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We investigate the effects of Dzyaloshinsky-Moriya (DM) interactions on the frustrated J1-J2

kagome-Heisenberg model using the pseudo-fermion functional-renormalization-group (PFFRG)
technique. In order to treat the off-diagonal nature of DM interactions, we develop an extended
PFFRG scheme. We benchmark this approach in parameter regimes that have previously been
studied with other methods and find good agreement of the magnetic phase diagram. Particularly,
finite DM interactions are found to stabilize all types of non-collinear magnetic orders of the J1-J2

Heisenberg model (q = 0,
√

3×
√

3, and cuboc orders) and shrink the extents of magnetically dis-
ordered phases. We discuss our results in the light of the mineral herbertsmithite which has been
experimentally predicted to host a quantum spin liquid at low temperatures. Our PFFRG data
indicates that this material lies in close proximity to a quantum critical point. In parts of the ex-
perimentally relevant parameter regime for herbertsmithite, the spin-correlation profile is found to
be in good qualitative agreement with recent inelastic-neutron-scattering data.

PACS numbers:

I. INTRODUCTION

According to a more traditional understanding of solid-
state physics, the effects of spin-orbit coupling (SOC)
are small relativistic corrections that can be neglected in
most materials. However, the recent synthesis of a grow-
ing number of materials where SOC is a non-negligible
order-one effect1–4 has substantially changed this per-
spective. In magnetic systems, SOC generally leads to
anisotropic spin interactions that may induce novel types
of quantum phases and quasiparticles. A famous example
is the analytically solvable Kitaev model on the honey-
comb lattice with its characteristic bond-dependent Ising
interactions, giving rise to a spin liquid phase and emer-
gent Majorana excitations5. Possible candidate mate-
rials6–8 to realize such physics in nature exhibit heavy
magnetic ions which increase the magnitude of SOC. An-
other type of magnetic anisotropy induced by SOC is the
off-diagonal and antisymmetric DM interaction9,10 which
does not primarily depend on the atomic number Z but
crucially relies on the lattice geometry. It appears when-
ever the center of a bond connecting two magnetic ions is
not an inversion center of the underlying lattice. In con-
trast to the anisotropic Ising interactions of the Kitaev
model, DM couplings usually induce magnetic orders of
non-collinear type and may stabilize exotic spin arrange-
ments such as spiral orders or skyrmions11,12.

One of the simplest two-dimensional lattices where
DM exchange is a symmetry-allowed interaction even on
nearest-neighbor bonds is the kagome lattice, see Fig.
1(a). Built of a network of corner-sharing triangles,
it is at the same time a paradigmatic example for a
strongly frustrated lattice. There is indeed a wealth of ev-
idence from different numerical methods that the antifer-
romagnetic nearest-neighbor spin-1/2 Heisenberg model

on the kagome lattice features a magnetically disordered
ground state which might even realize a quantum spin liq-
uid13–24. Given its tendency to induce magnetic order,
the DM interaction is, hence, an important perturbation
of the kagome lattice that could alter the ground state
significantly. One of the prime questions is whether and
at which strength the DM exchange can destroy the pre-
sumed spin-liquid phase. Numerical studies such as ex-
act diagonalization indicate that the non-magnetic phase
survives up to a ratio of the nearest-neighbor DM and
Heisenberg interactions of D/J1 = 0.1, giving way to a
magnetically ordered q = 0 state above this value25–27.

Apart from its theoretical importance as a generic frus-
trated spin system, there is also a growing number of
material realizations for the kagome lattice. Currently,
the cleanest implementation of an antiferromagnetic
nearest-neighbor Heisenberg model on the kagome lattice
is the mineral herbertsmithite (ZnCu3(OH)6Cl2)28–30,
which consists of weakly coupled kagome planes of spin-
1/2 copper ions31. Most importantly, the absence of
any long-range magnetic order down to 50mK28,32,33

in conjunction with a very broad spinon-like excitation
spectrum29,30,34 renders herbertsmithite one of the most
promising spin-liquid candidates synthesized so far. Con-
cerning the size of the DM interaction, ESR measure-
ments imply a relative strength of D/J1 = 0.08, ..., 0.135

which, interestingly, puts this mineral exactly into the
parameter regime where theory predicts the onset of mag-
netic order. Therefore, the DM coupling may drive her-
bertsmithite very close to a quantum critical point, raising
questions about the precise location of the phase bound-
aries in the experimentally relevant parameter range.

In this article, we study the effects of DM interactions
on the spin-1/2 kagome-Heisenberg model using the PF-
FRG method which has proven to accurately describe
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magnetic and non-magnetic phases of frustrated quan-
tum spin systems21,36–39. To this end, we extend the ex-
isting PFFRG technique to treat systems with finite DM
couplings. As shown below, the off-diagonal nature of
the DM interaction generates additional vertex functions
with reduced symmetries which complicates a PFFRG
analysis enormously as compared to diagonal exchange
interactions. Despite the increased computational ef-
fort for numerically evaluating the renormalization-group
equations, we reach sufficiently large system sizes and
frequency resolution to appropriately describe the com-
bined effects of Heisenberg and DM interactions. Par-
ticularly, as a first test of its applicability, we find that
the critical ratio of D/J1 ' 0.1 for the onset magnetic
order is well reproduced, indicating that the accuracy of
the PFFRG is retained when finite DM interactions are
added. To put the J1-D model on the kagome lattice
into a broader context, we also study the full J1-J2-D
model, where J2 is the second-neighbor Heisenberg in-
teraction, and J1 and J2 can both be ferromagnetic or
antiferromagnetic. The motivation for this type of ex-
tended model comes from ab initio calculations for her-
bertsmithite which predict a small antiferromagnetic J2

coupling given by J2/J1 ' 0.01931. Within PFFRG,
we find that the DM interaction increases the size of
all non-collinearly ordered phases of the original J1-J2-
Heisenberg model (i.e.,

√
3 ×
√

3, q = 0, and cuboc or-
der) but leaves the ferromagnetic phase unaffected. In
parameter regimes which are experimentally relevant for
herbertsmithite, we qualitatively reproduce the correla-
tion profile of recent neutron-scattering experiments29,30.
However, we also find small but non-negligible indications
of magnetic order in these regimes which might imply
that additional sources of frustration are needed to fully
capture the microscopic situation in this material.

