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ABSTRACT Spectroelectrochemical studies employing pulsed LED irradiation are used to 

investigate the kinetics of water oxidation on undoped dense bismuth vanadate (BiVO4) 

photoanodes under conditions of photoelectrochemical water oxidation, and compared to those 

obtained for oxidation of a simple redox couple. These measurements are employed to determine 

the quasi steady-state densities of surface accumulated holes, ps, and correlate these with 

photocurrent density as a function of light intensity, allowing a rate law analysis of the water 

oxidation mechanism. The reaction order in surface hole density is found to be first order for ps < 

1 nm-2, and third order for ps > 1 nm-2. The effective turn over frequency of each surface hole is 

estimated to be 14 s-1 at AM 1.5 condition. Using a single-electron redox couple, potassium 

ferrocyanide, as the hole scavenger, only the first order reaction is observed, with a higher rate 

constant than for water oxidation. These results are discussed in terms of catalysis by BiVO4 and 

implications for material design strategies for efficient water oxidation.  
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Solar-driven water oxidation on metal oxide semiconductors is central to many approaches for 

solar driven fuel synthesis.1-2 Bismuth vanadate, BiVO4, is a particularly promising photoanode 

material for water oxidation.1, 3 Employing various optimization strategies, including gradient-

doping,4 surface modification,4-9 and the use of host-guest scaffolds,10 onset potentials for 
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photoelectrochemical (PEC) water oxidation on BiVO4 as low as 0.2 V vs RHE and photocurrent 

densities at 1.23 VRHE  as high as 4 mAcm-2 have been reported.7 Several studies on both BiVO4 

and other oxide surfaces have identified the relatively slow (up to seconds) timescale of water 

oxidation on such oxides as a key limitation to photoanode performance.11-15 However, to date, 

studies of the kinetics and mechanism of water oxidation on BiVO4 surfaces have been very limited 

in the literature.1 Transient absorption studies have indicated a timescale for water oxidation on 

metal oxide surfaces, such as BiVO4 and hematite under short-pulsed laser excitation of 1 s,12-13, 

16-18 whilst intensity-modulated photocurrent spectroscopic analyses have indicated timescales of 

0.1 s for this reaction.15, 19-20 Photocurrent density studies employing chemical hole scavengers 

such as sodium sulfite (Na2SO3) have been employed to demonstrate the role of kinetic 

competition between surface recombination and water oxidation in limiting the performance of 

BiVO4 photoanodes.7 Herein we report the first direct study of the kinetics of water oxidation on 

BiVO4 under conditions of photoelectrochemical water oxidation, and employ a rate law analysis 

of these data to provide insight into the mechanism of water oxidation on this oxide.  

Compared to the binary metal oxides such as TiO2 and Fe2O3 typically employed as photoanodes 

for water oxidation, it has been suggested that BiVO4 is unusual in that its valence band edge 

(VBE) results from the hybridization of Bi(6s) and O(2p) orbitals.21-22 It has also been reported 

that the photoelectrochemical reactivity of BiVO4 can be strongly modulated by the exposed 

crystal facet.23 We have recently reported a rate law analysis of the kinetics of water oxidation on 

hematite photoanodes as a function of the density of surface accumulated valence band holes. This 

study showed a transition from 1st order behavior at low light flux to 3rd order at higher light fluxes. 

These data suggested the rather surprising conclusion that, under conditions of solar irradiation, 

the rate determining step for water oxidation on hematite is associated with three valence band 
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holes. This contrasts with the four hole overall stoichiometry required to oxidize two molecules of 

water to one molecule of oxygen. However it is unclear from this study if this third order behavior 

is specific to the particular chemistry of water oxidation on hematite (which has been proposed to 

be associated with the formation of surface iron-oxo groups24), or is more generally observed on 

other metal oxide surfaces.25-26  

Herein, we report the kinetics of water oxidation on undoped, dense BiVO4 photoanodes under 

quasi steady-state conditions, as determined by spectroelectrochemical photoinduced absorption 

(PIA) measurements employing pulsed LED excitation. The reaction kinetics were obtained using 

the rate law analysis  employed previously for hematite photoanodes.11 These data are compared 

against those obtained using potassium ferrocyanide (K4[Fe(CN)6]) as a facile hole scavenger.27-28 

The results and implications of the reaction kinetics are discussed with regards to optimization of 

water oxidation on BiVO4 photoanodes. 

