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ABSTRACT

Nano solar cell materials cannot sustain imprinted thermodynamic potentials yielding electrical 

fields for a charge separation. They have, therefore, to rely on kinetic mechanisms for current 

rectification and energy conversion. It is shown that treatment of WS2 nano-sheet sensitized TiO2

-material with organic thiols increases the photocurrent efficiency at least three fold. They bind 

to the WS2 via the thiol sulfur to produce a charged surface state, which converts into an efficient 

electron transfer bridge in presence of suitable electron donors. These thiol bridges essentially 

operate in anodic direction. Thus they increase both the photo induced chemical affinity, which is 

proportional to the photovoltage generated, and the interfacial reaction rate which is proportional 
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to the photocurrent. The results underline the importance of studying unidirectional electron 

transfer processes for innovative solar cell applications.

GRAPHICAL ABSTRACT

INTRODUCTION

The solar energy reaching our planet (reflected light deduced) amounts to 121.000 TW 

(1TW=1012W) It is about the 8.000-fold of the world’s energy consumption in 2010 . However, 

to date solar energy devices still suffer from low efficiencies or comparably high costs despite 

the ongoing research within this field. Nanocomposite solar cells have attracted considerable 

interest within this context.1-5 On one hand nanomaterials are easy to prepare which suggests

significant economical advantages for solar cell production.6,7 On the other hand the resulting 

nano solar cells are still facing significant problems with respect to instability.

Most problems encountered with nanostructured solar cells appear to be related to an only 

partial understanding of the mechanism involved. Molecular kinetic mechanisms have to be 

functioning to facilitate current rectification and unidirectional electron transfer.8 The importance 

of kinetic effects became, for example, visible with the work of Hodes et al. demonstrating that 
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the same nanocrystalline film exhibits n- as well as p-type behavior, depending on the hole or 

electron scavenger used as electrolyte.9 However, a more fundamental understanding of 

nanocomposite solar cell function on the basis of kinetic electron transfer rectification is needed. 

This has recently been attempted by deriving the nano solar cell function from the principle of 

least action, as applied to irreversible thermodynamics (principle of minimum entropy 

production).10 The most straightforward strategy to increase the power output of a kinetically 

determined solar cell would be to rectify electron transfer by suppressing reverse reactions. For 

nano solar cells, interfacial electrochemical properties need therefore to be developed, which 

favor unidirectional electron exchange.

The present work aims at investigating the advantage of thiols for this purpose by adsorbing 

them to TiO2 nanoparticles sensitized with WS2-nanosheets.11 The thiols should enhance 

unidirectional electron transfer and thus current rectification. The idea of using thiols was 

derived from biology, where cysteine, a thiol group containing amino acid, has been playing a 

significant role in electron transfer since early evolution.8,12 Recently, organic thiols have been 

used to improve the performance of photovoltaic devices (PV).13,14 For instance, a few volume 

per cent alkanedithiols incorporated into a polymer/fullerene solution before spin-casting led to 

an increase of power-conversion efficiency by about 100%.15 The results were explained by an 

increased efficiency in mobile-carrier-generation as well as an increased mobile-carrier lifetime 

due to changes within the heterojunction morphology. Moreover, quantum dot PV have been 

treated with organic thiols.16-18 PV from ITO sensitized with PbS and PbSe showed higher

efficiency when treated with ethanethiol.19 The effect was explained by surface passivation due to 

the adsorption of organic thiols. Furthermore, Chen et al. reported on the use of n-butanethiol to 

improve the performance of P3HT/CdSe PV.20 They concluded that monofunctional thiols are 
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better in order to improve the efficiency of hybrid solar cells than the commonly used 

bifunctional thiols due to enhanced charge transport between nanocrystals.

Herein we present a series of organic thiols as organic rectifiers for a TiO2/WS2 nano solar cell 

and discuss their function with respect to their chemical structure.