The paper is organized as follows: In Sec. II, we intro-
duce the microscopic model and fix our convention for the
DM interaction. Sec. III then outlines the essentials of
the PFFRG approach36,40, where Sec. III A first gives a
brief introduction into the general PFFRG framework for
Heisenberg systems while Sec. III B discusses the modifi-
cations for finite DM interactions. Thereafter, we investi-
gate the J1-D model on the kagome lattice in Sec. IV. To
gain a better understanding of the formation of q = 0 or-
der in this model, we first solve the flow equations analyt-
ically in a limit where the PFFRG reduces to the classical
random phase approximation (RPA). We further discuss
the full J1-J2-D model in Sec. V A and show how the
DM interaction changes the magnetic phase diagram of
the J1-J2-Heisenberg model. Parameter regimes relevant
for herbertsmithite are investigated in Sec. V B and the
results are compared to neutron-scattering data. Finally,
Sec. VI contains a summary and conclusion of the entire
work.
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FIG. 1: (Color online) (a) Illustration of the DM interac-
tion on the kagome lattice: Arrows on the nearest-neighbor
bonds indicate the bond orientation of the DM term ∼ Dij ·
(Si × Sj). Each arrow starts at site i and ends at site j. For
up-pointing (down-pointing) triangles the DM vector Dij is
oriented parallel (antiparallel) to the z axis. (b) Classical
phase diagram of the J1-J2-Heisenberg model featuring q = 0
Néel order, cuboc order, ferromagnetic order, and

√
3 ×
√

3
Néel order: The transition between the cuboc and the fer-
romagnetic phase occurs at J2 = −J1/3 with J1 < 0 while
all other phase transitions coincide with the J1 or J2 axis,
respectively41.

II. MICROSCOPIC MODEL

The Hamiltonian of the J1-J2-D model studied in this
article is given by

H = J1

∑
〈i,j〉

Si ·Sj + J2

∑
〈〈i,j〉〉

Si ·Sj +
∑
〈i,j〉

Dij · (Si × Sj) ,

(1)
where 〈i, j〉 are nearest-neighbor pairs and 〈〈i, j〉〉 denotes
second-neighbor pairs of sites. According to Moriya’s
rules10, the DM term ∼ Dij · (Si × Sj) is a symmetry-
allowed coupling on nearest-neighbor kagome bonds since
the bond center is not an inversion center of the lattice.
Furthermore, the vector Dij must be aligned perpendicu-
lar to the system’s mirror plane which, in our case, is the
kagome plane itself. Due to Dij = −Dji, the DM interac-
tion defines an orientation of the bonds which we choose
as shown in Fig. 1(a). With this convention, the point-
group symmetries of the kagome lattice fix the directions
of the DM vectors such that Dij = ±Dez is oriented
parallel (antiparallel) to the z axis on up-pointing (down-
pointing) triangles [see Fig. 1(a)], or vice versa. Up to
small tilts of Dij into the x-y plane, this is also the rele-
vant configuration for herbertsmithite. It is worth noting
that the presence of the DM term breaks the SU(2) spin-
rotation symmetry down to U(1) rotations around the z
axis which, in combination with the off-diagonal nature
of the DM coupling, requires significant adjustments of
the PFFRG procedure.

The nearest-neighbor J1-D model with antiferromag-
netic J1 has previously been investigated by Cépas et
al.25 employing exact diagonalization. They find that
the magnetically disordered phase is sustained for small
DM couplings up to a critical ratio of D/J1 ' 0.1 while
the system is driven into a q = 0 Néel ordered phase for
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stronger DM interactions. Concerning the sign of the DM
coupling, it can be shown that models with positive and
negative D can be mapped onto each other (e.g., by per-
forming a global π-rotation of all spins in the x-z plane).
For the q = 0 state, this means that switching the sign
of D reverses the chirality of the spin orientations but
does not change the spin-spin correlations. We therefore
restrict ourselves to the case D ≥ 0 in the following.

The pure Heisenberg J1-J2 model on the kagome lat-
tice has previously also been studied by various meth-
ods including PFFRG21,23,39,42. Classically, this model
supports four magnetically ordered phases referred to as
q = 0 Néel order, cuboc order, ferromagnetic order, and√

3×
√

3 Néel order (for real-space illustrations of these
types of orders we refer the reader to Ref. 43). The clas-
sical phase diagram is shown in Fig. 1(b) and the corre-
sponding positions of the dominant susceptibility peaks
in k space are depicted in Fig. 4(a). As a results of
quantum effects, two extended magnetically disordered
phases are found to emerge around (J1, J2) = (1, 0) and
(J1, J2) = (0, 1)21,39,44. The J1-J2-D model for antifer-
romagnetic J1 and J2 interactions has been studied by
Seman et al.27 within exact diagonalization, predicting
gapped and gapless spin liquid regimes in the quantum-
disordered phase of the model. In this work, we complete
the analysis of the J1-J2-D model by also allowing for
ferromagnetic Heisenberg couplings.

III. FUNCTIONAL RENORMALIZATION
GROUP FOR SPIN SYSTEMS

The PFFRG method has proven to be remarkably ac-
curate in describing the interplay between magnetically
ordered and disordered phases in frustrated quantum-
spin models. So far, this approach has mostly been ap-
plied to SU(2) spin-rotation-invariant Heisenberg mod-
els on various 2D and 3D lattices21,39,45,46. Extensions
for anisotropic but diagonal exchange couplings are rela-
tively straightforward and have been employed to study
Kitaev interactions on the honeycomb lattice37,47 and to
resolve spin-nematic types of long-range order48. In con-
trast, the implementation of anisotropic and off-diagonal
DM interactions, as presented below, is found to be more
involved and has so far not been attempted within PF-
FRG. Before we explain all necessary modifications of the
approach in Sec. III B, we first briefly review the general
PFFRG setup in the case of Heisenberg interactions.

