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In this study, nanostructured CuO electrodes are prepared, which show no capacity decay for 

40 cycles at 0.1C for Li metal cell setup. The reaction mechanisms of the CuO electrodes are 

investigated as the main focus. With the help of in situ EIS, in situ XRD, TEM, XAS, SQUID, 

IC and GC-MS, it is found that the as-prepared CuO electrode undergoes significant phase and 

composition changes during the initial lithiation, with the transformation of CuO to nano- 

crystalline Cu. During the 1st delithiation, Cu is inhomogeneously oxidized, which yields a 

mixture of Cu2O, Cu2-xO and Cu. The incomplete conversion reaction during the 1st cycle is 

attended by the formation and partial decomposition of the SEI as the side reactions. 
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Nevertheless, from the 1st to 5th delithiation, the oxidation state of Cu approaches +2. After an 

additional formation step, the transformation to Cu and back to Cu2-xO keeps stable during the 

subsequent long-term cycling with no electrolyte decomposition products detected. The 

NMC/CuO full cells show high capacities (655.8 ± 0.6, 618.6 ± 0.9 and 290 ± 2 mAh/g at 0.1, 

1 and 10C, respectively), within the voltage range of 0.7-4.0V at 20°C and a high capacity 

retention (85% after 200 cycles at 1C). 

1. Introduction 

CuO has been used as cathode material in CuO/Li metal primary battery cells for more than 30 

years. The discharge reaction mechanism has been investigated ever since.[1] However, debates 

still exist regarding whether composites containing intermediate phases are formed during the 

electrochemical discharge.[2-4] As other materials that have been first proposed as cathodes in 

Li metal batteries,[5,6] CuO has become a candidate for the anode of lithium-ion battery cells 

because of its high theoretical capacity, nontoxic nature and the reversible conversion reaction 

with Li (found by Poizot et al. in 2000).[7,8] Due to their limited specific capacities (Ah/kg), the 

traditional anode material for lithium-ion batteries, i.e., graphitic carbon such as synthetic 

mesocarbon microbead (MCMB) graphite or natural graphite is under challenge by materials 

like CuO as a conversion reaction based material.[9,10] Nevertheless, because of the high 

discharge potential, most graphite anode based lithium cells show larger specific energies 

(Wh/kg), though conversion anodes may have an advantage in volumetric capacities (Ah/L) 

and related energy densities (Wh/L). At the end, unfortunately, the large potential hysteresis [11] 

results in poor voltage efficiency and also the lower Coulombic efficiency (in particular in the 

first cycle). These disadvantages significantly lower energy efficiencies of conversion anodes 

and thus cause higher electricity losses and higher charging costs.[12] Hence, the application of 

conversion materials might be restricted to certain areas in which energy efficiency is not the 

primary concern, e.g. for small cell size applications, such as portable consumer electronics.  
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As a typical conversion material, CuO experiences huge volume changes (more than 70 %) 

during the initial lithiation process.[13] It has been reported that this volume change might be 

the main reason for the rapid capacity loss (more than 70 %) during the initial cycles.[14] The 

low capacity is caused by a re-oxidation of copper to Cu2O only that has an oxidation state of 

Cu +1.[15] The theoretical capacity related to this re-oxidation is 375 mAh/g. It was found that 

in re-oxidized copper oxides the small crystallite size facilitates formation of cubic Cu2O 

instead of monoclinic CuO.[16] Based on the previous experience made with Li storage metal 

(Sn, Si, etc.) morphologies,[17] many research groups have adopted various synthesis methods 

to minimize the side effects resulting from volume expansion of conversion materials. For 

example, Tang et al. synthesized a leaf-like mesoporous CuO with a high current density and a 

specific capacity of 490.5 mAh/g.[7] Moreover, CuO nanotubes, thin film and other porous 

morphologies as well as surface-organic coating and CuO/graphite composites were prepared 

to enhance the Coulombic efficiency and cycling performance.[18-20] However, the Coulombic 

efficiency of these methods remains questionable as regarding to their impact on the long-term 

electrochemical performance. Moreover, the nature of the conversion mechanism between Li 

and CuO still remains ambiguous. Finally, few reports have been published, which address the 

full-cell performance by assembling CuO anodes with commercially available cathodes to 

investigate the real electrochemical conditions of this kind of lithium-ion batteries.  

In this work, nanostructured CuO electrodes are prepared with commercially available raw 

materials. CuO/Li metal cells are assembled and investigated. The mean voltage and the cell 

impedance are determined to figure out the impact of Li+ diffusion and the solid electrolyte 

interphase (SEI) on the electrochemical properties of the Li metal cells.[21] Moreover, the main 

focus of this study is the investigation of the conversion reaction of CuO with Li during the 

initial lithiation/delithiation, where the highest degree of volume expansion and phase 

transformations take place. The combination of in situ X-ray diffraction (XRD), selected area 
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electron diffraction (SAED), energy dispersive X-ray spectroscopy (EDS), X-ray absorption 

spectroscopy (XAS) and superconducting quantum interference device (SQUID) measurements 

reveal the phase and oxidation state changes of the Cu-O-Li system at different voltage ranges. 

Besides, the corresponding transmission electron microscopy (TEM) images at the initial 

lithiation/delithiation states give an impression of the crystallite size and the thickness changes 

of the SEI,[22] which covers the active material and has been suggested to contribute to the 

capacity of the cell as well.[23] Furthermore, a lithium-ion battery full cell is assembled with the 

nanostructured CuO as anode and a commercial LiNi1/3Mn1/3Co1/3O2 (NMC-111) electrode as 

cathode for the demonstration of application under realistic conditions. The as-prepared full 

cell is investigated under different voltage ranges and C-rates to show its electrochemical 

properties. Meanwhile, the electrolyte decomposition is investigated with the help of ion 

chromatography (IC) and gas chromatography-mass spectrometry (GC-MS). 

