞ with respect to I, where

TKðzÞ ≔
XK

n¼−K;n≠0
ik−1n ð−1Þneiknz: ð12Þ

Then we obtain

Arðr;φ; zÞ ≕ −
X∞
n¼−∞

d̂001n eiknz; ð13aÞ

Aφðr;φ; zÞ ≕ −
X∞
n¼−∞

d001n eiknz; ð13bÞ

in which d001n and d̂001n are complex functions of r and φ,
related to the Fourier coefficients bn and b̂n of the magnetic
fields by (n ≠ 0):

d̂001n ¼ −ik−1n ½ð−1Þnb̂0 − b̂n�e=pkin; ð14aÞ

d001n ¼ ik−1n ½ð−1Þnb0 − bn�e=pkin; ð14bÞ

and d̂0010 ¼ 0 ¼ d0010 , with e=pkin as the normalization
factor. By introducing corresponding Fourier decomposi-
tions of fijk, Xijk, and Yijk,

fqpk;z ≕
X∞
j¼−∞

ηqpkj eikjz; ð15aÞ

Xqpk ≕
X∞
j¼−∞

ðcd̂qpk − sdqpkÞeikjz; ð15bÞ

Yqpk ≕
X∞
j¼−∞

ðsd̂qpk þ cdqpkÞeikjz; ð15cÞ

where c ≔ cosðφÞ and s ≔ sinðφÞ, we obtain in cylinder
coordinates [17]
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ηqpkj ¼ −
1

2

Xq
α¼0

Xp
β¼0

Xk−1
l¼1

X∞
n¼−∞

ðd̂αβln d̂q−α;p−β;k−lj−n

þ dαβln dq−α;p−β;k−lj−n Þ − cd̂q−1;pkj þ sdq−1;pkj

− sd̂q;p−1;kj − cdq;p−1;kj ; ð16Þ

where for ðq; p; kÞ ≠ ð0; 0; 1Þ

d̂qpkj ¼
� ik−1j ½ð−1Þjηqpk0;r − ηqpkj;r � if j ≠ 0;

−
P∞

n¼−∞;n≠0 d̂
qpk
n eiknzf else:

ð17aÞ

dqpkj ¼
� ik−1j r−1½ð−1Þjηqpk0;φ − ηqpkj;φ � if j ≠ 0;

−
P∞

n¼−∞;n≠0 d
qpk
n eiknzf else:

ð17bÞ

and

fqpk ¼ ηqpk0 ðz − zfÞ þ
X∞

j¼−∞;j≠0

wj

ikj
ηqpkj ð18Þ

with wj ≔ eikjz − eikjzf , using the boundary conditions
fqpkðr;φ; zfÞ≡ 0. In order to maintain a high numeric
accuracy, we choose z0 and zf accordingly so that zf0;fg ¼
TKðzf0;fgÞ is satisfied; see Fig. 1. Equations (16), (17a),
and (17b) show how higher total orders of the fijk’s, and

therefore higher-order results in the computations of the
coordinates, depend on higher orders in the derivatives of
the field coefficients. This goes completely analogous if
we would have included higher orders in the slopes. The
integration of the Fourier-approximated functions will,
however, introduce specific errors: For example, the next
integral will have extrema at the zeros of its integrand.
Nonetheless, we implemented this method in STGFM in
order to verify our ideas, and it turns out that the errors are
within reasonable ranges; see Sec. IV. To find precise
values (which must be computed only once) for z0 and zf,
we used a Newton iteration beforehand.
Equations (7a) and (7b) can be written in vectorial

form ðpx; pyÞtr ≕ gðpxf; pyfÞ, which has to be evaluated
at the initial coordinates and inverted for ϵ ¼ 1. This
was done using another Newton iteration ~piþ1 ¼ ~pi−
½g0ð~piÞ�−1½gð~piÞ − ðpx; pyÞtr�, ~p0 ≔ ðpx0; py0Þtr.

B. Multipole fields

Let us take a closer look on the 3D-multipole fields.
According to Ref. [12], the analytic formulas for these
multipoles can be written as

Brðr;φ; zÞ ¼
sinðmφÞ

m!

