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Abstract 

Negative permittivity has taken off as a research topic recent years in percolative 

composites. However, how to effectively tune the negative permittivity is still a 

challenge remained unsolved. Herein, the percolative composites with SiO2-coated 

metallic particles homogeneously dispersed in epoxy resin were prepared using 

blending and hot-molding procedure. The negative permittivity was realized with the 

form of three-dimensional metallic network, and the value and frequency range of 

negative permittivity were precisely adjusted by the distribution of coated particles. 
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The analysis of Drude model indicated that negative permittivity was attributed to low 

frequency plasmonic state from the dilution of electron concentration. Moreover, 

coated particle can also change conductive path of electrons in composite, leading to 

an unusual linear relationship between conductivity and filler content, which is further 

certified by the equivalent circuit analysis. Our reported work would facilitate 

applications of negative permittivity materials especially in electromagnetic shielding, 

absorbing, attenuation and so on. 

 

Keywords: Amorphous Alloy; Metal-Containing Polymer; Negative Permittivity; 

Intrinsic Metamaterials.  

1.Introduction 

Materials with negative electromagnetic parameters have taken off as a research 

topic due to their interesting properties and novel potential applications (first achieved 

in metamaterials). [1-3] It is worth to point out that the property of metamaterials is 

fundamentally dependent on the geometry of the artificial array structures rather than 

originating from its component materials.[4] In fact, it is further found that, even 

without artificial array structure, negative electromagnetic parameters can also be 

realized by the intrinsic property of component materials in the traditional percolative 

materials. Accordingly, these materials are also called intrinsic metamaterials or a 
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new concept “metacomposites”. [5-8] 

In recent years, intrinsic metamaterials with tunable negative permittivity begin to 

gain extensive research attention due to the potential application, such as plasmons 

biosensing[9], microwave funneling[10], and electromagnetic shield[11], sensors[12-

14], negative permittivity materials can also be used in left-handed materials when 

combined with negative permeability materials, etc. [15-17] However, the recent 

investigations of negative permittivity mainly focus on how to explain and realize 

negative permittivity. Theoretically, the negative permittivity can be obtained in 

percolative composites near or beyond the percolation threshold, attributed to plasma 

oscillation of delocalized electrons, following the Drude model’s description. [18] 

Based on the Drude-type response of CNFs, Zhong et al. [19] pioneered negative 

permittivity experimental work in the polymer nanocomposite with continuous 3D 

CNFs networks. Fan et al. [20,21] studied the negative permittivity in metal-ceramics 

composites with metaillic conductive paths by a wet impregnation method. Besides, 

Qiu [22-24] and Guo[25,26] did excellent investigations to obtain negative 

permittivity in polyaniline matrix composites with the connectivity of different carbon 

materials.  

As we can see, negative permittivity can be achieved by the connectivity of 

conductive fillers. However, there are few investigations paid close attention to the 
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value of negative permittivity which is crucial to application for different field. In fact, 

negative permittivity with small value is preferable in some instances. For example, 

negative permittivity with small value is required for impendence matching with 

negative permeability materials. [27] And negative permittivity with small value must 

be satisfied to excite surface plasma polarization for noble metal particles when used 

as biosensing at optical spectrum.[9] Besides, the capacitance enhancement, which is 

significant for miniaturization of electronic component, would be remarkable 

especially when the negative permittivity matches with positive permittivity based on 

the principle of series capacitor.[28,29] Therefore, the investigation of adjusting the 

value of negative permittivity is significant for theoretical research and application.  

Herein, in order to get a better understanding of the relationship between the value 

of negative permittivity and metallic filler distribution, we propose a facile strategy to 

design such a composite with SiO2-coated and uncoated metallic particles dispersed in 

epoxy matrix. Epoxy resin was chosen because of its good electric insulativity. To 

eliminate the impact of phase composition, the typical isotropic Fe78Si13B9 (FeSiB) 

amorphous alloy particles were chosen as metallic fillers.  

2.Experimental methods 
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Chemicals: Amorphous Fe78Si13B9 (FeSiB) ribbons are purchased from Qingdao 

Yunlu Energy Technology Co. Ltd.. Sodium silicate (Na2SiO3), ethanediol and 

sulfuric acid (H2SO4) are purchased from Sinopharm Chemical Reagent Co. Ltd. 