2. Results  

The morphology of the pristine nano-sized CuO particles and the surface of the self-prepared 

electrodes were examined by SEM (Figure S1) and XRD (Figure S2). In the pristine state, CuO 

nano particles with an average diameter of ~ 50 nm are observed (Figure S1a). After the high 

speed ball milling, the self-casted electrodes retain the original grain size distribution of the raw 

particles, which are homogenously embedded in the conducting and binding auxiliary materials 

(Figure S1b). Rietveld refinement of the X-ray diffraction pattern from the casted electrode 

reveals phase-pure CuO (space group C2/c) with a crystallite size of 31 ± 2 nm and with the 

following set of unit cell parameters: a = 0.4684 ± 0.0003 nm, b = 0.3426 ± 0.0003 nm, c = 

0.5132 ± 0.0004 nm, β = 99.42 ± 0.01 °.  

To study the electrochemical properties of the nanostructured CuO electrodes, CuO/Li metal 

cells are assembled and undergo 40 constant current (CC) cycles at 0.1C, as shown in Figure 1. 
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The initial discharge (lithiation) capacity is 766 ± 1 mAh/g, while the first charge (delithiation) 

capacity is 381 ± 1 mAh/g. The Coulombic efficiency of the 1st cycle is 43 %. The low 

Coulombic efficiency of the 1st cycle is characteristic for this kind of active material.[24-27] It is 

commonly considered to be caused by the volume change and the formation of a solid 

electrolyte interphase (SEI) during the 1st cycle and the reoxidation of metallic Cu to Cu+1 in 

Cu2O instead of to Cu+2 in CuO. However, the nano CuO/Li metal cells experience a continuous 

increase of the specific capacity upon cycling. After 40 cycles, the specific delithiation capacity 

increases from 381 ± 1 mAh/g to 550 ± 1 mAh/g, with the corresponding capacity increase of 

44 %.  

To investigate possible reasons behind this capacity increase during cycling, the data of the 

mean voltages of the nano CuO/Li metal cells are plotted in Figure 1 for the first 40 cycles. All 

data are extracted in the fully lithiated state. During cycling, a much lower lithiation mean 

voltage is seen during the initial cycles. Nevertheless, with the proceeding of cycling, the mean 

voltage value increases from 1.03 ± 0.01 to 1.14 ± 0.01 V. As an increase in the lithiation mean 

voltage indicates a decrease of the internal resistance, it can be seen that the internal resistance 

of the cell is decreased upon cycling, which results in the corresponding capacity increase for 

the investigated cells. 

An electrochemical impedance spectroscopy (EIS) measurement was conducted to detect the 

charge-transfer and contact resistance of the cells during cycling, which indicate the changes in 

the corresponding SEI and the contact resistance of the electrode, as shown in Figure 2. The 

frequencies at 5–100 Hz reveal processes affected by the charge-transfer resistance, and 

frequencies of >100 Hz correspond to the contact resistances.[28] The constant charge-transfer 

resistance indicates the formation of an effective SEI after the 1st de-lithiation process, while 

the constant contact resistances show the stability of the corresponding electrodes during 

cycling. 
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Hence, combining the mean voltage analysis results with the EIS results, it is clear that the 

increase in the mean voltage (the decrease of the resistance) does not originate from the SEI, 

but is caused by a better Li+ transport in the electrode. 

In this regard, an additional constant voltage (CV) step at 0.02 and 3 V for 10h is applied in the 

first five formation cycles to take an advantage of the improved Li+ diffusion on the 

electrochemical performance of the corresponding CuO/Li metal cells, as shown in Figure 3. It 

has been previously reported that an additional CV step during the charge and discharge have 

a most pronounced effect on the significance of the obtained CC cycling data.[29] Differences 

can clearly be seen from the delithiation capacities after the CV step compared with the cells 

without any further CV step. After the formation process, the charge (delithiation) capacity 

increases from 542 ± 5 (without a CV step) to 693 ± 2 mAh/g (with a CV step). After that, the 

cell keeps an average delithiated capacity of ≈ 580 mAh/g until the end of the 40th cycle.  

Therefore, it can be concluded that the additional constant voltage step during the formation 

process enhances the capacity of the cell system.  

The lithiation/delithiation voltage profiles of the nano CuO/Li cells are presented in Figure 4. 

During the initial and the following lithiation processes, three voltage regions at 2.1-1.4 V, 1.4-

1.0 V and 1.0-0.02 V are seen, respectively. However, when comparing the 1st with the 5th and 

with the 40th lithiation profile, the region of 1.4-1.0V is shortened, while the other two voltage 

regions keep the same during cycling. Moreover, during the following 1st delithiation process, 

only two voltage regions are observed (at 0.02 - 2.25 V and 2.25 – 3.0 V). Meanwhile, a 

prolonged voltage region of 2.25 – 3.0 V is seen after the 5th delithiation when compared with 

the 1st delithiation. This indicates the proceeding of the conversion reaction, in which the mean 

oxidation state shifts toward +2. This assessment is further confirmed by the analysis of the 

Coulombic efficiency.  
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In the first lithiation/delithiation process, the Coulombic efficiency is only 62 %, as the specific 

capacities for the 1st lithiation and delithiation are 880 ± 5 and 546 ± 2 mAh/g, respectively). 