X∞
p¼0

ð2pþmÞGm;2pðzÞr2pþm−1;

ð19aÞ

Bφðr;φ; zÞ ¼
cosðmφÞ
ðm − 1Þ!

X∞
p¼0

Gm;2pðzÞr2pþm−1; ð19bÞ

Bzðr;φ; zÞ ¼
sinðmφÞ

m!

X∞
p¼0

Gm;2pþ1ðzÞr2pþm; ð19cÞ

where 2 ≤ m ∈ N is the order of the multipole (m ¼ 2
quadrupole, m ¼ 3 sextupole, etc.) and for p ≥ 0

Gm;2pðzÞ ≔ ð−1Þp m!

4pðmþ pÞ!p!
d2pGm;0

dz2p
ðzÞ; ð20aÞ

Gm;2pþ1ðzÞ ≔
dGm;2p

dz
ðzÞ: ð20bÞ

The function Gm;0 ≕
P∞

n¼−∞ cneiknz is determined by the
field distribution along the z axis; see below. From (20a)
and (20b), it follows for p ≥ 1 that

dGm;2p−1

dz
ðzÞ ¼ −4ðmþ pÞpGm;2pðzÞ: ð21Þ

In practice, we have to truncate the infinite summations.
With Az ¼ 0 this yields for n ≠ 0

-100

-75

-50

-25

0

25

50

75

100

-210 -200 -190 -180 -170 -160 -150
z (mm)

y 
(m

m
)

-L/2
z0,25 z0,15 z0,5

FIG. 1. Enlarged part of the Fourier decomposition of the
function TKðzÞ − z with K ¼ 25 (red curve), 15 (blue curve), and
5 (magenta curve) Fourier coefficients. The function is expanded
over the same interval where the Fourier decomposition of the
reference field from RADIA is done (Sec. IV). The integration is
conducted from one zero crossing to another one, where the
zero crossings are determined with the Newton method. The
integration interval starts at z0;25, z0;15, and z0;5 depending
upon the number of Fourier coefficients utilized (25, 15, and
5, respectively).
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bn ¼ sinðmφÞcn
XP
p¼0

2pþm
4pðmþ pÞ!p! k

2p
n r2pþm−1; ð22aÞ

b̂n ¼ cosðmφÞcn
XP
p¼0

m
4pðmþ pÞ!p! k

2p
n r2pþm−1; ð22bÞ

and for n ¼ 0

b0 ¼
sinðmφÞ
ðm − 1Þ! c0r

m−1; ð23aÞ

b̂0 ¼
cosðmφÞ
ðm − 1Þ! c0r

m−1: ð23bÞ

For a given truncation order P, the cn’s can be determined,
for example, by the form of one field component along
the z axis, say, Bφðr0; 0; zÞ (see Fig. 2). Note that if we

introduce the Fourier coefficients ~bn ∈ C by

Bz ≕
X∞
n¼−∞

~bneiknz; ð24Þ

then for n ≠ 0

~bn¼ sinðmφÞicn
XP
p¼0

ð2pþmÞ2−m2

4pðmþpÞ!p! k2p−1n r2pþm−2; ð25Þ

and ~b0 ¼ 0. This Bz component emerged out of a truncated
potential using Eq. (10) and, thus, does not coincide with
the corresponding truncated formula of (19c). In summary,
the truncated formulas to (19a)–(19c) do not satisfy
~∇ ~B ¼ 0, whereas the ~B field emerging from Eqs. (22a),

(23b) and (25) do not satisfy ~∇ × ~B ¼ 0. The error eðzÞ due
to truncation is on the order of

eðzÞ ∝ 1

4Pðmþ PÞ!P!
���� d

2Pþ2Gm;0

dz2Pþ2

����: ð26Þ

This error cannot be avoided; however, it shrinks with the
expansion order P drastically. Even more important, the
non-Maxwellian character of the fields does not affect
the symplecticity of the whole ansatz.
Note that for P → ∞ we can express the partial deriv-

atives of bn and b̂n again in terms of bn and b̂n. One can
easily verify that for all n ∈ Z it holds [17] that

r sinðmφÞb̂n;r ¼ − sinðmφÞb̂n þm cosðmφÞbn; ð27aÞ

cosðmφÞb̂n;φ ¼ −m sinðmφÞb̂n; ð27bÞ

r cosðmφÞbn;r ¼ m sinðmφÞb̂n
�
1þ k2n

m2
r2
�
− cosðmφÞbn;

