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We present a detailed theory for the total reaction rate constant of a composite core-shell nanoreactor, consisting of a central solid
core surrounded by a hydrogel layer of variable thickness, where a given number of small catalytic nanoparticles are embedded
at prescribed positions and are endowed with a prescribed surface reaction rate constant. Besides the precise geometry of the
assembly, our theory accounts explicitly for the diffusion coefficients of the reactants in the hydrogel and in the bulk as well as
for their transfer free energy jump upon entering the hydrogel shell. Moreover, we work out an approximate analytical formula
for the overall rate constant, which is valid in the physically relevant range of geometrical and chemical parameters. We discuss
in depth how the diffusion-controlled part of the rate depends on the essential variables, including the size of the central core.
In particular, we derive some simple rules for estimating the number of nanocatalysts per nanoreactor for an efficient catalytic
performance in the case of small to intermediate core sizes. Our theoretical treatment promises to provide a very useful and
flexible tool for the design of superior performing nanoreactor geometries and with optimized nanoparticle load.

1 Introduction

In recent years, metallic nanoparticles have emerged as po-
tent catalysts for various applications1,2. In particular, the
discovery that gold becomes a catalyst when divided to the
nanophase has led to an intense research in this field3,4. In
many cases the synthesis and the catalytic applications must
be handled in the liquid phase, mostly in water. Secure han-
dling of nanoparticles in a liquid phase can be achieved by
polymeric carriers that have typical dimensions in the col-
loidal domain. Examples thereof include dendrimers5,6 or
spherical polyelectrolyte brushes7. Such systems allow one
to generate nanoparticles in aqueous phase in a well-defined
manner and handle them securely in catalytic reactions.

More recently, thermosensitive colloidal microgels have
been used as carriers for metallic nanoparticles in catalysis8.
Fig. 1 displays the scheme of such a carrier system that may
be regarded as a nanoreactor: a thermosensitive network com-
posed of cross-linked chains of poly(N-isopropylacrylamide)
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(PNIPAM) has been attached to a solid core made of an inert
material as, e.g., polystyrene or silica9. Metal nanoparticles
are embedded in the network which is fully swollen in cold
water. Raising the temperature above the critical temperature
(32◦ C for PNIPAM), a volume transition takes place within
the network and most of the water is expelled8. Lu et al.9

have been the first to show that the catalytic activity of the em-
bedded nanoparticles is decreased when shrinking the network
by raising the temperature. This effect has been explained by
an increased diffusional resistance mass transport within the
shrunk network8,9. A similar model has been advanced by
Carregal-Romero et al. when considering the catalytic activ-
ity of a single gold nanoparticle embedded concentrically in a
PNIPAM-network10.

Recently, we have shown that the mobility of reactants is
not the only important factor: an even larger role is played
by the change of polarity of the network when consider-
ing mass transport from bulk to the catalyst(s) through such
medium11,12. This theory is based on the well-known seminal
paper by Debye13 and considers a single nanoparticle located
in the center of a hollow thermosensitive network12. Here, the
substrate that reacts at the surface of the nanoparticle diffuses
through a free-energy landscape created by the hydrogel envi-
ronment. In other words, the reactants experience a change in
the solvation free energy when entering the gels from bulk sol-
vent, which can be equally regarded as an sorption free energy
or transfer free energy. For instance, the free energy of a sub-
strate may be lowered upon entering the network. In this way
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the number of substrate molecules in the network will be aug-
mented, so that their increased concentration in the vicinity of
the catalyst will lead to a higher reaction rate. The free-energy
change ∆G def

= Gin−Gout for the substrate outside and inside
the network leads to a Nernst distribution for the substrate’s
concentration within the system. This effect offers a new way
to manipulate the catalytic activity and selectivity of metallic
nanoparticles11.