A. General PFFRG approach for Heisenberg
systems

The starting point of the PFFRG procedure amounts
to rewriting the spin operators from Eq. (1) in terms of
pseudo fermions to be able to employ standard fermionic

diagram techniques,

Sµi =
1

2

∑
α,β

f†i,ασ
µ
αβfi,β . (2)

Here, σµαβ with µ ∈ {x, y, z} are the Pauli matrices and

fi,α (f†i,α) denote annihilation (creation) operators of a

spin-α fermion (α =↑, ↓) at lattice site i. While the phys-
ical spin states ↑ and ↓ are realized in the subspace with

one fermion per lattice site (Qi ≡ f†i,↑fi,↑ + f†i,↓fi,↓ = 1),
the fermionic representation also leads to spurious doubly
(Qi = 2) or non-occupied (Qi = 0) states which do not
carry a spin. A simple approximative scheme to fulfill the
pseudo-fermion constraint Qi = 1 is to enforce its ther-
modynamic average 〈Qi〉 = 1 which amounts to intro-
ducing a chemical potential µi,α acting on the fermionic
system. Due to the particle-hole symmetry of Eq. (2),
this chemical potential vanishes identically throughout
the lattice. While the average constraint 〈Qi〉 = 1 in
principle still allows for local particle-number fluctua-
tions, it can be shown that states with Qi = 0, 2 are
associated with a finite excitation energy on the order of
the exchange couplings49 such that unphysical occupa-
tions are completely suppressed at T = 0.

The basic building block of a diagrammatic theory for
Eq. (1) is the free fermionic propagator G0 given by

G0 =
1

iωn
, (3)

where ωn denotes the Matsubara frequency. It is worth
emphasizing that due to the absence of any quadratic
term in the fermionic version of Eq. (1), the free prop-
agator is local in real space and diagonal in spin space
(note that the locality is also retained in all orders of
diagrammatic expansions).

Within PFFRG, this propagator is regularized by a
step function which suppresses the fermionic propagation
in a frequency interval between ωn = −Λ and ωn = +Λ,

GΛ
0 = θ (|ωn| − Λ)G0, (4)

where Λ is the so-called RG scale. With this modifi-
cation, the generating functional for the one-particle ir-
reducible m-particle vertices becomes Λ dependent. Ac-
cording to the standard FRG framework40,50–53, the scale
derivative of the generating functional yields an infinite
hierarchy of integro-differential equations where the Λ
flow of each m-particle vertex couples to all n-particle
vertices with n ≤ m + 1. The first two FRG flow equa-
tions for the self energy Σ and the two-particle vertex Γ
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FIG. 2: Diagrammatic representation of the FRG equations in Eqs. (5) and (6): The m-particle vertices are illustrated as gray
shaded disks or polygons. Arrows with (without) a slash denote the single-scale propagator SΛ (fully dressed propagator GΛ).
The flow of the self energy ΣΛ couples to itself via SΛ and to the two-particle vertex ΓΛ (first line). In a similar fashion, the
flow of the two-particle vertex ΓΛ couples to all m-particle vertices with m ≤ 3 (second line). This scheme repeats for higher
vertices up to infinite order (not shown).

read

d

dΛ
ΣΛ (1′; 1) = −T

∑
2′,2

ΓΛ (1′, 2′; 1, 2)SΛ (2, 2′) ,

(5)

d

dΛ
ΓΛ (1′, 2′; 1, 2) = T

∑
3′,3

ΓΛ
3 (1′, 2′, 3′; 1, 2, 3)SΛ (3, 3′)

+T
∑

3′,3;4′,4

[
ΓΛ (1′, 2′; 3, 4) ΓΛ (3′, 4′; 1, 2)

−ΓΛ(1′, 4′; 1, 3)ΓΛ (3′, 2′; 4, 2)− (3′ ↔ 4′, 3↔ 4)

+ΓΛ(2′, 4′; 1, 3)ΓΛ (3′, 1′; 4, 2) + (3′ ↔ 4′, 3↔ 4)

]
×GΛ(3, 3′)SΛ(4, 4′), (6)

where Γ3 is the three-particle vertex and T denotes the
system’s temperature. All arguments “1” denote a col-
lection of the Matsubara frequency, lattice site, and spin
index, i.e., 1 = {ω1, i1, α1}. The fully dressed propagator

GΛ is given by GΛ =
[[
GΛ

0

]−1 − ΣΛ
]−1

and SΛ denotes

the so-called single-scale propagator

SΛ = GΛ d

dΛ

[
GΛ

0

]−1
GΛ , (7)

which occurs whenever the scale derivative acts on the
free propagator. Below, these equations will be evaluated
in the limit T → 0 where the Matsubara sums become
integrals with a prefactor T → dω

2π . For a diagrammatic
representation of Eqs. (5) and (6), see Fig. 2.

While the infinite set of FRG equations is formally ex-
act, any numerical evaluation requires some type of trun-
cation scheme. A numerically feasible scheme that has
proven to correctly describe the magnetic properties of a
wide class of spin systems is the so-called Katanin trun-
cation54. Within this approach, the contribution from
the three-particle vertex ΓΛ

3 in Eq. (6) is neglected and

the single-scale propagator SΛ is replaced by

SΛ −→ − d

dΛ
GΛ = SΛ −

(
GΛ
)2 d

dΛ
ΣΛ . (8)

Effectively, the replacement (8) is equivalent to the inclu-
sion of a certain subset of three-particle vertices which
are responsible for the feedback of the self energy into
the flow of the two-particle vertex. It is important to
stress that this feedback represents a significant advan-
tage of the Katanin scheme compared to the – seemingly
more standard – plain two-particle truncation without
the replacement Eq. (8). While the fully self-consistent
Katanin scheme guarantees the complete feedback of ΣΛ

into the flow of ΓΛ, the plain two-particle truncation ap-
proximates this feedback at an intermediate level such
that self-energy effects are insufficiently taken into ac-
count36. As a consequence, a plain two-particle trunca-
tion cannot describe the formation of magnetically dis-
ordered phases and rather remains on a classical level
of approximation36. It has also been argued that the
Katanin truncation leads to a better fulfillment of Ward
identities associated with conservation laws54,55.