ð27cÞ

sinðmφÞbn;φ ¼ m cosðmφÞbn: ð27dÞ

These formulas can be used to derive general formulas
for arbitrary high derivatives using only the original
functions [17]. We have seen that, for higher orders in
the slopes, we require higher orders in the derivatives of the
multipole field at the starting position. For small values of
P it is, however, recommended to compute the derivatives
explicitly.

C. Low-order expansion

In STGFM we implemented a generating function F of
order up to 2 in the field strength parameter ϵ and of total
order 2 in the momenta pxf and pyf. Recall from Sec. III A
that we can write Eqs. (7a) and (7b) in vectorial form. With
the given order above, the Newton routine to obtain pxf and
pyf thus involves a matrix of the form

½g0ða; bÞ�−1 ¼ 1

D

�
1þ Y01 þ Y11aþ 2Y02b −X01 − 2X02b −X11a

−Y10 − 2Y20a − Y11b 1þX10 þ 2X20aþX11b

�
: ð28Þ

-1
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0.5

1

1.5

-300 -200 -100 0 100 200 300
z (mm)

fi
el

d 
(T

)
permanent magnet quadrupole

fields (thick)
z=3mm (x6)
z=9mm (x2)
z=18mm (x1)

residuals (thin)
z=3mm (x600)
z=9mm (x200)
z=18mm (x100)

FIG. 2. Thick lines: Longitudinal Bφ-field distribution in the
midplane of a quadrupole at horizontal off-axis distances of
r0 ¼ 3, 9, and 18 mm; thin lines: enhanced residuals (same color
coding) between the RADIA field and a Fourier representation
with 25 coefficients.
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Here D is the determinant of g0. Since we make the
computations up to second order in the field strength
parameter ϵ, we have to compute f101, f102, f011, f012,
f111, f112, f201, f021, f202, f022, and f002.
The first equations of (6), written down explicitly, are

f002;z ¼ −
1

2
ðA2

x þ A2
yÞ; ð29aÞ

f101;z ¼ Ax; ð29bÞ

f011;z ¼ Ay; ð29cÞ

f102;z ¼ Axf101;x þ Ayf101;y − f002;x; ð29dÞ

f012;z ¼ Axf011;x þ Ayf011;y − f002;y; ð29eÞ

f111;z ¼ −f011;x − f101;y; ð29fÞ

f201;z ¼ −f101;x; ð29gÞ

f021;z ¼ −f011;y; ð29hÞ

f112;z ¼ Axf111;x þ Ayf111;y − f011;xf101;x

− f011;yf101;y − f012;x − f102;y; ð29iÞ

f202;z ¼ Axf201;x þ Ayf201;y −
1

2
ðf2101;x þ f2101;yÞ − f102;x;

ð29jÞ

f022;z ¼ Axf021;x þ Ayf021;y −
1

2
ðf2011;x þ f2011;yÞ − f012;y:

ð29kÞ

Note that in Ref. [1], a subset of these equations are
presented. From Eq. (16), we obtain