BiVO4 photoanodes were fabricated using metal-organic deposition,12 yielding dense films with 

a relatively flat surface (roughness factor ~ 1). Experimental details are given in Supporting 

Information. Figure 1 shows the typical current-voltage responses of these BiVO4 photoanodes 

measured in potassium phosphate buffer (KPi, 0.1 M, pH 6.7) with, and without, the addition of 

K4[Fe(CN)6] (0.2 M) as a hole scavenger. In the KPi buffer, the onset potentials for dark- and 

photo- water oxidation currents occur at >2.0 VRHE and ~0.8 VRHE, respectively. These results are 

consistent with previous reports of such BiVO4 photoanodes.12, 16 In contrast, K4[Fe(CN)6] 

oxidation dark current onset is 1.0 VRHE, approximately 1 V cathodic of the dark onset in KPi. 

Under 365 nm LED irradiation, the onset potential for K4[Fe(CN)6] oxidation is 0.55 VRHE, ~250 

mV cathodic of the water oxidation onset potential. Such cathodic shift of current onset is 

consistent with previous reports of BiVO4 in the presence of hole scavengers.5, 7, 9
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Figure 1. Current-voltage response of BiVO4 measured in 0.1 M KPi buffer with (red) and without 

(black) 0.2 M K4[Fe(CN)6] hole scavenger. The dark currents are shown in dashed lines. Scan rate: 

10 mV s-1. Light intensity: 365 nm illumination equivalent to 100% AM1.5.  

In order to investigate the kinetics of water oxidation by photogenerated holes in BiVO4 under 

quasi steady-state conditions, we carried out spectroelectrochemical PIA measurements in 0.1 M 

KPi buffer monitoring the photoinduced absorption changes (OD) and photocurrent densities (J) 

induced by pulsed (5 s) 365 nm LED excitation. Data were collected as a function of LED 

excitation intensity at a fixed applied potential at 1.7 VRHE to ensure effective suppression of 

surface electron/hole recombination.12, 16 Under these conditions BiVO4 holes exhibit a maximum 

absorption change at 550 nm (Figure S2), in agreement with our previous studies of analogous 

films under pulsed laser excitation.12, 29 As we have previously reported, these quasi-steady 

conditions result in the observation of long-lived holes accumulated at the photoelectrode surface, 

and thus, measuring the absorption change at 550 nm provides an assay of their reaction kinetics. 

Bulk BiVO4 holes are not monitored in these experiments due to their relatively short (< ns) 

lifetime.30  
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The photoinduced absorbance (milli-OD, mOD) and photocurrent (J) transients results from 

5 s pulsed LED excitation are shown in Figures 2 a and b. All OD signals increased from zero to 

an approximate plateau over a 1 s period from light-on, assigned to surface hole accumulation at 

the BiVO4/electrolyte interface. In contrast, the transient photocurrent rises within the time 

resolution of the measurement (0.4 ms), then rapidly decays within a few hundred milliseconds 

after LED turn on before also plateauing. The initial photocurrent decay most probably derives 

from a decrease in band bending due to hole accumulation, reducing the photoanode charge 

separation efficiency, as discussed previously.11 When the excitation light is switched off, the OD 

signal decays to zero on the seconds timescale, with the slow timescale of this decay being assigned 

primarily to slow water oxidation by these surface holes, as discussed further below. In contrast, 

the current decreases to zero rapidly with no negative current transients, indicative of negligible 

losses from surface back electron/hole recombination under the strongly anodic bias conditions 

employed. 