In this paper we formulate a more general theory, that is
able to account for the geometry of core-shell nanoreactors
featuring many catalysts, as shown schematically in Fig. 1.
Here, a given number N of catalytic centers are encapsulated
randomly in a network. We calculate the total rate of the cat-
alytic reaction for a prescribed geometry of the catalysts, given
values of N and ∆G and specified diffusion constants for the
substrate in the bulk and in the network. The rate constant
computed in this way can be compared to that characterizing
an equal number of particles suspended freely in solution. The
present model has been designed to describe the well-studied
core-shell systems8,9, but is equally adapted to the study of
systems where catalytic centers are embedded in homoge-
neous microgels14. Up to now, most of the experimental work
has been done using the reduction of 4-nitrophenol by boro-
hydride ions in aqueous solution15,16. This reaction can be
regarded as a model reaction17, since it can be monitored with
high precision thus leading to very accurate kinetic data. The
rate-determining step proceeds at the surface of the nanoparti-
cles and the mechanism is known18. The present theory, how-
ever, comprises also the nanoreactors in which enzymes are
used as catalytic centers embedded in the network shell19.

In general, diffusion-influenced reactions (DIR) are ubiqui-
tous in many contexts in physics, chemistry and biology20–23.
However, while the mathematical foundations for the descrip-
tion of DIR in simple systems have been laid nearly a century
ago13,24,25, many important present-day problems, including
the catalytic activity of composite core-shell nanoreactors, re-
quire considering complex geometries and multi-connected
reactive boundary systems. The first attempts to consider DIR
featuring many competing sinks date back to the 1970s26,27,
while more sophisticated methods have been developed subse-
quently to deal with arbitrary systems comprising many par-
tially reactive boundaries28–30. Along similar lines, the the-
ory developed in this paper, based on general results proved
in Ref.29, provides a novel, accurate description of DIR oc-
curring between a small substrate molecule and the catalytic
centers embedded in a large, composite nanoreactor system.

Our theory is fully general, in that it covers the whole spec-
trum of rate-limiting steps in catalysis, from reaction-limited
to diffusion-limited reactions. While the theory allows one
to compute the reaction rate for an arbitrary catalytic sur-
face turnover rate, closed-form analytical expression are de-
rived for strongly reaction-limited and diffusion-limited reac-

tions. In the limit of a dilute random distribution of NPs en-
capsulated in a thick hydrogel shell, we find that the overall
diffusion-controlled rate constant of our core-shell composites
is described by a Langmuir-like isotherm of the form

k
kS

=
Nε ζ e−β∆G

1+Nε ζ e−β∆G (1)

where N is the number of nanoparticles, ζ = Di/Do is the ra-
tio of the diffusion constants in the hydrogel (i for inner) and
bulk (o for outer), ε = a/R0 � 1 is the ratio of NP size (ra-
dius) to the nanoreactor size and kS = 4πDoR0 is the Smolu-
chowski rate constant for the nanoreactor as a whole, i.e. the
total flux (in units of bulk substrate concentration) of substrate
molecules to a stationary perfectly absorbing sink of size R0
in the bulk. The above expression is valid for small sizes of
the central core. Interestingly, for configurations where the
core size becomes of the same order of the whole composite
(thin shell), our theory shows that in general the rate constant
is increased, up to 40 %, depending on the transfer free energy
jump and on the reactant mobility in the shell.

In the limit of slow surface substrate-product conversion
rate, i.e. for reaction-limited kinetics, we find that

k ' Nk∗e−β∆G +O[(k∗/k+S )
2] (2)

where k∗ is the intrinsic turnover rate constant that describes
the transformation of substrate to product molecules at the
nanocatalyst surface (units of inverse concentration times in-
verse time). This means that when the surface substrate con-
version rate constant is weak, the geometrical features of
the overall assembly and the mobility of substrate molecules
within the hydrogel shell become immaterial. In this case,
the crucial control parameter is the transfer free energy jump.

The paper is organized as follows. In section 2 we describe
our mathematical model and pose the associated boundary-
value problem. In section 3, we describe concisely the pro-
cedure that leads us to the exact solution of the posed prob-
lem (the mathematical details can be found in the appendix).
Section 4 illustrates an analytic approximation that provides
an extremely good description of the exact solution for small
core sizes in the physically relevant range of parameters. In
particular, we discuss how this formula can be used to derive
practical criteria to design nanoreactors with optimized per-
formances. Finally, we wrap up our main results in section 5.