During the first lithiation/delithiation cycle, large changes in the phase composition occur, 

which are further investigated by XAS, XRD, SQUID and TEM measurements. In the 2nd cycle, 

the Coulombic efficiency increases to 106 % and stays above 100% during the following 40 

cycles. This might be due to the fact that parts of charge invested in the first cycle (visible by 

the low Coulombic efficiency) can be re-gained in the following cycle, meaning that the amount 

of the re-oxidized Cu exceeds the previous reduction of the copper oxides, which is due to the 

existence of many metallic Cu residues after the initial delithiation. Nevertheless, the 

Coulombic efficiency becomes stable after the formation cycles, with a constant lithiation 

capacity of ≈ 580 mAh/g during the whole 40 CC cycles at 0.1C. Hence, it is of importance to 

figure out the reaction mechanism and the oxidation state of copper during the initial cycles. 

Figure 5 presents the in situ XRD patterns collected during cycling together with the 

lithiation/delithiation voltage profiles. The four selected lithiation/delithiation periods in Figure 

5a, labeled as I (start of the 1st lithiation), II (end of the 1st lithiation), III (end of the 

1st delithiation) and IV (end of the 2nd lithiation) correspond to the four XRD patterns shown in 

Figure 5b. For pattern I, sharp CuO peaks are observed based on the high crystallinity of the 

nano-sized CuO powder. These characteristic peaks of CuO quickly fade away during the initial 

lithiation. As seen in pattern II, the intensity of the CuO peaks become weak, a broad Cu (111) 

line (space group Fm3�m) appears, representing the formation of metallic Cu by the conversion 

reaction. The broadening of the Cu peak is caused by the nano-crystalline nature of metallic Cu 

particles. The weak CuO content may origin from the isolated and unreacted particles in the 

electrode. Nevertheless, when it comes to the first delithiation process (pattern III), line 

broadening of peaks leads to indistinctness of the XRD pattern, which is caused by the low 

crystallinity of the active material, while the scattered electrons from SAED pattern (see Figure 
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6) with their shorter extinction length are more predestined to scatter coherently on much 

smaller crystallites then the X-rays. The XRD pattern after the 2nd lithiation (pattern IV) shows 

similar characteristic peaks to pattern II, with the presence of a broad Cu (111) peak and again 

the weak CuO peaks from isolated non-reacted particles. The characteristic Li2O (111) peaks 

(space group Fm3�m) are both detected in the lithiated state (pattern II and IV). However, no 

Cu2O phase (space group Pn3�m), which is an intermediate component for the conversion of 

CuO to Cu and the endmember for the delithiation reaction of metallic Cu,[15,30] is detected 

during the whole process. This as well might be caused by the low crystallinity and the long-

range disordered structure of the formed products.  

The presence of crystalline phases identified by XRD was verified by selected area electron 

diffraction (SAED) and energy dispersive X-ray spectroscopy (EDS). The EDS was mainly 

used to find the grains of active material containing Cu and its oxides. The SAED patterns 

shown in Figure 6 correspond to the in situ XRD patterns labeled as stages II and III in Figure 

5. After the initial lithiation (Figures 6a and 6b), Cu and Li2O are found in the SAED pattern. 

After the first delithiation (Figures 6c and 6d), the sample contained cubic Cu and Cu2O 

according to SAED. However, no presence of crystalline monoclinic CuO phase was observed, 

even though several particles were investigated. This finding contradicts apparently the result 

of the CC/CV cycling (cf. Figure 4), which indicates a shift of the mean oxidation state toward 

+2. A possible explanation of this discrepancy is the formation of copper vacancies in the crystal 

structure of Cu2-xO that was observed during the low temperature oxidation of Cu thin 

films.[31,32] The formation of vacancies in Cu2-xO would rise the effective oxidation state in the 

delithiated sample beyond +1, but SAED could not distinguish Cu2-xO from Cu2O with fully 

occupied Cu sublattice, because this method is not sufficiently sensitive to the occupancies of 

individual atomic positions. Also the change of the lattice parameter is too small to be 

recognized by electron diffraction in TEM.  
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As neither XRD nor SAED can give a reliable information about the oxidation state, the samples 

were analyzed additionally by XAS. The normalized Cu K-edge XAS spectra of the CuO 

anodes at various states of lithiation and the reference spectra of Cu, Cu2O and CuO are shown 

in Figure 7. Since XAS spectra are very sensitive to the electronic structure of the absorbing 

atom, the average valence state of the absorbing atom is determined empirically by comparing 

shapes and energy of absorption edge features.[33] In Figure 7, as the cell is firstly lithiated down 

to 0.02 V, the corresponding spectrum is nearly identical to that of the pure Cu reference. This 

implies that CuO is transformed to Cu at the end of the 1st lithiation. During the following 

delithiation to 3.0 V, the main edge, which corresponds to the dipole-allowed 1s → 4p transition, 

shifts to ~ 8995 eV along with a shoulder at ~ 8980 eV. It appears at the energy position between 

that of the reference Cu2O and CuO compounds. This shoulder is due to the presence of Cu, 

intermediate Cu2O phases and a weak contribution of CuO phase as the cell is first delithiated 

to 3.0 V, while at 2.25 V, only the characteristic edge of Cu is found. Further, after 5 CC/CV 

cycles, the main edges of the lithiated samples (3.0 V) shift to ~ 8997 eV, which is nearly the 

same as that of the reference CuO (with an oxidations state of Cu with +2). However, a small 

bump at ~ 8981 eV is still observed. Both features indicate that with the proceeding of cycling 

the conversion reactions are more facilitated; more and more Cu is oxidized towards a mean 

oxidation state higher than +1 during the delithation process, while some Cu and Cu2O still 

remain, even in the delithiated state.  

In order to support the results of XAS regarding the oxidation state of copper, SQUID 

measurements were carried out that give information about the magnetic state of the copper 

oxides. Using SQUID, the temperature dependences of the magnetization (Figure 8) were 

measured both in the zero-field-cooled (ZFC) and in the field-cooled (FC) mode. No differences 

between these two modes were detected for the applied field strengths. Below 15 K, 

temperature-dependent measurements demonstrate a rise in magnetization, while field 
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dependence of magnetization shows a non-linear behavior up to room temperature, see inset in 

Figure 8.  