EXPERIMENTAL

Unless otherwise noted, all chemicals were purchased from Fluka. All samples were heated to 

150°C in order to remove water residues from TiO2 pores prior to sensitization via chemical bath 

deposition (CBD).21 First, pure sulfur was dissolved in 50 mL cymene (1-isopropyl-4-

methylbenzene, CH3C6H4CH(CH3)2) to obtain a 0.1 M solution. Then the TiO2 samples were 

carefully placed at 45° inclined to the vertical wall into a glass container with sulfur solution. 

Then the solution was heated up to 170°C until the boiling point was reached. After 20 min (to 

allow the dissolved sulphur to penetrate the TiO2 pores), W(CO)6 was added (0.05M) and the 

container was covered with a glass top. The colour of the solution changed to dark brown

immediately. After waiting for additional 30 sec to 2 min the substrates were removed from the 

container and dried in air. Then they were washed with acetone and distilled water and dried in 

vacuo.

Sensitizing of the WS2/TiO2 solar cells was achieved by chemical bath deposition using 

solutions of D- and L-cysteine, thioglycolic acid, 3-mercaptopropionic acid, thiosalicylic acid 

and 2-thiophencarbonic acid (1w%, 5w%, sat.) for up to 90h at room temperature.

The TiO2 layers, produced via the sol-gel method on a conducting substrate (fluorine doped 

glass, 15 !/cm2), were purchased from SGLux. The electrodes were contacted with the help of 

Elecolit Panasol 353, a two compound silver epoxy glue. A small part of sensitized TiO2 was 

removed from the electrode. Then the conducting glue was placed on the conducting glass with a 
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piece of copper wire and allowed to dry. The electrodes were carefully sealed with Screentec 

RTV silicon rubber to avoid short circuits between FTO and liquid electrolyte. The electrically 

accessible surface had an area of approximately 2 cm2. All SEM images were taken using LEO 

1530 Scanning Electron microscope at 2 kV equipped by an Energy Dispersive X-Ray 

Fluorescence Analyser (EDX) to quantify the composition of the samples.

For the electrochemical measurements a three electrodes setup was used. The counter electrode 

was platinum wire and the reference electrode was SCE (saturated calomel electrode). The nano-

structured TiO2 electrode was illuminated from the front (which means from the FTO/TiO2 side, 

which is the usual dye solar cell set-up). The electrolyte used for electrochemical measurements 

was 0.5 M LiI dissolved in propylene carbonate. For the determination of photocurrents a Schott 

KL 1500 LCD has been used as a light source. The electrolytic contact was just used for testing 

the photoelectrical quality of the layers, since the final aim was to develop an all solid 

nanostructured cell. For chemical treatment and edge site passivation of the samples, a 1% 

TWEEN 80 (polyethylene glycol sorbitan monooleate) solution in H2O has been used. All other 

chemicals for the treatment were a 5% solution in H2O.

RESULTS AND DISCUSSION

A schematic picture of the nanostructured TiO2 electrode sensitized with WS2 nanosheets is 

shown in Figure 1a. An iodide/iodine electrolyte maintains the electrolytic contact to the counter 

electrode. During illumination electrons are excited within the WS2 to stimulate electron transfer 

to the TiO2 and regeneration from the iodide/iodine redox electrolyte. 
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Figure 1b shows the characteristic scanning electron microscopic structure of the TiO2

nanofilm produced by a sol-gel technique, during which a hydrolytic decomposition of 

titaniumtetraisopropylate is occurring via spray pyrolysis according to the reaction

OHHCTiOOHOHHCTi 7322463 42)(  (1)

This nanofilm could be further functionalized with tungsten disulfide nanoparticles by a 

chemical bath deposition (CBD) method (Figure 1c). In a similar way, thus by CBD, organic 

thiols can chemisorb to the WS2 particles, providing a rectifying electron transfer relay. The 

thereby changed photocurrent density was expected to be a measure for photocurrent 

rectification.