The plateaued photocurrent density, measured between 1 s and 5 s after light-on, was observed 

to increase linearly with LED intensity, whereas the OD signal increased sub-linearly 

(Supporting Information Figure S3). This is qualitatively similar to results from Si-doped α-Fe2O3, 

reported previously.11  

Figure 2c shows the photocurrent density vs OD measured in 0.1 M KPi buffer (red dots) on a 

log-log scale. Previously we have determined the molar extinction coefficient of photogenerated 

holes in BiVO4 photoanodes (420 M-1 cm-1),29 allowing us to convert the OD signal amplitude 

into a surface hole density (ps : holes nm-2) for this plot. From Figure 2c, it is apparent that this 

plot of J versus ps exhibits two distinct phases: a lower gradient for ps < 1 hole nm-2, and a 

significantly larger gradient at higher surface hole densities. This indicates that the kinetics of 
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water oxidation on BiVO4 are intensity-dependent, showing qualitatively different dependencies 

on surface hole density at low and high densities.  

Analogous data to those shown in Figures 2a and 2b were collected in the presence of the hole 

scavenger K4[Fe(CN)6] (see Figure S4). The applied potential was fixed at 0.7 VRHE to eliminate 

any contribution from water oxidation; under these conditions the photocurrent can be assigned 

entirely to K4[Fe(CN)6] oxidation. The resulting plot of J versus ps is also shown in Figure 2c. We 

note that due to the different electrolyte compositions, and likely changes in surface charge, flat-

band potential etc, the absolute magnitudes of the J versus ps cannot be compared with/without 

K4[Fe(CN)6]. In any case, it is apparent from Figure 2c that the data with K4[Fe(CN)6] shows only 

one linear region across the light intensity employed, as discussed further below. 
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Figure 2. Photo-induced absorption (a) and transient photocurrent density (b) from a BiVO4 

photoanode in 0.1 M KPi buffer as a function of light intensity compared to one sun condition. (c) 

Relationship of PIA amplitude and quasi steady-state photocurrent density for water oxidation (red 

dots) and K4[Fe(CN)6] oxidation (black squares).  

We employ a simple kinetic model to interpret these spectroelectrochemical results, as 

previously used for Si-doped α-Fe2O3,
11 and shown as a schematic representation in Scheme 1. We 

assume the Faraday efficiency is unity on the dense BiVO4 photoanodes employed in these 

studies.31 No impurities, such as trace of Fe or Ni on the electrode surface from the electrolyte, 

were deposited as catalysts,32-35 according to our previous X-ray photoelectron spectroscopy 
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result.29 Therefore, the results shown herein represent water oxidation by photogenerated holes in 

BiVO4. Under 1.7 VRHE anodic potential, we considered a model for surface-accumulated holes at 

the semiconductor-electrolyte interface as follows: 

(1) 


shole
s pkJ

dt

dp
  

where ps is the hole density at the BiVO4 surface, Jhole is the hole flux to the surface during 

irradiation, k is the rate constant of reaction of holes with water/potassium ferrocyanide and α is 

the reaction order in suface hole density.  

At steady state (i.e.: after 5 s irradiation), the rate of change in surface hole density is zero, 

therefore Equation 1 can be written as: 

(2) 0


shole
s pkJ

dt

dp
 

(3) holephotoshole JJpkJ  ;


 

(4) sphoto pkJ loglog)log(    

where Jphoto is the steady-state photocurrent density measured at 5 s after light-on (Figure 2b). 
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Scheme 1. Schematic representation of surface accumulated holes in the BiVO4 photoanodes 

oxidizing water. The dashed horizontal line is the dark Fermi level of the photoanode determined 

by the applied potential. 

Following equation 4, the photocurrent density J should, on a log-log scale, increase linearly 

with increasing surface hole density ps, with the gradient corresponding to the reaction order . 