The paramagnetic component in the material was calculated from the Curie-Weiss law χ = 

C/(T-θ) + χ0 applied to the molar magnetic susceptibility, which was normalized on a 

hypothetical formula unit [CuO], at 6 T in the temperature range between 50 and 300 K. The 

obtained parameters are C = 0.0612(4) emu*K/mol*Oe, θ = -18.8(4) K and χ0 = 3.79(1)*10-4 

emu/mol*Oe. The negative Weiss constant of -18.8(4) K indicates antiferromagnetic 

interactions in the material, although a non-linear development of the magnetization curve vs. 

magnetic field indicates also a ferromagnetic component. The Curie constant C = NAµeff
2/3kB 

was re-calculated into the paramagnetic effective moment µeff = 0.70(2) µB/f.u. with NA being 

the Avogadro constant and kB the Boltzmann constant.  

Significant paramagnetic moment (µeff = 0.70(2) µB/f.u.) supports the hypothesis about the 

presence of Cu2+ ions in the aged CuO electrode. Assuming a paramagnetic moment of Cu2+ 

(d9) of 1.73 µB/f.u. usually measured in oxides, the fraction of Cu2+ in the electrochemically 

reduced and subsequently oxidized Cu2-xO material of about 16 mol.% is estimated. Two 

possible scenarios can describe the existence of Cu2+ in Cu2-xO: i) formation of cation vacancies 

with simultaneous oxidation of copper cations in the crystalline cubic Cu2-xO, and ii) formation 

of amorphous CuO nano-layers on the surface of crystalline Cu2O cores. According to the 

literature data, both nano-sized oxides Cu2-xO with cation vacancies[34] and amorphous  CuO[35] 

can show a ferromagnetic component in the magnetization up to 300 K. However, since our 

field dependences of magnetization do not demonstrate any hysteresis loop like a nano-sized 

CuO,[35] we argue for accommodation of Cu2+ in the material rather in form of vacancies-

containing cubic Cu2-xO. 
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Combining the XAS and SQUID results, one can see that CuO is reduced to metallic Cu during 

the 1st lithiation process. Nevertheless, with the following delithiation to 3.0 V, a mixture of Cu, 

Cu2O and Cu2-xO (x < 1) is formed. According to the results of SAED, Cu2-xO still has the 

crystal structure of cubic Cu2O. Upon further cycling, the reactions between Cu, copper oxides 

and Li2O are more facilitated, the average oxidation state of the delithiated copper oxides is 

shifted towards +2, with the retention of small amounts of Cu and cubic Cu2-xO in the delithiated 

samples. The incomplete conversion reaction for the 1st cycle with a left of metallic Cu in the 

delithiated state might be related to the electrolyte decomposition, and by the formation and 

decomposition of the SEI. These phenomena were investigated using other methods (SEM and 

TEM) in more details.  

According to the scanning electron micrographs taken on the electrodes after the initial 

lithiation (Figure 9a), an SEI layer is likely to form, while after the following delithiation 

(Figure 9b), the particles get smaller as compared with the lithiated state. More elongated 

particles like rods, instead of spherical particles are seen. The change of the morphology is due 

to the multiple phase formation and decomposition processes.  

The TEM and high resolution transmission electron micrographs (HRTEM) revealed that the 

thickness of the SEI is different in lithiated and delithiated state (Figure 10). The SEI of the 

lithiated particle (Figs. 10 a, b) is thicker in comparison to the SEI on the de-lithiated particle 

(Figs. 10 c, d). The HRTEM (Figs. 10 b, d) provides a closer insight into the amorphous SEI, 

and reveals the thickness of the de-lithiated particle of ≈5 nm and an average diameter value 

for the firstly lithiated particle of ≈10 nm. 

Considering the high observed delithiation capacity (≈ 600 mAh/g) of the prepared electrodes, 

it can be concluded that the additional capacity comes from the partial oxidation of Cu2O to 
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Cu2-xO (x < 1), from the electrolyte decomposition and the SEI formation and decomposition 

during the 1st cycle. 

Based on the promising electrochemical properties of the CuO electrodes in Li metal cells, they 

are matched with the industrially available cathodes (NMC-111) to study the full cell 

performance in the T-cell setup. The assembled full cells are cycled in different voltage ranges 

with a current rate of 0.1C. The corresponding results are presented in Figure 7. A list of the 

potentials of the NMC cathode and the CuO anode that were measured with an auxiliary 

reference electrode is given in Table 1. When the full cell voltage increases from 0.7 to 4.0 V, 

the corresponding potential ranges of NMC and CuO are 3.68-4.35 V vs. Li/Li+ and 2.98-0.29 

V vs. Li/Li+, respectively. These ranges are within the “typical” potential ranges of both the 

cathode and the anode. 

The specific capacities of the full NMC/CuO cells, depicted in Figure 8a, vary according to the 

different adopted cut-off voltages. The occurring differences are related to the voltage regions 

of the anodes and cathodes. For example, the long voltage region (1.2-1.7 V) presented at the 

charge/discharge curve of 0.7-4.0 V is caused by the Li insertion/de-insertion into/from NMC 

at ~ 3.7 V. This region is absent for the curves measured within the other voltage ranges. 

Meanwhile, as regarding to the long-term cycling performance, all the three cells with the 

selected voltage ranges show high capacity retentions after 40 CC/CV cycles at 0.1C (Figure 

9b). However, it is not surprising that the Coulombic efficiencies of the assembled full cells are 

quite low. This is due to irreversible reactions between CuO and Cu, as has already been 

discussed in the previous sections dealing with the Li metal cell setup. Besides, an obvious 

increase of the specific capacity is observed in the range of 0.7-4.0 V during the initial cycles, 

which cannot be found for other voltage ranges. This can be explained with reactions at the 

CuO anode. When the full cell voltage is changed from 1.3 to 0.7 V, the potential of the CuO 
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electrode increases from 2.48 to 2.98 V vs. Li/Li+. This range, as has been previously discussed, 

is related to the transformation of Cu to Cu2O and Cu2-xO. 