η101j ¼ −cd̂001j þ sd001j ; ð30aÞ

η011j ¼ −sd̂001j − cd001j ; ð30bÞ

η002j ¼ −
1

2

X∞
n¼−∞

ðd̂001n d̂001j−n þ d001n d001j−nÞ; ð30cÞ

η102j ¼ −
1

2

X∞
n¼−∞

ðd̂001n d̂101j−n þ d001n d101j−n

þd̂101n d̂001j−n þ d101n d001j−nÞ − cd̂002j þ sd002j ; ð30dÞ

η012j ¼ −
1

2

X∞
n¼−∞

ðd̂001n d̂011j−n þ d001n d011j−n

þd̂011n d̂001j−n þ d011n d001j−nÞ − sd̂002j − cd002j ; ð30eÞ

η111j ¼ −cd̂011j þ sd011j − sd̂101j − cd101j ; ð30fÞ

η201j ¼ −cd̂101j þ sd101j ; ð30gÞ

η021j ¼ −sd̂011j − cd011j : ð30hÞ

The partial derivatives of the ηqpkj ’s with respect to r and φ
are computed from these equations, as well as all higher-
order dqpkn ’s and d̂qpkn ’s using Eqs. (17a) and (17b). By this
method we obtain the entries Xij and Yij in the matrix
above and thus are able to compute the final canonical
momenta pxf and pyf.
The computed values have been cross-checked numeri-

cally by the model of an extended 2D quadrupole of

constant field gradient K. With ~B¼ðKy;Kx;0Þtr we obtain
Ax ¼ −KxΔz and Ay ¼ KyΔz, where Δz ≔ zf − z. It
follows that

f002 ¼ 1=6K2Δz3r2; ð31aÞ

f101 ¼ 1=2KxΔz2; ð31bÞ

f011 ¼ −1=2KyΔz2; ð31cÞ

f102 ¼ 5=24K2xΔz4; ð31dÞ

f012 ¼ 5=24K2yΔz4; ð31eÞ

f111 ¼ 0; ð31fÞ

f201 ¼ −f021 ¼ 1=6KΔz3; ð31gÞ

f112 ¼ 0; ð31hÞ

f202 ¼ f022 ¼ 1=15K2Δz5: ð31iÞ

The values ηqpkj have been computed from these equations
by inverting (15a):

ηqpkj ¼ 1

L

Z
I
fqpk;ze−ikjzdz: ð32Þ

Similarly, the values dqpkj and d̂qpkj have been checked
using

d̂qpkj ¼ 1

L

Z
I
ðcXqpk þ sYqpkÞe−ikjzdz; ð33aÞ

dqpkj ¼ 1

L

Z
I
ð−sXqpk þ cYqpkÞe−ikjzdz: ð33bÞ
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To compute the offsets xf and yf (respectively, rf and φf),
we insert the known final canonical momenta pxf and pyf

into Eqs. (9a) and (9b) at ϵ ¼ 1:

xf ¼ x0 þ pxfΔzþ f101 þ f102

þ ðf111 þ f112Þpyf þ 2ðf201 þ f202Þpxf; ð34aÞ

yf ¼ y0 þ pyfΔzþ f011 þ f012

þ ðf111 þ f112Þpxf þ 2ðf021 þ f022Þpyf: ð34bÞ

Note that all higher derivatives of d̂001n and d001n can be
expressed in terms of bn and b̂n by (27a)–(27d).

IV. TRACKING RESULTS

The tracking scheme is based on a new method which is
not implemented yet in any other tracking code available.
Various numeric tests have been performed with respect to
other references: The first set of tests compares a full 3D
tracking based on the new code with the results derived
from numeric integration utilizing the magnetostatic code
RADIA [18,19]. In a second test run, the new code is
compared to analytic expressions which are exact in
second-order expansion in the magnetic field for specific
initial conditions. In a third step, particle tracking with up to
3 × 104 turns has been performed. It is demonstrated that
specific resonances are driven only if the fringe fields
are switched on. We want to discuss these tests in more
detail.
A FORTRAN code has been written for the numeric tests.

The various expansions with respect to the canonic
momenta and the field strength are programed explicitly
which results in a rather bulky code which cannot easily be
expanded to higher orders. Furthermore, it is not optimized
for high-speed number crunching. On the other hand, the
explicit programing is well structured, and, thus, it is suited
for all types of numeric checks. The code treats 3D
multipoles parametrically; thus, all kind of multipoles
discussed in Refs. [12,13] are implemented. The code is
freely available [20]. As explained in Sec. II, STGFM
involves a Fourier decomposition of the function TK within
the expansion interval of the transverse fields up to an order
K of our choice.
The numeric tests were performed for a quadrupole. In a

first step, the Fourier coefficients cn for the field (or vector
potential) needs to be determined. For this purpose, a pure
permanent magnet Halbach-type quadrupole [21] consist-
ing of 256 radial slices per 360 degrees is evaluated with
RADIA. The hard edge length is 200 mm, and the inner and
outer radii are 20 and 40 mm, respectively. A single
transverse field component is evaluated at three radii of
r0 ¼ 3, 9, and 18 mm over a length of 400 mm (100 mm
beyond both ends of the magnet).