China. Bisphenol A type solid epoxy resin is purchased from Shanghai Yoo-Pont 

Chemical Industry Co., LTO and used because of its good electric insulativity, 

chemical stability and easy processing.[30-32] The chemicals are obtained as 

chemically pure grade products and used without any further treatment. 

The Preparation of Fe78Si13B9 Powders: Embrittlement treatment is carried out in 

a tubular resistance furnace with argon atmosphere at 300 °C for one hour. After cut 

into pieces with scissor, the ribbons are put into the ball mill pot, and grinding is 

operated by cryomilling at liquid nitrogen temperature to avoid crystallization in the 

process of high-energy ball mill. Finally, the powders size is controlled by sieving 

through 100-mesh and 150-mesh sieve.  

The Fabrication of Coated Fe78Si13B9 Powders: The FeSiB powders are mixed 

with ethanediol with mass ratio of 1:50, and the suspension is obtained after ultrasonic 

dispersion for 60 min. Then, the suspension is transferred to a water bath thermostat at 

90 °C with mechanical force stirring. The Na2SiO3 solution of 1mol/L and H2SO4 

solution of 1mol/L are simultaneously added into the suspension at the speed of 200 
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mL/h. Keep stirring for 2 hours, and the coated FeSiB powders are obtained after 

filtration and drying. The coating of the powders with this process is amorphous SiO2.  

The Fabrication of Fe78Si13B9/Epoxy Composites: There are two kinds of FeSiB 

powders. One is the coated by a thin insulative SiO2 layer, named coated FeSiB 

powder; the other is uncoated FeSiB powder with normal conductivity. FeSiB powder 

was uniformly mixed with epoxy powder by cryomilling. The mixed powder is 

processed into bulk composites by hot compression molding. The FeSiB/Epoxy 

composites with different uncoated FeSiB content and coated-FeSiB/Epoxy 

composites with different coated-FeSiB content are fabricated, denoted as 

FeSiBxEpoxy1-x and coated-FeSiBxEpoxy1-x (0 ≤ x ≤ 1), respectively. Besides, the 

epoxy resin powder is kept 40 % volume fraction, and the hybrid composites are 

prepared after uniformly mixing the two different metallic filler with epoxy resin 

powder. The hybrid composites are denoted as (FeSiBxcoated-FeSiB1-x)0.6Epoxy0.4 

(x=0.7-1), where the x is the ratio of SiO2-coated and uncoated FeSiB. The 

microstructure was observed by scanning electron microscopy. The phase 

compositions were investigated by X-ray diffraction (XRD). The dielectric properties 

of the composites at the frequency range from 10 MHz to 1 GHz were tested by 

Agilent E4991A precision impedance analyzer equipped with 16453A test fixture. 

The samples dimension is ϕ 20 mm × 2 mm for permittivity test. [21]  
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3.Results and Discussion 

3.1Microstructure 

Fig .1(a) shows SEM images of one SiO2-coated FeSiB particle inlaid into resin 

after polished with EDX results. It is indicated the coating was SiO2 with the 

thickness of 1.5 µm. Fig. 1(b) is the SEM images of fractured surface after polished 

for composites with 60 % volume fraction FeSiB content. The particles contacted 

with each other in the composite with 60 vol% FeSiB, and percolating network can 

form, which is illustrated by the solid lines. 

 

Fig. 1 SEM images and EDX results of one SiO2-coated FeSiB particle inlaid into resin after 

polished (a), and fractured surface after polished for composites with  60 % volume fraction FeSiB 

content (b). The solid lines in (b) illustrated the network formed by FeSiB particles.  

3.2Negative permittivity behavior 

It is concluded from the Fig. S4 in Supplementary Information that, the uncoated 

FeSiB particles could act as conductive filler leading to negative permittivity, the 
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SiO2-coated FeSiB particles could work as insulative filler generating positive 

permittivity. In order to further tune the negative permittivity, the composites with 

different ratio of Fe and coated-Fe are prepared and the frequency dispersion of εr′ is 

investigated in the Fig. 2. The εr′ of hybrid composites with x=0.7, 0.8 takes positive 

value, turns to negative for x=0.85, 0.9, 0.95, 1. Although the FeSiB content keeps at 