After a careful comparison of different potential ranges of the cathode and the anode, the NMC 

111/CuO full cell with the voltage range of 0.7-4.0 V shows both high capacity and stable long-

term cycling performance. The rate capability as well as the high-current cycling retention was 

investigated within this voltage range, as shown in Figure 10. The specific discharge capacities 

obtained at 0.1 to 10C are listed in Table 2. Even at the current rate of 10C, the capacity of 290 

± 7 mAh/g is still kept. When the current rate returns gradually to 0.1C, the discharge capacity 

of 635 ± 4 mAh/g is retained with a capacity retention of 96 %. This indicates that even at large 

current rates, the cell does not suffer irreversibly. 

In order to understand the cycling performance at higher current rates, the NMC/CuO full cell 

is cycled under 1C for 100 CC/CV cycles. The charge/discharge curves are depicted in Figure 

b. After the formation process, a specific discharge capacity of 618 ± 2 mAh/g is reached at 1C. 

The capacity retention after 100 cycles is 85 %. During the first 70 cycles, the cell experiences 

almost no capacity decay, and the gradual decay can be prevented by the addition of an 

electrolyte additive. This study will be extended in our following reports. All over all, the full 

cell shows excellent electrochemical properties both at low and high current rates, with high 

capacity retentions that can be compared with the traditional graphite/NMC full cells.  

To investigate the electrolyte composition of the aged CuO/NMC cells, the GC-MS and IC 

methods are combined to check the organic compounds as well as LiPF6 decomposition in the 

aged electrolytes. The chromatograms are shown in Figure 11. For non-volatile compounds, 

e.g., di-and monofluorophosphates, the separation by IC has been successfully carried out 

within our group.[26, 36, 37] For the cells investigated, the adopted electrolyte is 1 mol dm-3 LiPF6 

dissolved in 3:7 (wt%) EC: DMC mixture, which is a typical LIB electrolyte composition.[38, 
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39] Based on LiPF6 being highly hygroscopic, the electrolytes are always contaminated with a 

certain amount of water that can accelerate the decomposition of the conducting salt to LiF and 

PF5. This subsequently results in hydrofluoric acid (HF) formation.[40, 41] These decomposition 

products have in the long-term a negative influence on the performance of the lithium-ion 

batteries.[40, 42] For volatile compounds, especially the common decomposition product of the 

low viscosity solvent dimethyl carbonate (dimethyl 2, 5-dioxahexane dicarboxylate, 

DMDOHC), which has been detected by many groups regarding its effect on lowering the ionic 

conductivity of the electrolyte and reduce the battery life[r1],[43-45] the existence is proved by 

GC-MS measurements. However, in both the IC and GC-MS chromatograms, no further 

electrolyte decomposition products are detected. 

4. Discussion[r2] 

In this paper, a nanostructured CuO electrode was prepared that possessed a very high capacity 

(in a Li metal setup), which cannot be explained by the theoretical capacity of Cu2O (with 

copper having the oxidation state +1). Such capacity can only be explained by a higher 

oxidation state of Cu than +1. This oxidation state was confirmed by XAS. 

The structure analysis using XRD and selected area electron diffraction revealed presence of 

Li2O, Cu and Cu2O, but not the presence of CuO, which would be needed to achieve a higher 

oxidation state of copper than +1.  

Later, an explanation of the observed phenomena is given: It follows from the SQUID 

measurements that Cu2+ is present in the material under study because of the defect crystal 

structure of cubic Cu2-xO containing vacancies on the positions of copper atoms. This result is 

compatible both with the result of the structure studies by XRD and ED and with the results of 

XAS. Finally, the high measured capacity is explained by an “additional oxidation” of the 

copper ions in the defect-rich cubic Cu2-xO, which is most probably located at the rims of cubic 
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Cu2O nanocrystallites. The additional oxidation of Cu2O rims could be responsible for the 

capacity increase as compared with defect-free Cu2O. Thus, the crystallite size plays a crucial 

role in the charging and discharging process. Still, the monoclinic CuO was not observed in 

samples that experiences more cycles, because the energy of formation is probably too high for 

this phase. An illustrative scheme of the reaction mechanism for the nanostructured CuO 

electrodes has been presented in Figure 14. 

4. Conclusions 

Nanostructured CuO electrodes were prepared as high capacity anodes for lithium metal and 

lithium ion batteries with commercially available raw materials. A stable specific capacity of 

≈580 mAh/g was achieved during 40 constant current cycles at 0.1C for the self-assembled 

CuO/Li metal cells. During cycling, an SEI was found to be formed after the 1st delithiation, 

while the enhanced Li+ transport was confirmed to be the key factor in improving the 

electrochemical performance. The addition of a constant voltage step during the first 5 cycles 

at 0.1C can effectively promote the Li+ diffusion in the electrode and enhance the capacity.  

Moreover, as a main focus, a deep insight into the reaction mechanism between Li and CuO is 

gained by analyzing the initial lithiation/delithiation cycles, in which changes in the phase 

composition, morphology and volume of the phase mixture takes place. 