To numerically evaluate Eqs. (5) and (6), the fre-
quency, site, and spin dependencies of the vertex func-
tions need to be parameterized. We start with the self
energy ΣΛ(1, 2) which we rewrite as

ΣΛ(1, 2) = −iγΛ
d (ω1)δi1i2δα1α2

δ(ω1 − ω2) . (9)

The diagonal structures in frequencies and site indices
are due to energy conservation and locality of the prop-
agators, respectively. In the case of Heisenberg interac-
tions, the self energy is also diagonal in spin space as
expressed by the term δα1α2

. Also note that the SU(2)
spin-rotation invariance dictates that the self energy is
purely imaginary and antisymmetric in frequency, i.e.,
Im γΛ

d (ω) = 0 and γΛ
d (ω) = −γΛ

d (−ω). The self en-
ergy, hence, accounts for a finite lifetime of the pseudo
fermions. Furthermore, for lattices where all sites are
equivalent (such as the kagome lattice), γΛ

d (ω) does not
depend on the site.
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To implement spin-rotation symmetry for the
fermionic two-particle vertex ΓΛ (1′, 2′; 1, 2), we note
that (up to swapping indices) there are only two 4-rank
tensors in spin space that are invariant under SU(2)
transformations,

∑
µ σ

µ
α1′α1

σµα2′α2
and δα1′α1

δα2′α2
,

representing the spin and density channel of the vertex,
respectively. With these two terms we can parametrize
the two-particle vertex by

ΓΛ (1′, 2′; 1, 2) =

[
ΓΛ

s i1i2 (ω′1, ω
′
2;ω1, ω2)

∑
µ

σµα1′α1
σµα2′α2

+ ΓΛ
d i1i2 (ω′1, ω

′
2;ω1, ω2) δα1′α1

δα2′α2

]
× δ(ω1 + ω2 − ω1′ − ω2′)δi1′ i1δi2′ i2
− (ω1 ↔ ω2, α1 ↔ α2, i1 ↔ i2) . (10)

Here, the last line ensures that the vertex is fully antisym-
metric under the exchange of 1 ↔ 2 or 1′ ↔ 2′, and the
Kronecker deltas in real space are again a consequence
of the bare propagator’s locality. The flow equations can
now be formulated in terms of the spin and density parts
of the vertex, ΓΛ

s and ΓΛ
d . Due to energy conservation, a

description with three frequency arguments is sufficient
and we can write

ΓΛ
s/d i1i2

(ω′1, ω
′
2;ω1, ω2) −→ ΓΛ

s/d i1i2
(s, t, u) , (11)

where the so-called transfer frequencies s, t, u are given
by s = ω1′ + ω2′ , t = ω1′ − ω1, and u = ω1′ − ω2. The
explicit flow equations resulting from these parameteri-
zations can be found in Ref. 36.

For an efficient numerical solution, it is important to
exploit all symmetries of the vertex functions in fre-
quency and real-space variables. In particular, one can
show that ΓΛ

s and ΓΛ
d fulfill the relations

ΓΛ
s/d i1i2

(s, t, u) = ΓΛ
s/d i2i1

(−s, t, u) , (12a)

ΓΛ
s/d i1i2

(s, t, u) = ΓΛ
s/d i1i2

(s,−t, u) , (12b)

ΓΛ
s/d i1i2

(s, t, u) = ΓΛ
s/d i2i1

(s, t,−u) , (12c)

ΓΛ
s/d i1i2

(s, t, u) = ±ΓΛ
s/d i1i2

(u, t, s) , (12d)

where in the last line the plus (minus) sign corresponds
to the spin (density) channel. These properties lead to a
reduction of the numerical effort by a factor of 24 = 16.

The RG equations are solved with the initial condi-
tions in the limit Λ→∞ given by the bare interactions,
i.e., ΓΛ→∞

d i1i2
= 0 and ΓΛ→∞

s i1i2
= Ji1i2/4 [the factor of 1/4

results from the fermionic representation in Eq. (2)]. We
evaluate the vertices at 50 discrete frequency points for
s, t, and u which are chosen as a combination of a lin-
ear and logarithmic mesh. The real-space dependence of
Γs/d i1i2 is approximated by neglecting all vertices where
the distance between i1 and i2 exceeds a maximal value.
Here, the maximal distance is chosen to be seven nearest-
neighbor lattice spacings which means that correlations
are considered within a hexagon of 131 lattice sites.

Connecting the pairs of external legs (1, 1′) and (2, 2′)
of the two-particle vertex ΓΛ (1′, 2′; 1, 2) and integrating
over the corresponding frequencies, directly yields the
spin-spin correlator defined for imaginary frequencies iΩ,

χµνij (iΩ) =

∫ ∞
0

dτeiΩτ
〈
TτS

µ
i (τ)Sνj (0)

〉
, (13)

where τ is an imaginary-time variable. The central quan-
tity to be studied within PFFRG is the k-space-resolved
static susceptibility χµν,Λ(k) ≡ χµν,Λ(k, iΩ = 0) given
by the Ω = 0 component of the Fourier transform of
Eq. (13) evaluated as a function of Λ. Most importantly,
the Λ behavior of the susceptibility contains information
about the magnetic properties of the system. If magnetic
long-range order sets in, a divergence of the susceptibility
and a breakdown of the Λ-dependent flow is expected.
This is explained by the fact that our PFFRG scheme
does strictly not allow for spontaneous symmetry break-
ing. In a finite system with discretized frequencies, such
a divergence is regularized and manifests as a kink or a
cusp as Λ is decreased. The point in k space at which
this anomaly occurs further indicates the wave vector of
the corresponding type of magnetic order. On the other
hand, a smooth Λ flow of the susceptibility down to the
physical limit Λ = 0 signals the absence of any type of
magnetic long-range order and indicates a magnetically
disordered ground state. In this case, the momentum-
space profile of χµν,Λ=0(k) still allows to identify the
wave vectors of the dominant short-range spin-spin cor-
relations.

B. Modifications of the PFFRG for finite DM
interactions

The central modification of the PFFRG approach in
the case of finite DM interactions concerns the parame-
terization of the vertices. Since the DM exchange breaks
the SU(2) spin symmetry down to U(1) rotations around
the z axis, spin terms of the form

∑
µ=x,y σ

µ
α1′α1

σµα2′α2

and σzα1′α1
σzα2′α2

need to be parameterized by two dis-
tinct two-particle vertices. As a consequence, the spin
vertex ΓΛ

s is replaced by two vertices ΓΛ
xx = ΓΛ

yy and

ΓΛ
zz. Together with ΓΛ

d , these three vertices are suffi-
cient to treat models with XXZ-interactions as shown,
e.g., in Ref. 48. The case of DM interactions is, how-
ever, more involved. To implement the spin structure
σxα1′α1

σyα2′α2
−σyα1′α1

σxα2′α2
of the DM interaction, a ver-

tex ΓΛ
DM needs to be introduced. At the initial value

Λ → ∞, this vertex is given by the bare DM coupling
ΓΛ→∞

DM i1i2
= Di1i2/4. Additionally, two more distinct ver-

tices ΓΛ
zd and ΓΛ

dz parameterizing the U(1)-invariant spin
terms σzα1′α1

δα2′α2 and δα1′α1σ
z
α2′α2

must be considered.