The property of thiols to rectify electron transfer to the layer material has been experimentally

deduced from photoelectrochemical studies22,23 of cysteine on MoS2, which has a similar 

electronic and crystal structure as WS2. If electrons are taken from a thiol sulfur that is attached 

to a metal, the electron density will be lowered and redistributed over the whole molecule. In 

contrast, donation of an electron to the sulfur is not possible which renders electron transfer 

through cysteine essentially rectified. The organic thiols used in the present work are 

summarized in Figure 2. Beside cysteine itself (1,2) we chose two derivatives similar to cysteine

but without amino group, namely 3-mercaptopropionic acid (3) with a C2-spacer and 

thioglycolic acid (4) with a C1-spacer between the thiol and the carboxylic acid function. 

Furthermore, we tested thiosalicylic acid (5) bearing an aromatic C6-ring as well as thiophenes 

carrying a carboxlic acid in 2 and 3 position (6,7).
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Figure 3a shows a current potential diagram, which compares the behavior of dark current and

photocurrent in absence and presence of L-cysteine (2) after exposure lasting 5 and 25 hours,

respectively. Interestingly, the photo effect of the cysteine treated nanoelectrode is significantly 

increased. By using a 5% mixture of D–cysteine (1) and L–cysteine (2) in water for the treatment 

of the WS2-layer, no significant increase of photocurrents is observed after 18h (Figure 3b). 

However, after 90 hours a three times increase of the photocurrent develops. Long-term 

treatment apparently improves the photo-efficiency significantly. Comparative studies show that

cysteine and thioglycolic acid (4) yield good improvements of the photoeffect, but the promoting 

effect disappears when the 3-mercaptopropionic acid (3) or thiols with longer alkyl chains are 

used. Aromatic compounds like thiosalicylic acid (5) improve the photocurrents but two tested 

thiophene carbonic acids (6,7) decreased the photocurrent output. The low performance of the 

thiophene derivatives 6 and 7 may be explained by the reduced ability of the thiophene sulfur to 

bind to the WS2/TiO2 surface due to the absence of a thiol group. Table 1 shows, under 

comparable conditions, the effect of different thiols on the performance of the 

nanophotoelectrode sensitized with WS2. The relationship between the chemical structure of the 

organic thiol and its ability to improve the photocurrent is not fully clear at the moment. As 

indicated by the drop of efficiency when thiophenes are used, the thiol group seems to be 

important for effective binding of the molecule onto the surface. Surprising is the dramatic drop 

of photocurrent output when 3 was used instead of cysteine, indicating the importance of the 

amino group for efficient rectification.

From earlier studies of cysteine-molybdenum disulfide interaction and its effect on the 

photoelectrochemistry of the system22,23 it could be expected that cysteine is also attaching to 

WS2 and thus increasing the photoeffect of the TiO2/WS2 nanocomposite electrode. The present 

work has confirmed this expectation. Cysteine is functioning as a rectifying molecular bridge 



Page 8 of 26

Acc
ep

te
d 

M
an

us
cr

ip
t

8

which is suppressing a reverse reaction of electrons from the WS2 conduction states. As Figure 4

visualizes the relevant interaction is expected to occur via the thiol sulfur with metal d-states on 

edge sites of the layer-type material as well as on to the Van der Waals surfaces where dz
2-states 

are protruding through the interface.22

Holes from the WS2 nano sheets are efficiently trapped via the thiol-S within the cysteine 

molecule to form a positively charged adsorbed molecular layer. Such a situation could 

convincingly be demonstrated by combining photoelectrochemical and microwave conductivity 

measurements of MoS2 in presence of cysteine.24 A similar situation is also expected to apply to 

the here studied nano-WS2 as shown in the energy diagram depicted in Figure 4. When now 

electrons from an electron donating redox system such as I-/I3
- are available, the positive charge 

of the cysteine molecule is neutralized and the captured electron is available for renewed electron 

transfer to the valence states of WS2-sheets. In this way the adsorbed thiol molecule is acting as 

an electron transfer bridge. This can be deduced from the significantly increased photocurrent 

density observed. The function of the bridge is highly asymmetric. When electrons are deduced 