With the help of XAS, SQUID, SEM and TEM, it is found that during the 1st lithiation, CuO is 

reduced to Cu. At 0.02V (in the lithiated state), only particles consisting of nano-crystalline Cu 

and Li2O are detected. When the electrode is re-oxidized to 3 V, the transformation of Cu to a 

mixture of Cu, Cu2O and Cu2-xO (x < 1) occurs. Nevertheless, during the following repeated 

delithiation processes, more and more Cu and Cu2O is oxidized to Cu2-xO (x < 1), and the 

average oxidation state of the copper moves forward to +2, while small amounts of Cu and 
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Cu2O are still kept in the delithiated electrodes. All these combined results reveal high and 

stable specific capacities and a high capacity retention for the CuO/Li metal cells. 

When matched with a commercial NMC-111 cathode for the investigation of full cells, the 

corresponding CuO/NMC-111 full cell displays a specific capacity of 660 ± 2, 595 ± 4 and 290 

± 7 mAh/g at 0.1, 1 and 10 C within the voltage range of 0.7 – 4.0 V, revealing its high rate 

capability. Moreover, after 200 CC/CV cycles at 1C, the capacity retention of the cell is 85 %. 

According to the results of GC-MS and IC analyses, no further electrolyte decomposition 

products are found in the aged electrolytes, indicating a high stability of the electrolyte during 

long-term cycling. However, it should also be noted, that the energy efficiencies of the obtained 

NMC/CuO cell at 0.1 and at 1C are 68 and 52 %, respectively. 

5. Experimental Section  

Electrode preparation: Commercially available nano-sized CuO spherical particles (< 50 nm 

98 %, Sigma Aldrich, Germany) were used as the starting materials. To obtain high capacity 

CuO electrodes, 80 wt% of the active material, 10 wt% of carboxymethyl cellulose (CMC, 

WALOCEL CRT 2000 PPA 12, Dow Wolff Cellulosics, Germany) and 10 wt% of the 

conducting carbon black agent (Super P C65, Imerys, France) were mixed (80 %, H2O based 

slurry) and underwent high-speed ball milling (pulverisette 4 by FRITSCH, Germany (400 rpm, 

-800 rpm) with a 45 ml jar and 3 * 10 mm, 11* 5 mm diameter balls made of zirconium oxide) 

for 50 minutes to get a homogeneous slurry. The CMC-based binder was previously dissolved 

in deionized water to obtain a 3 wt% solution. The slurry was then cast on a clean copper foil 

by using a laboratory doctor blade with a wetting thickness of 260 µm. After drying at 60 ℃ 

for 2 hours, the foil was punched into disk electrodes with a diameter of 12 mm and further 

dried at 120 ℃ for 24 hours under vacuum. The obtained electrodes have an average mass 

loading of ~ 4 mg.  
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Electrochemical investigations: To investigate the electrochemical performance of the obtained 

electrodes, coin cells with Li metal (2032) and 2-electrode full cells in the T-cell setup were 

assembled in an argon-filled glovebox (mBraun, Germany) with less than 1 ppm of oxygen and 

water contents. For coin cell assembly, Celgard 2500 (polypropylene, Celgard, U.S.A) 

separator was adopted, and Li metal (Rockwood Lithium, battery-grade, Germany) was used as 

the counter electrode with the addition of 90 µL of the electrolyte. For full cells in the T-cell 

setup cell assembly, a six-layer Freudenberg 2190 (polyethylene fleece, Freudenberg, 

Germany) was used as the separator and a commercially available LiNi1/3Mn1/3Co1/3O2 (NMC-

111) as the cathode. The cells were filled with 150 µL of the electrolyte. A 1 molar solution of 

lithium hexafluorophosphate (LiPF6) in a 1:1 mixture (by weight) of ethylene carbonate (EC) 

and dimethyl carbonate (DMC) (BASF, Germany) was used as the standard electrolyte (quoted 

as LP30).  

Electrochemical cycling was conducted with the assembled cells on a Maccor 4300 battery 

tester (Maccor, USA). The voltage range for Li metal cell investigation was 0.02 – 3 V and the 

voltage range for full cell investigation was 0.7 – 4.2 V, respectively. The C-rate varied from 

0.1 – 10C. During the investigation of the potentials for cathodes and anodes for full cells, a 3-

electrode setup was adopted, with an addition of the Li reference electrode, with two auxiliary 

cables added at the cathode and the reference electrode. The cells were cycled at 20 °C in an 

environmental test chamber (KB 400, Binder, Germany). The specific capacity calculation was 

based on the CuO electrode side. To guarantee the reproducibility of the electrochemical results, 

at least two cells per sample for each investigation procedure were prepared. The anode: 

cathode capacity balance is 1:1. The impedance measurement was carried out with Maccor 

frequency response analyzer (FRA) with the frequency from 30 kHz to 0.01 Hz and an 

excitation amplitude of 10 mV.  
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The mean discharge voltages of cathodes from cells with different electrolyte systems (Mean 

voltage calculated as energy divided by capacity) were extracted for every cycle at the end of 

the lithiation step. 

Scanning electron microscopy: Scanning electron microscopy (SEM) was used to investigate 

electrode surfaces and morphology changes of the material. Numerous areas (at least ten) per 

sample were analyzed in an Auriga Crossbeam workstation (Carl Zeiss, Germany) with a field 

emission gun (Schottky-type). Samples were washed with dimethyl carbonate (DMC) and 

analyzed at an acceleration voltage of 3 kV.  