2 Core-shell model and defining equations

We model a core-shell nanoreactor consisting of a polystyrene
(PS) core surrounded by a microgel layer as two concentric
spheres centered at the origin of a Cartesian 3D frame, as
depicted in Fig. 1. We denote with RS and R0 the core and
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Fig. 1 Scheme of a core-shell nanoreactor of radius R0 containing
N +1 spheres: the solid polystyrene (PS) core (radius RS) is shown
at the center, along with N catalytic nanoparticles of radius a at
positions Lα (α = 2,3, . . . ,N +1). The internal (microgel) domain
Ω+ (with reactant diffusion coefficients Di) and the external (bulk
solution) domain Ω− (with reactant diffusion coefficients Do) are
indicated explicitly, together with a schematic free-energy radial
profile showing the transfer free-energy jump ∆G. In our treatment
the latter can be both repulsive, ∆G > 0, or attractive, ∆G < 0.

shell radius, respectively. The shell is assumed to be a homo-
geneous continuum, carrying N small nano-catalysts (metal
nanoparticles or enzymes) that we model as spheres of ra-
dius a. For the sake of simplicity, and in accordance to our
general multi-sink theory31, we label the PS core as the in-
ner sphere with α = 1 and position vector L1 = 0 and de-
note the position of the N nanocatalysts with the vectors Lα ,
α = 2,3, . . . ,N+1. We want to compute the total reaction rate
constant for reactions where a substrate (or ligand) molecule
is converted to some product species at the surface of the cat-
alyst spheres. These are endowed with a surface rate constant
k∗, which is in general a function of temperature due to un-
derlying thermally activated surfaces processes. Let us denote
with S0 ≡ {r0,θ0,ϕ0} the reference frame with the origin at
the nanoreactor center and with Sα ≡ {rα ,θα ,ϕα} the N ref-
erence frames with the origins at the nanospheres centers and
the axes parallel to S0 (of course S1 ≡ S0). This formally
defines the following 3D domains

Ω
+ = {r0 ∈ (0,R0],θ0 ∈ [0,π],ϕ0 ∈ (0,2π]}\∪α Ωα

Ω
− = {r0 ∈ [R0,∞),θ0 ∈ [0,π],ϕ0 ∈ (0,2π]}

(3)

where Ω1 = {|r0| < RS} denotes the interior of the PS core
and Ωα = {|rα |= |r0−Lα |< a}, α = 2,3, . . . ,N +1, denote

the interior of the α-th nanosphere. The reactant diffuses with
diffusion coefficients Di and Do inside the microgel shell and
in the bulk, respectively. In general one can assume Di < Do
due to obstructed or hindered diffusion in the microgel32.

2.1 Steady-state boundary-value problem

Let ρB denote the bulk density of reactants and let us introduce
the time-dependent normalized density u(r, t) = ρ(r, t)/ρB.
We assume that the system relaxation time for the diffusive
flux of B particles (the reactants), tD' (R0−RS)

2 /Di, is small
enough to neglect time-dependent effects. Hence, in the ab-
sence of external forces, the diffusion of reactants with nor-
malized number density u(r) is described by the steady-state
diffusion equation

∇ · [D(r)∇u(r)] = 0 in Ω = Ω
+∪Ω

− (4)

with

D(r) =
{

Di in Ω+ (microgel)
Do in Ω− (bulk) (5)

and which should be solved with the customary bulk boundary
condition

lim
|r|→∞

u(r) = 1 (6)

It is well known from the general theory of partial differen-
tial equations that the classical solution (twice continuously
differentiable in Ω and continuous on Ω) of the stationary dif-
fusion equation (4) does not exist in the whole domain Ω33.
Therefore one should consider the function

u(r) =
{

u+(r) in Ω+ (microgel)
u−(r) in Ω− (bulk) (7)

Accordingly, we should impose a condition for the substrate
concentration field at the bulk/microgel interface, ∂Ω0 ≡
{r0 = R0}. It has been demonstrated recently that a key factor
controlling the overall reaction rate is the transfer free-energy
jump ∆G, a quantity that describes the partitioning of the re-
actant in the microgel versus bulk12. For a single nanocatalyst
at the nanoreactor center, a free-energy jump at the solvent-
microgel interface can be accounted for through a modified
reactant density in the microgel, namely ρ → ρ exp(−β∆G)
when crossing the bulk/microgel interface. This is also the
case for many catalysts in the infinite dilution limit. Here we
assume that such description is a valid approximation for re-
alistic nanoreactors, where the nanocatalyst packing fraction
is indeed very small, as discussed in depth later. Accordingly,
we require (

u+−λu−
)∣∣

∂Ω0
= 0 (8)

where λ = exp(−β∆G), β = 1/kBT being the inverse tem-
perature. Furthermore, the following continuity condition for
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the local diffusion fluxes should also hold at the bulk/microgel
interface (

∂u−

∂ r0
−ζ

∂u+

∂ r0

)∣∣∣∣
∂Ω0

= 0 (9)

where we have introduced the diffusion anisotropy parameter

ζ =
Di

Do
(10)

Finally, reflecting boundary conditions should hold at the sur-
face of the inert PS core, i.e.