from the sulfur atom of the thiol group and drawn into the WS2 the electron density distribution 

within the thiol molecule will change accordingly and facilitate an electron recovery from the 

redox donor. However, the function of the electron transfer bridge cannot easily be reversed since 

it is not at all favorable for donating an electron to the sulfur of the thiol group, which is 

chemisorbed on WS2-sheets. In this way the thiols work as asymmetric electron transfer shuttles 

and contribute towards a rectification of photocurrents in the nano composite structure. A 

comparison of the action of different organic thiols suggest that thiols, which combine a thiol 

group with carbonic acid are favorable with respect to a stimulation of unidirectional electron 

transfer. Longer alkyl chains interfere drastically with this effect, since they reduce the electron 
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transfer probability (or electron conduction). Equally, molecular structures, which interfere with 

a favorable positioning of the absorbed thiol species are expected to reduce the photocurrent 

efficiency.

CONCLUSIONS

As shown in a previous publication,25 nanocomposite solar cells are controlled by a power 

output law, which is proportional to the product of chemical affinity and reaction rate. The 

chemical affinity (proportional to the Gibbs-free energy) of a photochemical reaction acts as a 

thermodynamic force. The reaction rate is acting as a thermodynamic flux. Both reach a high 

value when the reverse reaction is suppressed, i.e., electrons are preferably channeled into one 

direction only. Thus, both the chemical affinity and the reaction rate take advantage of an 

inhibited reverse reaction which leads to an improvement of the power output conditions.

Cysteine and other thiols play the role of such rectifying electronic elements and therefore

support energy extraction for power generation. The efficiency of such molecular electronic 

rectifiers depends on the size and structure of the molecules. Beside a thiol group for efficient 

adsorption onto the surface, as indicated by the drastic drop of photocurrents when thiophenes 

were used, the spacer type and length between thiol and carboxylic acid appeared to be of high 

importance. While an aromatic ring shows good results, aliphatic spacer of C2 or more have even 

negative effects on the cell performance.

Unidirectional electron transfer can not easily be described via the standard Marcus theory of 

electron transfer, since the relevant quantum processes allow a facile inversion of the mechanism. 

To make electron transfer directional, feedback processes on molecular electronic level are 

required. This means, the electron transfer should be accompanied by a polarization of the 
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molecular environment. Such a polarization mechanism is excluded in the Markus approach for 

electron transfer. But it has to be considered for uni-directional electron transfer.  An electron

restructures the environment during passage so that a return of the electron is made improbable. 

Such mechanisms, i.e., self-organized or stimulated electron transfer, are apparently only 

accessible for phenomenological theoretical calculations.26-33 One reason is that a quantum 

process does not know time, a “before” and “after”, needed for feedback mechanisms (the time in 

the time-dependent Schrödinger equation arises from classical perturbation theory). Many details 

have still to be learned about the chemical requirements of photovoltaic membranes, which only 

allow photocurrents into one preferred direction. The results presented in this work serve as 

examples, which should attract interest in the fundamentals of such kinetically determined solar 

cells.

FIGURES 

a)

b)
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c)

Figure 1: a) Schematic representation of the TiO2 nano-layer on a FTO contact, sensitized by 

WS2 nano-sheets; b) SEM picture of TiO2 layers obtained by Sol-Gel techniques; c) SEM 

picture of WS2 particle sensitizing TiO2.
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Figure 2: Thiols used for rectification of electron transfer on WS2 nano-sheets; D-cystein (1), L-

cystein (2), mercaptopropionic acid (3), thioglycolic acid (4), thiosalycilic acid (5), thiophene-2-

carboxylic acid (6) and thiophene-3-carboxylic acid (7)

a) b)

Figure 3: a) Current – voltage diagrams of WS2 sheet / TiO2 electrodes treated with and without 

L-cysteine (2) in the dark and during illumination; b) Photocurrent – voltage diagram for WS2 –

sheet/TiO2 electrodes treated with a 5% mixture of D- and L–cysteine (1/2) in water after 18 (red) 

and 90 hours (blue) respectively.
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Figure 4: Energy scheme visualizing sensitization of nano-TiO2 using nano-sheets of WS2 and a 

current rectifying adsorbed thiol molecule mediating electron transfer from the iodide/iodine 

electrolyte. The latter can, via the S atom of the thiol, donate electrons to the energetically closer 

d-valence states of WS2 but is unable to accept electrons from its energetically more distant 

conduction states.