Each field distribution is decomposed into an individual
set of 25 harmonics an;r0 where Bφðr0; 0; zÞ ¼P∞

n¼0 an;r0 cosðknzÞ, with kn ¼ 2πn=L and L ¼ 0.4 m.
Equations (22b) and (23b), taken at r ¼ r0 and φ ¼ 0,
were then inverted to obtain the cn’s. Because of symmetry
considerations, the sinlike terms are set to zero to exclude a
possible source of numeric noise in this case. We empha-
size that sin terms are implemented into the code as well
for the description of nonsymmetric field profiles, as was
shown in Sec. II. The Fourier decomposition is well suited
for the field description, and even close to the magnet pole
tips (radius ¼ 18 mm) the longitudinal field distribution is
reproduced with high accuracy (Fig. 2).
In the following, we will use the coefficients as derived

from the fields at the reference radius of r0 ¼ 9 mm.
Because of the finite number of segments (256) in the
RADIA simulations, the radial field dependence is nonlinear
further off axis (Fig. 3). Similarly, in a real magnet,
saturation effects of an iron yoke or permeability of the
permanent magnets different from one would lead to
nonlinearities, which are often approximated by 2D fields,
independent of the longitudinal position. Fringing fields are
strongly dependent on the longitudinal position and require
a 3D-field description. Both types of fields are correctly
treated by the applied multipole expansion. Nonlinearities
are automatically introduced in the model via the higher-
order derivatives of the longitudinal field distribution:
P ¼ 1, 2, 3 introduces third-, fifth-, and seventh-order
dependencies in r. The third-order terms are also called
pseudooctupoles. P can freely be chosen in the FORTRAN
implementation.

A. Comparison STGFM versus RADIA

In the first set of tests, we tracked 63 particles with
different initial coordinates in a single step of 400 mm
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residuals x 105, 3rd order fit
residuals x 105, 5th order fit

FIG. 3. Distribution of the field component Bφ in the midplane
of a permanent magnet quadrupole as described in the text. The
residuals represent the terms with nonlinear radial dependency in
our test model.
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through the complete quadrupole including the fringe
fields. All 25 Fourier coefficients are included. Different
choices for the initial displacement and angle distributions
were chosen: (i) Initial displacements and angles are
equally distributed either on a horizontal or on a vertical
phase space ellipse. The two phase spaces are still
uncoupled behind the quadrupole (Fig. 4). (ii) The hori-
zontal and the vertical initial displacements are equally
distributed on an ellipse whereas the initial angles are set to
zero (Fig. 6). (iii) The horizontal and the vertical initial
angles are equally distributed on an ellipse whereas the
initial displacements are set to zero (Fig. 7).
In the last two cases the coupling terms (i.e., terms which

contain products of the coordinates of both planes) are
tested. The results are compared to results from RADIA

which uses a Runge-Kutta method. For a better visibility,
the drift related to the initial angle and the linear focusing
term have been subtracted from the results. The linear
focusing term is evaluated as

dx0lin-foc ¼
c0

Bρr0
ðzf − z0Þ: ð35Þ

Figures 4–7 give the results for two orders of expansion:
The red solid curves belong to orders taken as in Sec. III C,

whereas the red dotted curves belong to total order one
in the canonical momenta pxf and pyf and order two in
the field strength parameter ϵ. The blue curves give the
corresponding differences to RADIA (black, solid line). For
a better visibility of these differences, a scaling factor of 50
has been used for the solid lines and a factor of 5 for the
dotted lines. For the red solid curves, the accuracy is on the
percent level in all cases. Higher accuracy is expected for
higher expansion orders or for a coordinate transformation
in several steps through the magnet.