The full set of U(1)-symmetric two-particle vertices is
hence given by ΓΛ

xx, ΓΛ
zz, ΓΛ

d , ΓΛ
DM, ΓΛ

zd, and ΓΛ
dz and the

parameterization of ΓΛ (1′, 2′; 1, 2) reads
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ΓΛ (1′, 2′; 1, 2) =

[
ΓΛ
xx i1i2 (s, t, u)

(
σxα1′α1

σxα2′α2
+ σyα1′α1

σyα2′α2

)
+ ΓΛ

zz i1i2 (s, t, u)σzα1′α1
σzα2′α2

+ ΓΛ
DM i1i2 (s, t, u)

(
σxα1′α1

σyα2′α2
− σyα1′α1

σxα2′α2

)
+ ΓΛ

d i1i2 (s, t, u) δα1′α1δα2′α2

+ ΓΛ
zd i1i2 (s, t, u)σzα1′α1

δα2′α2
+ ΓΛ

dz i1i2 (s, t, u) δα1′α1
σzα2′α2

]
δ(ω1 + ω2 − ω1′ − ω2′)δi1′ i1δi2′ i2

− (ω1 ↔ ω2, α1 ↔ α2, i1 ↔ i2) . (14)

Since the two-particle vertex couples to the flow of the self
energy, the parameterization of ΣΛ(1, 2) is also modified.
In addition to the density term γΛ

d in Eq. (9), a spin-
dependent term γΛ

s is generated during the RG flow such
that the full parameterization of the self energy is given
by

ΣΛ(1, 2) = (−iγΛ
d (ω1)δα1α2+γΛ

s (ω1)σzα1α2
)δi1i2δ(ω1−ω2) ,

(15)
where γΛ

s (ω) is real and antisymmetric in its frequency
argument. Even though the new self-energy term ∼
γΛ

s (ω)σzα1α2
might appear to have the same form as an

external magnetic field acting on the fermion system, this
contribution does indeed not break time-reversal symme-
try due to the property γs(ω) = −γs(−ω) (a magnetic
field, in contrast, would be symmetric in ω). We note
that γs(ω) solely appears due to the DM interaction and
cannot be generated by diagonal types of exchange cou-
plings.

The new parameterization of the self energy is also
carried over to the dressed propagator GΛ and the single
scale propagator SΛ which both acquire a spin part in ad-
dition to the density channel. In total, this complicates
the RG equations enormously. First, all six two-particle
vertices become finite during the flow and their contri-
butions cannot be neglected. Furthermore, when insert-
ing the parameterizations of the vertices into Eq. (6),
the products ΓΛΓΛGΛSΛ on the right-hand side of the
equation generate all different types of terms contain-
ing combinations of the six two-particle vertices as well
as the spin and density channels of GΛ and SΛ. Finally,
from the four symmetry relations in Eqs. (12a)-(12d) only
Eq. (12a) and a combination of Eqs. (12b) and (12c)
(which amounts to replacing 1 ↔ 2 and 1′ ↔ 2′) re-
main intact, resulting in an additional factor of four in
the computation time. Together with the larger number
of vertex functions, the computational effort due to finite
DM interactions increases by a factor of 80. Given the
complexity of the RG equations, we will not write down
their explicit form here, but continue discussing their so-
lution for the kagome lattice in the next sections.

FIG. 3: (Color online) Flowing susceptibilities of the J1-D
model treated within an RPA scheme: Shown are the suscep-
tibilities for

√
3 ×
√

3 order (blue circles) and q = 0 order
(green squares). Upper panel: At vanishing DM coupling,√

3 ×
√

3 order is found to be preferred over q = 0 order
(dashed red lines illustrate the critical Λ scale at which the
flow diverges first). Lower panel: At D = 0.01J1, the q = 0
order is dominant indicating a change of magnetization at in-
finitesimal D. For the peak positions of these types of order
in reciprocal space, see Fig. 4(a).

IV. J1-D-MODEL ON THE KAGOME LATTICE

Before we turn to the more complex J1-J2-D model
on the kagome lattice, we consider the simpler nearest-
neighbor model which results from Eq. (1) by setting
J2 = 0 and J1 > 0. Particularly, we benchmark our
PFFRG results against other approaches to test whether
this technique correctly describes the transition into the
q = 0 ordered state.

A. PFFRG in the RPA channel

As a first check, we verify that the new implementation
of the PFFRG generally identifies the classical q = 0
order generated by the DM interaction. To this end,
we analytically solve a simplified version of the PFFRG
equations where only the RPA channel [also referred to
as direct particle-hole channel, see third line of Eq. (6)]
contributes to the flow of ΓΛ and self-energy effects are
neglected. The flow equation for the two-particle vertex
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then reduces to

d

dΛ
ΓΛ (1′, 2′; 1, 2) = −T

∑
3′,3;4′,4

[
ΓΛ(1′, 4′; 1, 3)ΓΛ (3′, 2′; 4, 2)

+ (3′ ↔ 4′, 3↔ 4)]GΛ(3, 3′)SΛ(4, 4′) .
(16)

Singling out this channel is equivalent to treating a large
S generalization of the spin model (where S is the spin
length) and allows us to determine the type of classical
order the system tends to establish in this limit49. It
is worth noting that, due to its special real-space struc-
ture, the RPA channel is the only term in the PFFRG
equations that generates long-range correlations between
spins.