∂u+

∂ r0

∣∣∣∣
r0=RS

= 0 (11)

2.2 The reaction rate constant

We are interested in the pseudo-first-order irreversible
diffusion-influenced reaction between the N nano-catalysts C
encapsulated in the microgel and reactants B freely diffusing
in the bulk and in the microgel

C+B
kD−−⇀↽−−
k−D

C ·B k∗−→C+P (12)

where C ·B denotes the so-called encounter complex, kD and
k−D are the association and dissociation diffusive rate con-
stants, respectively, and k∗ is the surface rate constant of the
chemical reaction occurring at the reactive catalysts’ bound-
aries. Reactions of the kind (12) are customary dealt with by
enforcing radiation boundary conditions ∗ at the reaction sur-
faces ∂Ωα , α = 2,3, . . . ,N +125, i.e.[

4πa2Di
∂u+

∂ rα

− k∗u+
]

∂Ωα

= 0 α = 2,3, . . . ,N +1 (13)

Thus, we can consider that the nanoreactors effectively act as
sinks of infinite capacity according to the pseudo-first-order
reaction scheme

C+B k−→C+P (14)

where the forward diffusion-influenced rate constant k (i.e. the
equivalent of the measured rate constant kobs

12) is defined by
the formula

k =
N+1

∑
α=2

∫
∂Ωα

Di
∂u+

∂ rα

∣∣∣∣
∂Ωα

dS (15)

Using this rate constant one can approximately describe the
kinetics of the effective reaction (14) as

cB (t) = cB(0)exp(−k ct) (16)

∗This kind of boundary conditions are also known as Robin boundary condi-
tions.

where c = const is the volume concentration of nanocatalysts
within the microgel and cB(t) is the time-dependent effective
bulk concentration of ligands. We stress that our schematiza-
tion of the problem holds under the excess reactant condition
c� ρB. Our goal is to compute the rate constant k defined in
Eq. (15).

Equation (4) with the boundary conditions (6), (8), (9), (11)
and (13) completely specify our mathematical problem. It
is expedient in the following to use the dimensionless spa-
tial variables ξ0 = r0/R0, ξ1 = r0/RS and ξα = rα/a for
α = 2,3, . . . ,N + 1. Hence, our problem can be cast in the
following form

∇
2u± = 0 in Ω

± (17a)(
∂u+

∂ξα

−hu+
)∣∣∣∣

∂Ωα

= 0 α = 2,3, . . . ,N +1 (17b)

lim
ξ0→∞

u−(ξ0) = 1 (17c)

∂u+

∂ξ1

∣∣∣∣
ξ1=1

= 0 (17d)(
u+−λu−

)∣∣
∂Ω0

= 0 (17e)(
ζ

∂u+

∂ξ0
− ∂u−

∂ξ0

)∣∣∣∣
∂Ω0

= 0 (17f)

The parameter

h =
k∗

4πDia
≡ k∗

k+S
(18)

gauges the character of the reaction. Here we have introduced
the Smoluchowski rate constant for a nanocatalyst embedded
in the microgel, k+S = 4πDia. The limit h→ ∞ corresponds to
considering the boundaries ∂Ωα as perfectly absorbing sinks.
In this case the reaction (12) becomes diffusion-limited, as the
chemical conversion from the encounter complex C ·B to the
product P becomes infinitely fast with respect to the diffusive
step leading to the formation of C · B. Otherwise, for h�
1, the chemical conversion step is slow enough compared to
diffusion, which makes the reaction overall reaction-limited.