B. Comparison STGFM versus analytic formulas

In a second test, we checked the code against analytic
expressions where the level of accuracy is known. The
analytic formulas assume an infinitely long quadrupole,
characterized by only the lowest-order Fourier coefficient
c0 in STGFM. The analytic formulas come from the well-
known linear transfer matrix, expanded to second order in
field strength. Note that, although both the analytic for-
mulas and the code constitute comparable expansions in
field strength, they do not necessarily agree: The Newton
routine, for example, introduces higher products of field
strength because of the division by the determinant. In our
test, c0 was derived from an 800 mm long quadrupole
modeled with RADIA. For an initial displacement or angle in
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FIG. 4. Final coordinates after
tracking through a quadrupole mag-
net as evaluated with RADIA (black,
solid line) and with STGFM for
different expansion orders (see the
text). All particles are initially
equally distributed on the rim of a
horizontal phase space ellipse with
displacement. Top: ðx0;x00;y0;y00Þ¼
ð9mm;10mrad;0;0Þ. Bottom: ðx0;
x00;y0;y

0
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Fig. 4, this time computed for two
steps. We see that, in comparison to
Fig. 4, the errors in case of the low-
order expansion (dashed blue curves)
are significantly reduced. The errors
with more expansion orders (solid
blue curves) improve only slightly.
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FIG. 6. The same color code and
line type as Fig. 4, but with different
initial coordinates (see the text):
starting with particles equally distrib-
uted on a circle with displacements
x0 ¼ 9 mm and y0 ¼ 9 mm (bottom:
x00 ¼ 0 mrad and y00 ¼ 0 mrad).
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one plane (the other three initial coordinates are zero), the
final displacement and angle in the same plane can be
derived analytically. We summarize the results up to
second-order expansion:
For the starting coordinates x0 ¼ 0, x00 ≠ 0, y0 ¼ 0, and

y00 ¼ 0, the final coordinates are evaluated from

xf ¼ x00K
−1 sinðKΔsÞ

≅ x00Δs −
1

6
x00

c0
Bρr0

Δs3 þ 1

120
x00

�
c0

Bρr0

�
2

Δs5; ð36aÞ

x0f ¼ x00 cosðKΔsÞ

≅ x00 −
1

2
x00

c0
Bρr0

Δs2 þ 1

24
x00

�
c0

Bρr0

�
2

Δs4: ð36bÞ

For starting coordinates x0 ≠ 0, x00 ¼ 0, y0 ¼ 0, and
y00 ¼ 0, we get

xf ¼ x0 cosðKΔsÞ

≅ x0 −
1

2
x0

c0
Bρr0

Δs2 þ 1

24
x0

�
c0

Bρr0

�
2

Δs4; ð37aÞ

x0f ¼ −x0K sinðKΔsÞ

≅ −x0
c0

Bρr0
Δsþ 1

6
x0

�
c0

Bρr0

�
2

Δs3; ð37bÞ

where K ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c0=ðBρr0Þ

p
. Similar equations hold for the

vertical phase space.
The analytic expressions can conversely be obtained

from the theory section when inserting (31a)–(31i) and the
corresponding expressions for the canonical momenta
into (34a) and (34b) together with the expansion of the
inverse of the determinant (28) for the lower orders. The
simulations have been performed for different electron
energies to check the convergence of the series (Fig. 8). The
following terms y are plotted:

y ¼
���� valSTGFM − valanalytic model

valanalytic model

����; ð38Þ

where valSTGFM and valanalytic model are the corresponding
final coordinates evaluated with the two methods. At low
energies, y scales with an order equal to or higher than
three. This is explained by the fact that the analytic
expansions are truncated at the second order. At first
glance, a third-order scaling is expected to remain for
higher electron energies. Interestingly, the scaling is lower
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FIG. 7. The same color code and
line type as Fig. 4, but with different
initial coordinates (see the text):
starting with particles equally dis-
tributed on a circle with angles x00 ¼
10 mrad and y00 ¼ 10 mrad (bottom:
x0 ¼ 0 mm and y0 ¼ 0 mm).
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than third order. Since the inverse of the determinant is
involved in our expressions, we have especially first- and
second-order terms in the energy in any expansion order.
The local minima in several plots (e.g., lower left in Fig. 8)
are due to a sign change of the ratio in the expression of y.
Thus, the convergence behavior with energy is well
understood.