60% volume fraction, the εr′ for the hybrid composites shows a dual percolative 

behavior with the change of coated and uncoated particle ratio. Similar results were 

also discovered in Ni0.3Zn0.7Fe1.95O4-Ni-Polymer composite [33], which was 

attributed to the different electrical property of the two different fillers. Compared 

with results in Fig.S4, the results above are clearly shown that the addition of coated 

metallic particle not only contributes the negative permittivity with small value but 

also adjusted its frequency range. Moreover, negative permittivity behavior can be 

described by Drude model: [34] 
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where ωτ is the damping constant, ωp =2πfp is plasmons angular frequency, ω is 

angular frequency of applied electric field, neff is effective concentration of electron, 
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meff is effective weight of electron, and ε0 is vacuum permittivity (8.85 × 10-12 F/m). 

The ω0 is a derived parameter, corresponding to the characteristic frequency f0 = 

ω0/2π, where εr′ = zero. The solid line in Fig. 3 is the fitting result for 

FeSiB0.6Epoxy0.4 composite using the Equation (1), agreeing well with the 

experimental data with the fp = 2.19 GHz, the reliability factor R2=0.9892. Hence, the 

fp of other hybrid composites is below 2.19 GHz (usually at optical or ultraviolet 

frequency region for metals). The red shift of fp indicates the low frequency plasmons 

state which was theoretically proposed by Pendry[35] in metallic mesostructures in 

1996 and then extensively investigated in intrinsic metamaterials. Tsutaoka et al. 

studied the low frequency plasmons state in Cu granular composites (fp ≈ 10-1000 

GHz )[34] and Fan et al. in nano-sized Ni (fp = 27 GHz)[36], Ag (16 GHz) [20] and 

Fe (208 GHz) [21] particle composites. According to the Equation (3), the red shift of 

fp would lead to low frequency f0 (inset of Fig. 2), which led to the tunable negative 

permittivity with different value and frequency range.  
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Fig. 2 The frequency dispersion of εr′ for hybrid composites (FeSiBxcoated-FeSiB1-x)0.6Epoxy0.4. 

The solid line showed the fitting result by Drude model. The inset showed the local enlarged view 

at high frequency range. 

3.3Conductivity and percolation  

The different frequency dispersion of ac conductivity σac of the composites clearly 

indicated a percolative phenomenon (Fig. 3a). Below the percolation threshold (x=0.7, 

0.8), σac has an exponential relationship with frequency, following the power law [37] 

σac ∝ ωn (0<n<1). The fitting result is also given (Fig. 3a) and agrees well with the 

experimental data, indicating a hopping conductive behavior. Above the percolation 

threshold, with the formation of percolative conductive network, the decreasing trend 

of σac was attributed to the skin effect at high frequency, which could be described by 

skin depth[38]: 2δ ωσµ= , where δ is the skin depth, �	the dc conductivity, �	the 
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static permeability. The skin depth (conductive cross section) gradually reduces, 

leading to the decreasing of conductivity.  

Fig. 3(b) is the relationship between σac at 80 MHz and the filler ratio for the 

composites (FeSiBxcoated-FeSiB1-x)0.6Epoxy0.4. As shown in the Fig. 3(b), unlike the 

usual ladder-shape transition tendency in other percolative composite [37-39], a novel 

linear relationship between σac and uncoated FeSiB filling ratio is observed above 

percolation threshold, which is attributed to the change of microstructure in the hybrid 

composites (schemed in the inset of Fig. 3b). With increasing the coated FeSiB ratio, 

the insulative SiO2 layer would gradually and uniformly cut off the conductive paths. 

That is to say, the tunable conductive network leads to the novel conductive property 

based on the carrier concentration: [40-42] � ∝ � . Although the free electron 

concentration of total fillers remains constant in the composites as the total FeSiB 

content keeps at 60% volume fraction, the electrons in the coated particles are 

localized by the SiO2 layer no long “free”, leading to the decrease of effective carrier 

concentration. Hence, according to equation (2), the low effective carrier 

concentration leads to the low frequency plasmons state at radio-frequency range, 

near where negative permittivity of small value could be achieved. Similar results 

were also discovered in plasmons materials at infrared frequency range, whose 

surface and bulk plasmons resonance frequency could also be adjusted by carrier 
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concentration. [43] By strictly controlling the ratio of coated and uncoated filler, the 

ac conductivity and negative permittivity show a feasible tunability compared to our 

early study work. [20,21,36] 