A PFFRG scheme in the RPA channel leads to sub-
stantial simplifications. Inserting the parameterization
of Eq. (14) into Eq. (16), one finds that ΓΛ

d , ΓΛ
zd, and

ΓΛ
dz remain exactly zero during the entire RG flow. Fur-

thermore, two-particle vertices at different frequency grid
points decouple such that we can restrict ourselves to the
zero frequency component. The resulting set of equations
for the static (s = t = u = 0) two-particle vertices reads

d

dΛ
ΓΛ
xx i1i2 =

2

πΛ2

∑
j

(
ΓΛ
xx i1jΓ

Λ
xx ji2 − ΓΛ

DM i1jΓ
Λ
DM ji2

)
,

(17a)

d

dΛ
ΓΛ

DM i1i2 =
2

πΛ2

∑
j

(
ΓΛ

DM i1jΓ
Λ
xx ji2 + ΓΛ

xx i1jΓ
Λ
DM ji2

)
,

(17b)

d

dΛ
ΓΛ
zz i1i2 =

2

πΛ2

∑
j

ΓΛ
zz i1jΓ

Λ
zz ji2 . (17c)

One can see that the DM vertex ΓΛ
DM only couples to

ΓΛ
xx (and vice versa) while ΓΛ

zz is completely unaffected
by the DM interaction. Since at finite DM couplings ΓΛ

zz

is generally found to be smaller than ΓΛ
xx (which is equiv-

alent to the statement that spins favor an orientation in
the x-y plane), only ΓΛ

xx and ΓΛ
DM are considered below.

In the next step, we Fourier-transform the vertices via

ΓΛ
xx/DM a(i)b(j)(k) =

∑
∆R=Ri−Rj

e−ik(Ri−Rj)ΓΛ
xx/DM ij .

(18)
Here, a(i) = 1, 2, 3 is the sublattice index of site i and
the same holds for b(j). Ri denotes the position of the
kagome-unit cell in which site i resides. With this trans-
formation, the two-particle vertices become 3×3 matrices
in the sublattice index and different Fourier components
in k space decouple. The RG equations can be further
decoupled with respect to the xx and DM channels by
defining vertices ΓΛ

± ab(k) = ΓΛ
xx ab(k)±iΓΛ

DM ab(k), yield-
ing

d

dΛ
ΓΛ
±(k) =

2

πΛ2
ΓΛ
±(k)ΓΛ

±(k) . (19)

Since the product of vertices on the right hand side is
a standard matrix product in the sublattice indices, we
have suppressed all sublattice variables. The solution of
this equation is given by

ΓΛ
±(k) = πΛ

[
2 + πΛ

(
ΓΛ→∞
xx (k)± iΓΛ→∞

DM (k)
)−1
]−1

.

(20)
Transforming back to the original vertices ΓΛ

xx and ΓΛ
DM,

we obtain the spin susceptibility χxx,Λk = χyy,Λk as a func-
tion of Λ which we use to probe the magnetic order in
the x-y plane.

Due to the classical nature of the RG equations in the
RPA channel, the susceptibilities always diverge during
the Λ flow indicating the onset of magnetic order. To
identify the type of order that is classically preferred, we
determine the wave vector k for which this divergence
occurs first as Λ is lowered. Generally, the competition
of different orders only takes place between

√
3 ×
√

3
and q = 0 states [see Fig. 4(a) for the corresponding
wave-vector positions in reciprocal space]. At vanishing

DM coupling, we find that the
√

3 ×
√

3 susceptibility
slightly dominates over the q = 0 susceptibility, see Fig.
3. This is consistent with earlier semi-classical studies of
the model56,57 which predict a preference for

√
3 ×
√

3
order at large S. Switching on an infinitesimal DM in-
teraction D > 0 the situation is found to be reversed:
The q = 0 susceptibility diverges at slightly larger Λ as
compared to the

√
3 ×
√

3 component, suggesting that
the system now realizes q = 0 order. Together with the
observation that the q = 0 phase persists up to D →∞,
this is exactly the semi-classical result of Ref. 58.

Overall, this simplified PFFRG approach shows that
q = 0 order is correctly selected at finite DM interac-
tions. The absence of any non-magnetic phases and the
onset of q = 0 order at infinitesimally small D is, of
course, an artifact of the classical treatment. In the next
section, we investigate how quantum fluctuations change
this picture.

B. Full PFFRG calculation

We now discuss the results of a full quantum-PFFRG
calculation taking into account all interaction channels
of Eq. (6). As in the previous section, the effects of the
DM interaction are most pronounced in the x-y plane
such that we restrict our discussion to in-plane suscep-
tibilities. In Fig. 4(c)-(f), we show k-space-resolved sus-
ceptibility profiles χxx,Λ(k) for selected values of the DM
interaction. For vanishing DM coupling [see 4(c)], we re-
produce the profile that has previously been obtained by
PFFRG21 showing the strongest signal at the boundaries
of the extended Brillouin zone and small maxima at the√

3×
√

3 positions. At the same time, the flow does not
display signs of an instability (see Fig. 5) which hints at a
non-magnetic ground state. Comparing our results with
other numerical methods, there is broad consensus that
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FIG. 4: (Color online) (a) Dominant peak positions for the four types of classical order in the J1-J2 kagome Heisenberg model:
Ferromagnetic order (purple triangle),

√
3 ×
√

3 order (blue circles), q = 0 order (green squares), and cuboc order (orange
crosses) are shown within the boundaries of the extended Brillouin zone (black hexagon). The edges of the first Brillouin zone
are depicted gray. (b) Competition between the q = 0 (green squares) and

√
3×
√

3 (blue circles) susceptibilities as a function
of D. The data corresponds to Λ ≈ 0.19. Small symbols indicate that the flow has entered the symmetry broken regime below
the critical Λ where the SU(2)-invariant PFFRG approach is no longer valid. (c)-(f) Static spin susceptibilities χxx,Λ(k) for
various DM interaction strengths. The black hexagon denotes the boundaries of the extended Brillouin zone. Note that, in
magnetically disordered regimes such as (c), the plot corresponds to Λ = 0 while in (d), (e), and (f) the susceptibility is shown
at a Λ value right above the q = 0 instability (indicated by arrows in Fig. 5).

the response in momentum space is mostly distributed
along the edge of the extended Brillouin zone59–61. How-
ever, the position of the residual small peaks is still de-
bated: While DMRG studies on tori find the

√
3 ×
√

3
positions preferred60, exact diagonalization of small spin
clusters detects maxima at q = 0 positions for T = 059,61.

When D is increased, the response first remains rather
evenly distributed along the Brillouin-zone edges, but
the small peaks shift towards the q = 0 positions, see
Fig. 4(d). Only as D is increased beyond D & 0.4J1, the
q = 0 peaks become more prominent and the ridge-like
feature along the Brillouin-zone boundary disappears, see
Fig. 4(e),(f). To investigate this change in more detail, we

compare the susceptibilities for
√

3×
√

3 and q = 0 orders
as a function of D in Fig. 4(b). One can see that the point

at which the q = 0 susceptibility surpasses the
√

3×
√

3
response is rather exactly given by D = 0.11J1 [note that
the data in Fig. 4(b) corresponds to finite Λ ≈ 0.19 which
is also the value where a q = 0 instability is observed,
see below].