TABLES.

Table 1: Photocurrent efficiencies of TiO2/WS2 nano solar cells before and after treatment with 

organic thiols 1-7.

Thiol Duration of 
Treatment

[h]

Thiol 
Conc.
[w%]

Before
Treatment

 [mA]

After
Treatment

 [mA]

Increase
[%]

D/L Cysteine (1/2) 90 5 0.05 0.14 180
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L Cysteine (2) 18 5 0.05 0.1 100

3-Mercapto 

propionic acid (3) 19.5 5 0.2 0.1 -50

Thioglycolic acid 

(4) 19.5 5 0.1 0.14 40

Thiosalicylic acid 

(5) 69 1 0.05 0.08 60

2-Thiophene 

carbonic acid (6) 19 sat. 0.08 0.07 -12,5

3-Thiophene 

carbonic acid (7) 19 sat. 0.16 0.1 -37.5

ASSOCIATED CONTENT

Supporting Information. Photocurrent – voltage diagrams for all experiments listed in Table 1.
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Figure 1a

http://ees.elsevier.com/jphotochem/download.aspx?id=197364&guid=be6b5da3-424b-4679-ac92-ec3e949bdc0b&scheme=1
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Figure 1b

http://ees.elsevier.com/jphotochem/download.aspx?id=197365&guid=39c1ea69-7b59-42dc-8c64-ab7678f6a7dd&scheme=1
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Figure 1c

http://ees.elsevier.com/jphotochem/download.aspx?id=197366&guid=8d8f2552-fddc-4192-94ac-818ec3d3063e&scheme=1
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Figure 2

http://ees.elsevier.com/jphotochem/download.aspx?id=197367&guid=39ea5826-5f2a-47cd-ae30-04f8e571b918&scheme=1
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Figure 3a

http://ees.elsevier.com/jphotochem/download.aspx?id=197368&guid=d7292bad-cb78-4a7b-90ff-b8595278970f&scheme=1
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Figure 3b

http://ees.elsevier.com/jphotochem/download.aspx?id=197369&guid=30a6a423-1b0c-4b61-91e4-0fb65c1a1524&scheme=1
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Figure 4



Page 25 of 26

Acc
ep

te
d 

M
an

us
cr

ip
t

TABLES. 

 

Table 1: Photocurrent efficiencies of TiO2/WS2 nano solar cells before and after treatment 

with organic thiols 1-7. 

 

Thiol Duration of 

Treatment 

[h] 

Thiol 

Conc. 

[w%] 

Before 

Treatment 

 [mA] 

After 

Treatment 

 [mA] 

Increase 

[%] 

D/L Cysteine (1/2) 90 5 0.05 0.14 180 

L Cysteine (2) 18 5 0.05 0.1 100 

3-Mercapto 

propionic acid (3) 19.5 5 0.2 0.1 -50 

Thioglycolic acid 

(4) 19.5 5 0.1 0.14 40 

Thiosalicylic acid 

(5) 69 1 0.05 0.08 60 

2-Thiophene 

carbonic acid (6) 19 sat. 0.08 0.07 -12,5 

3-Thiophene 

carbonic acid (7) 19 sat. 0.16 0.1 -37.5 

 

Table 1
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 Bioinspired WS2/TiO2 nano solar cells treated with organic thiols are presented. 

 An increase of the photocurrent efficiency by a factor of three is observed. 

 Organic thiol bridges act as rectifying electronic elements. 

 Unidirectional electron transfer is important for innovative solar cell applications. 

*Highlights (for review)