 

Fig.3 The frequency dispersion of ac conductivity σac (a), the relationship between σac at 80 MHz 

and ratio of fillers for the hybrid composites (FeSiBxcoated-FeSiB1-x)0.6Epoxy0.4 (b). The inset in 

(b) showed the schematic diagram of microstructure variation in the composites with the addition 

of coated particles.  
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3.4Impedance and equivalent circuit 

Fig. 4 shows the frequency dispersion of reactance Z′′ for the composites 

(FeSiBxcoated-FeSiB1-x)0.6Epoxy0.4. For hybrid composites of x=0.7, 0.8, the 

reactance takes negative value, indicating capacitive behavior. For composites of 

x=0.85, 0.9, 0.95, the reactance takes positive value at lower frequency range but 

turns to negative at higher frequency range. Interestingly, the positive-negative 

switching phenomenon for Z′′ corresponded well to negative-positive switching for εr′. 

For the composite of x=1, the reactance kept positive over the whole frequency range, 

suggesting the inductive character.  

 

Fig.4 The frequency dispersion of impedance for the composites (FeSiBxcoated-FeSiB1-

x)0.6Epoxy0.4. 

The equivalent circuit analysis is performed to further investigate the impedance 

property (Fig. 5 and Table 1).  Below percolation threshold, the composites could be 

equivalent into a circuit by a series resistor Rs and a parallel connection of a resistor 

Rp and a capacitor Cp (Fig. 5a). The Rs comes from the silver electrode with a small 
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value. The Rp results from the leakage current due to the mutual contact or 

agglometation of fillers. Above percolation threshold, it is showed that shunt 

inductors always exist for the composites with negative permittivity behavior (Fig.5b). 

For the the composites of x=1, three inductors exist, while two inductors for x=0.95 

and only one inductor for x=0.85. As known, inductor indicates the existence of 

conductive path; the decrease of inductor number could be attributed to the cut-off 

conductive paths (Fig. 3b). Indeed, in the right/left-handed transmission line 

metamaterials, the negative permittivity was achieved by the shunt inductors, and the 

increase of the inductor number indicated more contribution to the negative 

permittivity. [44,45] Therefore, when the ratio of SiO2-coated particle is controlled 

above but near the percolation threshold in the composites, the decreasing of inductor 

number contributed to the smaller value of negative permittivity.  

 

Fig.5 Nyquist plot for the composites (FeSiBxcoated-FeSiB1-x)0.6Epoxy0.4. The solid lines in (a) 

and (b) are fitting results using equivalent circuit.  
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Table 1 The corresponding parameters of the simulating results by equivalent circuit 

analysis for the composites (FeSiBxcoated-FeSiB1-x)0.6Epoxy0.4. 

Value of x   Rs(Ω) Rp(Ω) C(pF) L1(nH) R1(Ω) L2(nH) R2(Ω) L3(nH) R3(Ω) 

0.7 7.12 37.21 34.76       

0.8 8.26 60.86 43.42         

0.85   8.89 103.21 36.18  6.13   

0.95   17.93 28.94 11.94 0.36 4.67   

1   15.01 51.22 11.76 9.39 9.39 0.50 5.15 

5.Conclusions 

In summary, the materials with tunable negative permittivity are realized by 

controlling the distribution of SiO2-coated and uncoated FeSiB particles in insulative 

resin matrix. Negative permittivity is attributed to the low frequency plasmons state 

which could be adjusted by the dilution of effective carrier concentration. The 

insulative SiO2 coating by chemical modification changes the movement of free 

electrons among metallic fillers and the electrical connectivity of fillers.  The weak 

connectivity of conductive filler leads to the small value of negative permittivity, 

which is further verified by the decrease of inductor number in equivalent circuit. The 

exploration of tunable negative permittivity would have significance on the intrinsic 

metamaterials and novel potential applications, especially in lossy material and 

capacitance enhancement.  
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1. Negative permittivity is precisely adjusted by the coated metallic particles. 

2. An unusual linear relation between conductivity and filler content is obtained.  

3. The impedance spectra are systematically investigated by the equivalent circuit. 