While our results indicate that the magnetic correla-
tions undergo a qualitative change at D = 0.11J1, we
need to detect signatures of an instability during the RG

flow to confirm that this change is associated with the
onset of magnetic long-range order. In Fig. 5, we plot
the flow behavior of the susceptibility for various values
of D/J1. While a kink at finite Λ is clearly resolved for
D/J1 & 0.2, determining the precise value for the critical
DM-interaction strength turns out to be rather challeng-
ing. The reason for this is that in comparison to recent
PFFRG studies for Heisenberg models, we use relatively
small system sizes and coarse frequency grids which in-
creases numerical oscillations due to frequency discretiza-
tion. Additionally, the phase transition between the non-
magnetic phase and the q = 0 phase appears to be rather
smooth with a slow onset of magnetization. Our best es-
timate for the first appearance of an instability feature
is D = (0.12± 0.02) J1 which also coincides with the rise
of q = 0 peaks.

Taken together, the change of spin correlations in
conjunction with the onset of instability signatures at
D ≈ 0.1J1 indicates that PFFRG correctly reproduces
the phase diagram of the J1-D model that has previ-
ously been obtained by exact diagonalization25. We also
conclude that PFFRG incorporates the proper amount of
quantum fluctuations to balance between magnetic order
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FIG. 5: (Color online) Λ dependence of the static susceptibil-
ity χxx,Λ(k) for various DM-interaction strengths taken at the
maximum in momentum space. Crosses (circles) indicate that
the maximum in k space at the respective Λ and D values is
located at the

√
3×
√

3 (q = 0) position. Instability features
associated with critical Λ scales are marked by arrows. Below
those scales, the susceptibilities are plotted by dashed lines.

order type q = 0 cuboc ferro
√

3×
√

3

D = 0.0 [27, 59] [122, 153] [171, 270] [270, 347]

D = 0.2 [0, 81] [122, 158] [171, 270] [270, 347]

D = 0.4 [−6, 95] [117, 162] [171, 270] [270, 353]

TABLE I: Phase boundaries for the ordered phases of the
J1-J2-D model on the kagome lattice as found via PFFRG.
The Heisenberg couplings are parameterized as J1 = J cos θ,
J2 = J sin θ and the θ intervals are given in angular degrees.
The accuracy of the θ values is roughly ±5◦.

and disorder tendencies. We therefore continue exploring
more complex models within this formalism in the next
section.

V. J1-J2-D MODEL ON THE KAGOME
LATTICE

A. Phase diagram

Let us now consider the full Hamiltonian in Eq. (1)
and investigate the resulting phase diagram for positive
and negative Heisenberg couplings. As discussed in the
next section, the case of dominant J1 > 0 and smaller D,
J2 > 0 is relevant for herbertsmithite. The Heisenberg in-
teractions are parameterized by an angle θ and an overall
amplitude J , i.e., we set J1 = J cos θ, J2 = J sin θ.

Without the DM interaction, this model has already
been studied with PFFRG21,39. In agreement with these
works, we obtain all types of order of the classical phase
diagram, but with additional non-magnetic phases open-
ing up around the points (J1, J2) = (1, 0) and (0, 1), see
Fig. 6(a). Further, our results indicate the possible ex-
istence of a narrow non-magnetic phase between ferro-

magnetic and cuboc regimes. Compared to Ref. 39, the
magnetically disordered phases are found to be slightly
larger, possibly because we use smaller system sizes and
fewer discrete frequencies which complicates the identifi-
cation of magnetic instabilities.

A finite DM interaction first has the biggest effect on
the q = 0 phase which is considerably enlarged upon in-
creasing D. At D = 0.2J [see Fig. 6(b)], the q = 0 regime
almost fills the whole first quadrant of the phase diagram
and the non-magnetic phases around (J1, J2) = (1, 0)
and (0, 1) shrink, accordingly. Further increasing D
[Fig. 6(c)], we even find q = 0 order for ferromagnetic

couplings J1 < 0 or J2 < 0 and the
√

3×
√

3 and cuboc
phases likewise undergo enlargements. As a consequence,
the non-magnetic phase around θ = 0 has completely
vanished at D = 0.4J . Note that, for all DM couplings
which we have studied, the transition between ferromag-
netic and

√
3 ×
√

3 phases remains exactly at θ = 3π/2
(negative J2 axis). The precise θ intervals for the ordered
phases are listed in Table I.

In summary, these results show that in parameter re-
gions where a non-collinear magnetic phase (q = 0,√

3 ×
√

3, or cuboc order) competes with a magneti-
cally disordered regime, a finite DM interaction shifts the
phase boundary in favor of the non-collinear state. This
behavior is plausible since the DM coupling tends to in-
duce finite angles between neighboring spins (the largest
energy gain for two DM-coupled spins is obtained for an
angle of π/2 between them) which generally promotes
non-collinear types of order. In contrast, the ferromag-
netic regime is found to remain unchanged upon increas-
ingD. Our results further indicate that for strong enough
DM couplings, non-magnetic phases die out completely
on the kagome lattice.

B. Implications for herbertsmithite

Our results for the J1-J2-D model on the kagome lat-
tice can be used to study the microscopic coupling sce-
nario of the mineral herbertsmithite (ZnCu3(OH)6Cl2).
The immense interest in this material mainly stems from
the fact that it does not exhibit signatures of magnetic
long-range down to 50mK28,32,33 but shows a diffuse,
spinon-like excitation spectrum29,30. Herbertsmithite,
hence, displays all the experimental features expected
from a quantum spin liquid. The spin structure factor
measured with neutron scattering features the strongest
signal along the edges of the extended Brillouin zone
which roughly resembles the momentum profile for a
nearest-neighbor antiferromagnetic Heisenberg model on
the kagome lattice. While early single-crystal neutron-
scattering data did not resolve any preferred type of spin
correlations along the edge29, more recent results show
small peaks at the q = 0 position30. More insights into
the microscopic couplings come from ESR measurements,
magnetic susceptibility fittings, and the entropy differ-
ence compared to the Heisenberg case which indicate a
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(a) (c)(b)

FIG. 6: (Color online) Phase diagram of the J1-J2-D model as a function of θ ∈ [0, 2π) and various values of D: Colored regions
are the classically ordered phases of Fig. 1(b) while the white regimes are magnetically disordered. Uncertainties in the phase
boundaries between magnetically ordered and non-magnetic phases are indicated by light-colored stripes. The θ values of the
phase boundaries are also listed in Table I.