Figure 2c shows the rate of oxidation of K4[Fe(CN)6] increases linearly with hole density, 

corresponding to first order kinetics (α=0.90±0.15 and k=0.8 s-1) in surface hole density over the 

light intensity range employed in this study (0.8 to 81 % of AM 1.5). The first order reaction 

determined from our rate law analysis indicates that the oxidation of K4[Fe(CN)6] involves a single 

electron redox process, consistent with the redox reaction of [Fe(CN)6]
3-/[Fe(CN)6]

4- shown below. 

  3

6

4

6 ])([])([ CNFehCNFe  

Under irradiation, one [Fe(CN)6]
4- complex receives one photogenerated hole from BiVO4, 

forming one [Fe(CN)6]
3-. The redox potential of [Fe(CN)6]

3-/[Fe(CN)6]
4- is 0.36 VRHE. Therefore, 

the BiVO4 valence band edge (2.6 VRHE) can provide significantly more driving force for the 

oxidation of [Fe(CN)6]
4- than for single-hole water oxidation (2.8 VRHE).36 Thus, the 

thermodynamic driving force is more favorable for BiVO4 surface holes to oxidize K4[Fe(CN)6] 

than water.  

In contrast to the first order reaction of K4[Fe(CN)6] oxidation as a function of surface hole 

density, Figure 2c also shows that there are two regimes of linearity for water oxidation. Under 

low surface hole density (ps < 1 hole nm-2), water oxidation proceeds with first-order (in holes) 

reaction kinetics (α=1.05±0.11); at surface hole densities higher than 1 nm-2, the reaction order of 

water oxidation (in holes) becomes third order (α=2.92±0.09). In order to provide further support 

for this change in reaction order, different rate law analyses were carried out: differentiation of the 
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gradient of one complete PIA decay after light-off; an initial slopes analysis of several PIA decays 

under different excitation intensities (details are shown in Supporting Information Figure S5); and 

kinetic analysis of transient absorption spectroscopic (TAS) data previously recorded, showing a 

mono-exponential decay of surface hole as a function of time for water oxidation.12 The results of 

these analyses are shown in Figure 3. It is apparent that these different analyses are in excellent 

agreement with each other – indicating a change in reaction order from 1st to third order at ps ~ 1 

hole nm-2.  

 

Figure 3. Change in reaction order as a function of surface hole density, determined from four 

independent methods of analysis. Red line: a guide for the eye (not fit to a model). 

The rate constants for both the first and third order water oxidation on BiVO4 reactions can be 

calculated from the fit of Figure 2c using Equation 4. For the first order of water oxidation in holes, 

the rate constant is 0.5 s-1; for the third order reaction, the rate constant is 0.8 s-1 hole-2 nm4. These 

rate constants are both faster than the corresponding rate constants determined for hematite, 0.2 s-

1 and 0.5 s-1 hole-2 nm4, respectively,11 particularly for the 3rd order reaction. The faster rate 

constants observed on BiVO4 could be associated with the deeper valence band edge for BiVO4  

(2.6 eV) compared to Si-doped α-Fe2O3 (2.4 eV) providing a large energy offset driving water 
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oxidation, although we note that other factors may also be important (e.g.: electrolyte pH, valence 

band structure, surface facet etc).  

The transition of BiVO4’s water oxidation kinetics from first to third in surface hole density (ps) 

as ps is increased is strikingly similar to the behavior we have reported previously for Fe2O3.
11 The 

first order behavior at low surface hole densities indicates that the rate-limiting step in water 

oxidation only involves one surface hole; •OH formation has been suggested as the key 

intermediate for the single hole oxidation of water, likely to lead to both H2O2 and O2 formation.36 