X-ray powder diffraction: The investigation of the phase evolution and crystalline changes 

during the electrochemical cycling was conducted by the in situ X-ray powder diffraction 

measurements, which were performed on a D8 Advance diffractometer (Bruker, Germany) with 

Cu Kα radiation (λ=0.154 nm) equipped with a Lynxeye detector. A self-made in situ XRD 

electrochemical cell was assembled with a Beryllium (Be) window as the current collector.[46] 

The cell was operated in the voltage range of 0.02 – 3 V. The in situ cell was cycled at a current 

rate of C/20 and the corresponding in situ XRD patterns were recorded every three hours. A 

constant voltage step is added after every lithiation for the specific recording at the voltage of 

0.02 V. The phase analysis of the fresh electrode was performed by Rietveld refinement of X-

ray diffraction pattern. For the quantitative analysis of the diffraction pattern the software 

package MAUD was used.[Lut1] 

Transmission electron microscopy: The local microstructure and SEI thickness were 

investigated by use of an aberration corrected analytical high resolution microscope JEM 2200 

FS (JEOL, Japan) at an accelerating voltage of 200 kV. The structure and composition of the 

existing phases were determined by selected area electron diffraction (SAED) and energy 

dispersive X-ray spectroscopy (EDS). For the background fit of the integrated SAED pattern a 
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power law model was applied. For the TEM and SAED investigations, the active material was 

carefully removed from the current collector and dispersed by ultrasonic treatment in DMC for 

exact three minutes for each sample. A drop of the dispersion was placed on a Ag support grid 

covered with a carbon hole film and dried. All these preparations steps were done in a glove 

box under protecting Ar atmosphere. During the transport and the sample mounting into the 

TEM, the samples were protected by an Ar filled AtmosBag.  

X-ray absorption spectroscopy: The Cu K-edge X-ray absorption spectra were recorded in the 

transmission mode at beamline KMC-2 of the BESSY-II synchrotron light source, Berlin, 

Germany. A graded Si–Ge (111) double crystal monochromator was used in this beamline and 

higher harmonics were rejected by detuning the monochromator such that the intensity of the 

beam on the sample was 65% of the maximum possible intensity. A gas-filled ionization 

chamber (70% nitrogen, 30% argon) was used so as to get a good signal to noise ratio. Pure 

copper foil (~ 10 µm thick) was measured simultaneously with each sample for absolute energy 

calibration of the monochromator. The data were pre-processed as prescribed elsewhere using 

the software ATHENA of the package IFEFFIT.[47-48] All spectra were energy-calibrated with 

respect to the first peak in the pure Cu derivative spectrum. 

Magnetization Measurement using the Superconducting Quantum Interference Device: 

Magnetization measurements of the electrochemically reduced and subsequently oxidized 

copper oxide (m = 18.64 mg) were performed between 2 and 300 K in external magnetic fields 

up to 6 T (Fig. 1), and between -5 and 5 T at 10 K and 300 K, using a SQUID magnetometer 

(MPMS) from Quantum Design. First, the diamagnetic response of the gelatin capsule used as 

a sample holder was checked and then subtracted from magnetization values in further 

measurements. The diamagnetic susceptibility for a typical capsule used in the experiment was 

measured as χcapsule∼−4.0 × 10−7 emu/g*Oe at 10 K. This value is almost temperature-
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independent within 5% from 2 to 300 K and corresponds to about 1% of the sample 

susceptibility. 

Electrolyte extraction after cycling (= electrochemical aging): The electrolyte was extracted in 

the same way for coin cells and T-full cells. After electrochemical cycling, cells were opened 

in a glovebox (H2O < 1 ppm, O2 < 1  ppm, mBraun, Germany) to protect them against moisture 

and oxygen. The separator was taken out of the cell immediately and put into a 1.5 mL 

Eppendorf Safe-Lock Tube (Eppendorf, Germany) in order to prevent electrolyte evaporation. 

The Safe-Lock Tube was prepared with an insertion of a pipette tip which acted as the distance 

piece between the bottom of the Safe-Lock Tube and the separator. The Safe-Lock Tube with 

the separator was centrifuged for 15 minutes at 8500 rounds per minute with a Galaxy SD 

Microcentrifuge (VWR International GmbH, Germany). With this method, the pure electrolyte 

could be extracted out of the separator. For GC-MS and IC measurements, 10 µL of the 

electrolyte was diluted 1/100 (v/v) with acetonitrile (99.9 %, LC-MS grade, VWR International, 

Germany). 

GC-MS: The GC-MS experiments were conducted on a Shimadzu GCMS-QP2010 Ultra 

instrument with an AOC-5000 Plus as auto sampler, an OPTIC-4 injection system (all 

Shimadzu, Germany) and a Supelco SLB-5ms column (30 m × 0.25 mm × 0.25 μm, Sigma-

Aldrich, Germany). The setup control and data analysis was performed by the software of 

GCMS Real Time Analysis and GCMS Postrun Analysis (Shimadzu, Germany). 1 µL of the 

diluted sample was injected at 230 °C. The system runs with helium (purity of 6.0, Westfalen 

Gas, Germany) as the carrier gas with a column flow of 1 mL/min and a split ratio of 1:50. The 

column oven program was set to the starting temperature of 40 °C for 1 min. Then, the 

temperature was increased with a speed of 25 °C/min to 230 °C and with a holding time of 

3.4 min. Samples were measured in the electron ionization (EI) mode at an ion source 
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temperature of 200 °C. The filament voltage was set to 70 V and the detector voltage was set 

relative to tuning in a range of m / z = 30 - 350. 

IC: To detect the ionic decomposition products, an IC equipped with a conductivity detector 

was used in this study. The column adopted was Metrosep A Supp 7 with the matching guard 

column Metrosep A 4/5 guard (Metrohm, Switzerland). The column had the following 

dimensions: 250 mm length x 4.0 mm interior diameter and 5 µm particle size. The IC consisted 

of a suppressor applying a 100 mmol/L sulfuric acid solution (H2SO4, 99.9 %, Merck KGaA, 

Germany) purchased from Sigma-Aldrich Chemie GmbH (Germany) for chemical suppression. 