C. Tracking with FODO lattice

In a third test, we examined the tracking suitability of the
new code and compared it against a conventional integra-
tion routine WAVE [22,23]. For multiturn tracking, simple
FODO-like lattices have been set up besides the extended
3D quadrupole.
In the first case, one defocusing kick quadrupole at either

side of the 3D-focusing quadrupole is introduced. Second,
we added one more defocusing and focusing kick quadru-
pole on both sides (Fig. 9). The integrated strength of the
individual kick quadrupoles equals half the strength of the
3D quadrupole, and the sign is reversed. The simple lattice
is closed with a drift of 200 mm between the kick
quadrupoles. The observation plane is placed in the center
between the kick quadrupoles. We tracked 103 turns and
analyzed the displacements at the observation plane. The
strength of the 3D quadrupole and the two kick quadru-
poles can be scaled by a common factor afact.

We started from the model 3D quadrupole depicted in
Fig. 2 including 12 Fourier coefficients. This quadrupole
has an integrated strength of 2.12=m (normalized to the
particle energy). In order to move the tune close to a quarter
resonance, all Fourier coefficients and also the strength
of the two kick quads are multiplied by the same factor
afact ¼ 2.27. The orbit displacement versus turn number in

10-6

10-5

10-4

10-3

10-2

10-1

1 10 102

energy (GeV)

y
x’0 xf

x’f

10-6

10-5

10-4

10-3

10-2

10-1

1 10 102

energy (GeV)

y

y’0 yf

y’f

10-6

10-5

10-4

10-3

10-2

10-1

1 10 102

energy (GeV)

y

x0 xf

x’f

10-6

10-5

10-4

10-3

10-2

10-1

1 10 102

energy (GeV)

y
y0 yf

y’f

FIG. 8. Relative errors between
the results of STGFM and those
from analytic equations which
contain only a linear and a quad-
ratic term in the field and energy
(for details, see the text). Blue
line, displacement; red line, an-
gle. The data are given for differ-
ent starting coordinates. Top left:
ðx0; x00; y0; y00Þ ¼ ð0; 10 mrad; 0;
0Þ; top right: (0, 0, 0, 10 mrad);
bottom left: (9 mm, 0, 0, 0);
bottom right: (0, 0, 9 mm, 0).

FIG. 9. Top: Simple lattice with one extended focusing quadru-
pole (EFQ) treated with STGFM and two defocusing kick quads
(DFQ) which together have the same absolute strength as the
extended quad. Bottom: Extended quadrupole with additional
focusing and defocusing quads. The same scaling factor is
applied to all elements for adjusting the tune close to 0.25.
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the symmetry plane is Fourier transformed to determine the
tune and the dynamic behavior of the particles (Fig. 10).
The positions of the additional lines for P ¼ 1 are of no
further relevance in this example; they depend on the initial
particle coordinates and distance to the resonance.
Switching off the nonlinearity by setting P ¼ 0, a single
pronounced tune is observed, describing the oscillation in
a parabolic potential. For P ¼ 1 an additional third-order
radial field dependency in the transversal components is
introduced.
In the next step, the tune is shifted close to the quarter