DM interaction in the range ofD/J1 ∼ 0.08 . . . 0.135,62,63.
In addition, ab-initio DFT calculations predict an antifer-
romagnetic second-neighbor interaction given by J2/J1 =
0.01931.

We have performed PFFRG calculations in the vicin-
ity of the reported values for D and J2, see Fig. 7(a).
It should generally be emphasized that there is a strong
competition between q = 0 order and a magnetically dis-
ordered phase in this regime such that possible ordering
signatures are weak and hard to identify within the PF-
FRG. Tracking the appearance of an instability feature
during the RG flow, we find that the phase boundary
between the q = 0 and the non-magnetic phase is ap-
proximately given by the line between (D/J1, J2/J1) =
(0.04, 0.08) and (0.12, 0) which goes almost through the
values predicted by DFT calculations and ESR measure-
ments for herbertsmithite. On the paramagnetic side of
the transition, the dominant spin correlations are found
to be either of q = 0,

√
3×
√

3, or incommensurate type
(i.e., at a position between q = 0 and

√
3×
√

3 wave vec-
tors in k space). On the other hand, the magnetic phase
is completely dominated by q = 0 order. As an example,
we show in Fig. 7 (b) the Λ flow and the susceptibility
profile for (D/J1, J2/J1) = (0.1, 0.02). Interestingly, the
latter exactly shows the type of fluctuations measured
in recent neutron-scattering experiments, i.e., a large re-
sponse at the Brillouin-zone boundary and small max-
ima at the q = 0 wave vectors. However, the RG flow
also shows small signatures of an instability for these pa-
rameters which would possibly correspond to weak mag-
netic order, in contradiction with experiments. While
it is difficult to draw any definite conclusion from these
features, we note that such anomalies typically become
more pronounced for larger system sizes and a better
frequency resolution. We therefore propose the follow-
ing two scenarios for herbertsmithite: (i) The DM inter-
action might be smaller than the predicted value, i.e.,
D/J1 . 0.08. Assuming that the Heisenberg interac-

tions are approximately given by J2/J1 ≈ 0.02, this
would stabilize a non-magnetic phase according to our
PFFRG data. Nevertheless, in these parameter regimes,
PFFRG suggests that the dominant spin correlations are
of
√

3 ×
√

3 type rather than q = 0 which requires an
additional coupling mechanism shifting the peaks. (ii)
If (D/J1, J2/J1) ≈ (0.1, 0.02) describes the couplings of
herbertsmithite, we find the qualitatively correct momen-
tum profile of the spin correlations. Possible weak q = 0
order at these parameters could be destroyed by further
frustrating interactions. Indeed, DFT simulations pre-
dict various types of ferromagnetic and antiferromagnetic
interlayer couplings up to 0.035J1

31 which could easily
enhance the in-plane frustration effects. Furthermore,
magnetic disorder due to copper ions on zinc sites could
also be a source of quantum fluctuations in the system.

VI. SUMMARY AND CONCLUSION

In this work, we have generalized the existing PFFRG
approach to treat spin models with finite DM interac-
tions. After discussing the central methodological ad-
justments due to off-diagonal exchanges, we tested the
method for nearest-neighbor out-of-plane DM and an-
tiferromagnetic nearest-neighbor Heisenberg interactions
on the kagome lattice. We find that, at D ≥ (0.12 ±
0.02)J1, the DM coupling destabilizes the non-magnetic
phase and induces q = 0 order, in good agreement with
exact diagonalization25,27. In Sec.V, we have further an-
alyzed the interplay of DM interactions with first and
second-neighbor Heisenberg couplings. The phase di-
agram of the J1-J2-D model (see Fig. 6) shows that,
upon increasing D, all non-collinearly ordered phases
(q = 0,

√
3 ×
√

3, and cuboc orders) are enlarged while
the non-magnetic phases shrink. For strong enough DM
couplings (D & 0.4J), the non-magnetic phase around
(J1, J2) = (1, 0) is found to vanish completely. Param-
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FIG. 7: (Color online) (a) Section of the phase diagram in the J2-D plane relevant for herbertsmithite: Large (small) icons
denote that the RG flow does (does not) signal long-range order. Black circles indicate regions of numerical uncertainties where
we cannot reliably determine the magnetic properties. The ordered phase is dominated by q = 0 order [confer Fig. 4 (a)],
whereas, in the paramagnetic regime, we find dominant q = 0 (green squares),

√
3×
√

3 (blue circles), as well as incommensurate
(red triangles) spin fluctuations. (b) RG flow of the maximal susceptibility for (J1, J2, D) = (1, 0.02, 0.1) [see red circle in (a)]
showing a weak instability feature (arrow): As in Fig. 5, crosses (circles) indicate that the maximum in momentum space resides
at the

√
3×
√

3 (q = 0) position. The inset shows the susceptibility in k space. Small maxima at the midpoints of the extended
Brillouin zone’s edges (corresponding to q = 0 correlations) are in agreement with low-energy inelastic neutron-scattering
data30.

eter regimes that have been reported to describe the
mineral herbertsmithite are found to lie in close proxim-
ity to a quantum critical point between a non-magnetic
phase and a q = 0 ordered phase. At least in parts
of this parameter region, we qualitatively reproduce the
low-energy neutron-scattering data from Ref. 30. De-
spite this, the J1-J2-D model possibly misses additional
sources of frustration that might be necessary to destroy
weak residual magnetic order. We argue that interlayer
exchange couplings could provide such additional frus-
tration effects.

In total, this study shows that the PFFRG approach
can be successfully applied to models with finite DM cou-
plings. Since such interactions are a consequence of lat-
tice geometries and therefore represent a relevant per-
turbation in a large class of quantum magnets, we ex-
pect plenty of possibilities for future applications. For

example, the next step could be to apply this technique
in three spatial dimensions where it has recently been
shown38 that the PFFRG leads to a better resolution
of magnetic phase diagrams as compared to two dimen-
sional systems.
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