The third order reaction kinetics under high surface hole densities is consistent with, for example, 

a mechanism involving the formation of an O-O bridging bond between two reaction sites, which 

consumes three surface accumulated holes. Such mechanisms have been suggested for water 

oxidation on some metal oxide materials, including Co3O4
25 and α-Fe2O3

11, 24, from either detecting 

the time-resolved IR response during the formation of rate-limiting intermediates on Co3O4, or 

employing a rate law analysis to determine the reaction order. We are aware that studies of the 

mechanism of water oxidation are still limited due to the difficulties in probing the intermediates 

involved. However, our observation of remarkably similar 1st/3rd behavior on BiVO4 to that we 

have observed for Fe2O3 is striking as these oxides present predominantly different surface facets 

((121) for the BiVO4 studied herein versus (110) for the Si-doped Fe2O3 reported previously11, 37) 

and difference valence band hole natures (hybridized O(2p) and Bi(6s) for BiVO4 and hybridized 

Fe(3d) and O(2p) for α-Fe2O3). It suggests the mechanisms of water oxidation on these two oxides 

may exhibit close similarities, which has important implications for the development of 

mechanistic models of water oxidation on this oxide photoanodes.  

The slow kinetics of water oxidation on metal oxide surfaces is a key challenge for 

photoelectrochemical water oxidation on such materials. Such slow kinetics have been reported 
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by a various spectroscopic techniques, including transient absorption spectroscopy,12-13, 17-18, 38-40 

impedance spectroscopy41 and intensity-modulated photocurrent spectroscopy.15, 19-20 Such slow 

kinetics result in a requirement for the accumulation of large hole densities at the photoanode 

surface to drive the required water oxidation current densities, with a resulting increase in surface 

recombination losses.12, 14, 17 The super-linear increase in the rate of water oxidation as the surface 

hole density is increased is likely to be a key factor behind the efficient photoelectrochemical water 

oxidation reported to date for several metal oxide photoanodes. For the BiVO4 studied herein, the 

effective turn over frequency (TOF) of each surface hole increases from 0.3 s-1 at 0.1 hole nm-2 to 

14 s-1 at 5 holes nm-2 (corresponding to ~ one sun irradiation conditions). The faster TOF’s for 

BiVO4 compared to hematite (5 s-1  at 5 holes nm-2)11 may result from its deeper valence band 

energetics, or from other factors such as lateral surface hole mobilities. In any case, the faster TOF 

is likely to be one factor behind the less anodic applied biases required to drive efficient water 

oxidation on BiVO4 compared to hematite photoanodes.  

We note that the water oxidation kinetics we report herein on BiVO4 are faster in terms of TOF 

per surface hole/catalytic site compared to those reported for widely used water oxidation 

electrocatalysts. For example, TOF’s for the cobalt phosphate (CoPi) electrocatalyst have been 

reported to be in the range 0.01-0.001 s-1.42 The faster kinetics on BiVO4 can be attributed to its 

deep valence band energy providing a large overpotential for water oxidation (with this large 

overpotential of course being undesirable in terms of energy conversion efficiency). As such, 

several studies have indicated that following CoPi deposition on BiVO4, water oxidation primarily 

proceeds directly from BiVO4 holes rather than via CoPi oxidation, with enhanced performance in 

the presence of CoPi being primarily assigned to reduced recombination losses due enhanced space 

charge layer formation induced by the BiVO4/CoPi junction, similar to studies of α-Fe2O3/CoPi 
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junctions.19, 43-45 We have reported previously PIA and transient absorption spectroscopies of 

CoPi-modified BiVO4 photoanodes and have observed that CoPi overlayers did not contribute to 

significant PEC water oxidation under both pulsed laser and continuous wave LED conditions for 

the electrodes employed in these studies.16, 29 Surface functionalization by co-catalysts is a widely 

used strategy to enhance the performance of water oxidation photoanodes. Our observation herein 

of TOF as high as 14 s-1 per surface hole on BiVO4 provides a clear kinetic challenge for this 

approach, i.e. that water oxidation by the co-catalyst should be faster than that on BiVO4 alone, 

and emphasizes that such strategies must consider both the kinetics of water oxidation on both 

semiconductor and co-catalyst surfaces as well as the impact of co-catalyst deposition upon 

recombination losses in the photoelectrode.  
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