3 Exact solution of the problem and approxi-
mate analytical treatment

We look for solutions for the stationary density of reactants in
the bulk and in the microgel as linear combinations of regular
and irregular harmonics. Given the multi-connected structure
of the boundary manifold ∪α Ωα , we must consider as many
local Cartesian reference frames as there are non-concentric
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boundaries. Thus, we can look for solutions in the form

u+(r) =
∞

∑
`=0

`

∑
m=−`

Am` ξ
`
0 Ym`(r0)+

N+1

∑
α=1

∞

∑
`=0

`

∑
m=−`

Bα
m`

ξ
`+1
α

Ym`(rα)

(19a)

u−(r) = 1+
∞

∑
`=0

`

∑
m=−`

Em` ξ
−`−1
0 Ym`(r0) (19b)

where Ymn(r) are spherical harmonics, ξ0 = r0/R0, ξ1 =
r0/RS, ξα = rα/a for α = 2,3, . . . ,N and Amn,Bα

mn and Emn
are N + 3 infinite-dimensional sets of unknown coefficients
that can be determined by imposing the boundary condi-
tions (17b) and (17d) and the pseudo-continuity conditions at
the microgel-solvent interface, eqs (17e) and (17f). This can
be done straightforwardly using known addition theorems for
spherical harmonics, which results in an infinite-dimensional
linear system of equations for the unknown coefficients (see

appendix A for the details). Furthermore, making use of
known properties of solid spherical harmonics, it is easy to
see that the rate constant defined by Eq. (15) is simply given
by

k =−k+S
N+1

∑
α=2

Bα
00 (20)

As shown in the appendix A, the exact solution to the
steady-state problem (17) can be worked out in principle
to any desired precision by keeping an appropriate number
of multipoles. Remarkably, a simple yet accurate analyt-
ical expression can be easily obtained in the monopole
approximation (MOA), which corresponds to keeping
only the ` = 0 term in the multipole expansions (19)26,27.
In particular, it is interesting to compute the rate nor-
malized to the Smoluchowski rate of an isolated sink of
the same size as the whole nanoreactor in the bulk, i.e.
k−S = 4πD0R0. We obtain (see appendix B for the details)

k
k−S

= Nk∗
(

a
R0

)
ζ e−β∆G

k+S + k∗
[

1+(N−1)
〈

a
Lαβ

〉
− Na

R0

(
1−ζ e−β∆G

)] (21)

where we recall that ζ = Di/D0 and k+S = 4πDia. This is the
key analytical result derived in this work, that can be readily
employed to predict and optimize the geometry and activity of
typical core-shell nanoreactors. The quantity 〈a/Lαβ 〉 stands
for the average inverse inter-catalyst separation. This can be
computed analytically under the reasonable assumption that
spatial correlations in the catalysts configurations are negligi-
ble (see appendix B),〈

a
Lαβ

〉
=

2(1− ε)5−5(1− ε)2(γ + ε)3 +3(γ + ε)5

(1− ε)6−2(1− ε)3(γ + ε)3 +(γ + ε)6

(
3a

5R0

)
:= ε C(ε,γ)

(22)
where γ = RS/R0 denotes the fraction of the nanoreactor size
occupied by the PS core and ε = a/R0 is the non-dimensional
size of each catalyst. We see that, since ε � 1, one has 1+
ε/3 .C . 6(1+ ε)/5, i.e., C is of the order of unity, 1.005 .
C . 1.217 (taking ε ≈ 0.0146 from experiments34).

In the limit of vanishing surface reactivity of the embedded
nano-catalysts it is immediate to show from eq. (21) that

k ' Nk∗e−β∆G +O[(k∗/k+S )
2] (23)

We see that, if the surface substrate conversion rate constant is
weak, this becomes the rate-limiting step for the overall rate
of the nanoreactor, irrespective of the geometrical features of

the assembly and of the mobility properties of the hydrogel
shell. In this case, it becomes crucial to control the transfer
free energy jump to tune the rate of the composite nanoreac-
tor. Conversely, if the catalytic action exerted by the metal
nanoparticles encapsulated in the microgel is fast with respect
to diffusion, i.e. k∗ � k+S , expression (21) can be simplified
by taking the limit k∗→ ∞. This yields the expression for the
fully diffusion-controlled rate

k
k−S

=
Nε ζ e−β∆G

1+(N−1)ε C(ε,γ)−Nε

(
1−ζ e−β∆G

) (24)

which we will discuss in depth in the following section. Note
that for N = 1 Eq. (24) coincides with the solution of the
Debye-Smoluchowski problem13 for a single perfectly ab-
sorbing sink located at the center of the shell, with G(r) =
{∆G for a < r ≤ R0 |0 for r > R0}.