resonance of 0.25 in order to drive the nonlinearity, using a
scaling factor of afact ¼ 2.370. Now, the orbit plotted
versus the number of turns follows a long period beating
(not shown), the Fourier transform of the position variables
shows additional lines, and the appearance of a fourfold
island structure is shown in Figs. 11 and 12 in red. For
comparison, results of the WAVE integration routine are
shown in black. For the tracking, the subroutine related to
the GF was replaced by the WAVE integration routine,
applying the same B-field routines and lattice setup. The
results show the island structure symmetrically placed in
the x − x0 plane, as expected. The discrepancies
to STGFM indicated the limited accuracy of the approxi-
mation used.
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FIG. 10. Logarithmic plot of the Fourier transform of the orbit
excursion for 103 turns. The maximum of the peaks corresponds
to the tunes. P ¼ 0 corresponds to purely linear fields; P ¼ 1
introduces a third-order field contribution. Parameters: 1.7 GeV,
afact ¼ 2.27, start amplitudes x0 ¼ 40 mm and y0 ¼ 0 mm. The
tracking through the thick element was done in a single step with
12 Fourier coefficients. We use the same ordering as described at
the beginning of Sec. III C.
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FIG. 11. Tracking results in the hori-
zontal plane for 103 turns (outermost
curve plotted for 3 × 104 turns) with a
simple lattice as described in the text and
Fig. 9 (top). Starting coordinates x0 ¼ 5,
15.0, 25.0, 35.0, 45.0, and 55.0 mm,
while x00 ¼ 0 mrad in all cases. The scal-
ing factor for the quadrupoles was chosen
to be afact ¼ 2.370, which corresponds to
an integrated quadrupole strength of
5.02=m. When the tune is close to 0.25,
the fringe fields as described in STGFM
drive a fourth-order resonance as demon-
strated in the plot. Switching off the fringe
fields (i.e., taking only c0), the resonances
disappears (not plotted). The results of
STGFM are given in red, and results of
WAVE are shown in black. To achieve
good agreement, the focal strength in
the case of WAVE was reduced by 7%.
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The tilt of the pattern in Fig. 11 is due to the finite
expansion order, which comes into effect at high fields:
The integrated 3D-quadrupole strength is 5.02=m, while
the strongest BESSY II quadrupole has 1.3=m. The
rotation nearly vanished when the 3D-quadrupole
strength is reduced by roughly a factor of 2 as depicted
in Fig. 12 (strength 2.58=m), indicating a much better
agreement of STGFM. Here, the extended lattice of Fig. 9
(bottom) has been applied. All multipoles are scaled with
the same factor such that the tune is close to 0.25, as
before. It must be emphasized that all tracking results are
evaluated with a single step of about 0.4 m along the 3D
quadrupole.
To compare the integration routine with results of

STGFM, the field strength factor afact was reduced by
about 1% for the integration routine to achieve a better
agreement of the island size and position of both routines.

V. CONCLUSION

We presented a GF-based tracking scheme through
a complete set of 3D multipoles. For test purposes we
implemented the algorithm into a FORTRAN code. Various
tests with this code have been performed to confirm the
validity of the algorithm. In this paper, a quadrupole
magnet has been studied as a test case. The method is

applicable to any kind of stationary magnetic fields where
the reference orbit is described by a straight line.
Today, the implementation of the code is limited in the

expansion (total) order which is “hard wired,” and it is not
optimized for fast computing. In the future, we plan to
examine generalizations to comoving coordinates in stor-
age rings and time-dependent fields. Furthermore, CPU
tests with an improved code will be performed for a
comparison with other codes and step-size tests. This
may also involve a review of the effects using different
gauges.
It is expected that the new code will be extremely useful

for sophisticated magnet designs such as combined func-
tion magnets or compact magnet designs with significant
cross talk as well as long periodic structures with fringing
fields. These sophisticated magnet designs are already now
part of the upcoming diffraction-limited light sources [24].
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FIG. 12. Tracking results in the hori-
zontal plane for 103 turns with the lattice
as depicted in Fig. 9 (bottom). Starting
coordinates are x0 ¼ 5, 10.0, 15.0, 20.0,
25.0, 30, and 35 mm, while x00 ¼ 0 mrad
in all cases. The scaling factor for the
quadrupoles was chosen to be
afact ¼ 1.218, which corresponds to an
integrated quadrupole strength of 2.58=m.
The rotation of the pattern is greatly
reduced as compared to Fig. 11, since
the quadrupole field strength is about 2
times smaller compared to Fig. 11. The
results of STGFM are given in red, and
results of WAVE are shown in black. As
before, the focal strength was reduced by
1% in the case of WAVE to achieve good
agreement of both methods.
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