The system was controlled by MagIC NetTM 3.1 (Metrohm, Switzerland). The mobile phase 

consisted of 4.2 mmol/L sodium carbonate (Na2CO3, 99.9 %) and 2.0 mmol/L sodium 

bicarbonate (NaHCO3, 99.7 %), both purchased from Merck KGaA (Germany). The carbonate 

salts were dissolved in a mixture of 30 vol% acetonitrile (99.9 %, LC-MS grade, VWR 

International, Germany) and 65 vol. % Milli-Q water, obtained by a Millipore Milli-Q system 

(USA). The flow rate of the mobile phase was 0.6 mL/min. Sample injection was provided by 

an autosampler and a 6-way injection valve with a sample loop of 10 μL. 

Supporting Information  

Supporting Information is available from the Wiley Online Library or from the author. 
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Figure 1. Cycling performance of nano CuO/Li metal cells for 40 CC cycles at 0.1C. The 

increasing mean voltages of the corresponding cycles indicates a decrease of the internal 

resistance. 

 

Figure 2. Electrochemical impedance spectroscopy results of the nano CuO/Li cells at the 

frequencies of 20 and 10,000 Hz taken during 10 CC cycles at 0.1C shows a constant charge 

transfer resistance (20 Hz) and constant contact resistance (10 kHz).  
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Figure 3. Cycling performance of the nano CuO electrodes after 40 CC cycles at 0.1C with and 

without a constant voltage step during the formation process.  

 

Figure 4.1st, 5th and 40th voltage profiles (CC/CV cycling) of the nano CuO/Li cells at the rate 

of 0.1C. 
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Figure 5. (a) Lithiation/delithiation curves for CuO in the in situ XRD cell during cycling, (b) 

in situ XRD [RA4]patterns collected at indicated states of lithiation/delithiation. The unlabeled 

reflections correspond to the characteristic reflections of the Be current collector and its 

impurities. 

 

Figure 6. SAED patterns and integrated intensity distributions of the nano CuO electrode after 

the initial lithiation (a) and (b), as well as after the initial delithiation process (c) and (d) shows 

the phase composition of Cu and Li2O for the lithiated state and the presence of Cu and Cu2O 
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in the de-lithiated state. The scattering vector 𝐺⃗𝐺 is connected to the real space lattice spacing d 

by 𝑑𝑑 =  1
�𝐺⃗𝐺�

. 

Figure 7. Normalized Cu K-edge XAS spectra of the nano CuO electrode at different stages of 

lithiation. In the figure, 0.02V(1st L) stands for 1st lithiation at the voltage of 0.02 V, 2.25V(1st 

D) stands for 1st lithiation at the voltage of 2.25 V, 3.0V(1st, 5th, 10thD) stand for 1st , 5th, 10th 

delithiation at the voltage of 3.0 V. 

 

Figure 8. Temperature dependence of magnetization of Cu2-xO at different field strengths. Inset: 

Field dependence of magnetization at 10 K and 300 K. Red dashed line: Curie-Weiss fit (see 

text). 
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Figure 9. SEM images of the nano CuO electrode (a) after 1st lithiation, (b) after 1st delithiation. 

 

Figure 10. TEM micrographs of the nano CuO electrode (a) and (c) overviews, (b) and (d) 

HRTEM micrographs after the initial lithiation (top)/delithiation (bottom) shows a smaller 

thickness of the amorphous SEI layer surrounding the particles. The crystallite size is below 5 

nm for both states. 
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Figure 11. (a) Charge and discharge profiles and (b) the long term cycling performance of the 

assembled T-full cells with self-made CuO electrode as the anode and commercial NMC 

cathode within different voltage ranges. For (a), the specific capacity was selected after the 

formation step (0.1C for 5 CC cycles). 

 

Figure 12. (a) Rate capability and (b) the 1C cycling performance of the assembled T-full cells 

with self-made CuO electrode as the anode and commercial NMC as the cathode within the 

voltage range of 0.7-4.0 V. A formation process of 0.1C for 5 CC/CV cycles was added for 

both investigation procedures. 
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Figure 13. (a) IC and (b) GC-MS chromatograms of the pure and aged LP30 electrolyte. The 

aged electrolyte was extracted from the CuO/NMC cells which underwent 100 CC/CV cycles 

at 1C. 

 

Figure 14. Proposed reaction mechanism for the nanostructured CuO electrodes during the 

intial lithiation/delithiation cycles, each color represents a different material, and the covering 

layer at the material surface represents the SEI. During the formations steps (CV) between the 

1th and 5th cycle the oxidations state of Cu shifts towards +2, expressed by Cu2-xO. 
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Table 1. List of the individual potentials of the NMC cathode and the CuO anode with the 

increase of the full cell voltage measured by a T-cell setup. 

Voltage Full (V) Potential Aux NMC (V) Potential CuO (V) 

0.70 3.68 2.98 
0.90 3.71 2.81 
1.10 3.77 2.66 
1.30 3.78 2.48 
1.50 3.79 2.29 
1.75 3.80 2.05 
3.50 4.24 0.74 
3.60 4.28 0.68 
3.80 4.31 0.51 
4.00 4.35 0.35 

 

Table 2. List of the specific capacities of CuO/NMC-111 full cells at different current rates.  

C rate 0.1C 0.2C 0.5C 1C 2C 3C 5C 10C 

Specific 

capacity* 

(mAh/g) 

660 ± 2 651 ± 3 600 ± 4 595 ± 4 525 ± 3 460 ± 5 380 ± 8 290 ± 7 

* The specific capacity of the full cell is calculated based on the CuO anode. 
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Figure S1: (a) and (b) SEM images of the pristine nano CuO particles and the resulting electrodes before cycling. The inlets 

are taken at a magnification of 5,000 times while the other images are taken at a magnification of 10,000 times.  

Supplementary 2: 

 
Figure S2: XRD pattern of the cast nano-crystalline CuO electrode[RA5]. The labeled reflections correspond to monoclinicCuO, 

while the unlabeled reflections correspond to the copper current collector. 