Formulas (21) and (24) have been derived in the monopole
approximation, which means that any reflecting boundaries
in the problem are not taken into account. Therefore, these
should be used to approximate the rate constant of a composite
nanoreactor for small to moderate sizes of the central PS core.
In the following sections, we provide a thorough characteriza-
tion of the rate constant of a composite core-shell nanoreactor,
computed exactly by solving Eqs. (31), and we compare it to
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the approximate MOA analytical expression (24) in the phys-
ically relevant diffusion-limited regime (k∗→ ∞).

4 The diffusion-controlled regime

We now discuss in more detail the essential features of the
diffusion-controlled rate in Eq. (24). In the monopole approx-
imation, valid for small to intermediate sizes of the central re-
flecting (inert) core, the role of the latter only enters indirectly
through the spatial average

〈
a/Lαβ

〉
=Ca/R0, with C ' 1. In

the swollen configuration, the central core does not occupy a
large fraction of the overall nanoreactor volume, with γ ≈ 0.3
(as taken from the experiments reported in Ref.34). Hence, in
this regime we expect that the exact size of the core should
not play a significant role for the diffusion-controlled rate for
relevant values of the physical parameters, i.e., (weak) attrac-
tion to the hydrogel ∆G < 0 and decreased internal diffusion
ζ < 1.

In Fig. 2 we compare the approximate expression (24) to
the exact solution of Eqs. (31) for two different mobility ratios
ζ = 0.2 and 1.0 and core size γ = 0.353 (as in previous ex-
periments34). The NP size is held fixed as ε = 0.0146 as also
provided from experiments. It is apparent that the analytical
treatment is remarkably accurate in these conditions and de-
viates from the exact solution by less than one percent in the
worst cases. This proves that our analytical treatment provides
a reliable tool for realistic values of the physico-chemical and
geometrical parameters. A comparison of different values of
the substrate mobility within the gel (ζ ), clearly highlights that
all rates are higher when the ligand is more mobile within the
gel shell. Concerning the overall form of the curves, one can
see that the initial linear rise of the rates is followed by a satu-
ration at large values of N. The approach to saturation is slow
for small values of ∆G, but begins markedly earlier (i.e. for
smaller N) if the sorption free energy reaches values as small
as a few kBT , the thermal energy. Hence, as discussed already
previously, a decisive factor in the design of optimized nanore-
actors must be clearly the tuning of the reactant-hydrogel in-
teraction towards attraction. We note that free energy gains
∆G of the order of a few kBT seem utterly realistic for small
hydrophilic substrates, such as nitrobenzol and nitrophenyl.
For comparison, a reasonable upper bound could be estimated
as the free energy jump of about 7 kT reported for the sorp-
tion of a protein into a hydrophilic network35. These estimates
are also consistent with partitioning data of small molecules,
such as acetaminophen, into PNIPAM36, where the transfer
free energy can be estimated as ∆G ' −kBT lnK, where K is
the partitioning coefficient.

4.1 Optimizing the number of nanocatalysts

As we see from Eq. (25) the maximum achievable rate is
k = k−S = 4πD0R0, that is, the Smoluchowski rate of a sink
of size equal to that of the total nanoreactor, i.e. the nanoreac-
tor should be big for high activity. In the limit of small NP to
nanoreactor size ratio, ε� 1, Eq. (24) can be simplified to the
following form

k
k−S

=
Nε ζ e−β∆G

1+Nε ζ e−β∆G . (25)

Let us recall the important parameters, that is, the NP to
nanoreactor size ratio 0 < ε = a/R0 � 1, the number of
NPs N, the scaled reactant mobility inside the shell 0 < ζ =
Di/D0 . 1, and finally the transfer free energy change ∆G
for the reactants upon entering the hydrogel. Clearly, if the
mobility vanishes, ζ � 1 or the free energy jump ∆G� kBT
is substantially repulsive, the reaction is significantly slowed
down. However, in realistic systems the mobility will be cer-
tainly slowed down to some extent but not vanish. ∆G may
be even negative (attractive) if the reactant interacts favorably
with the polymer as found for rather hydrophobic reactants
and collapsed PNIPAM-based hydrogels11,12. Since ∆G en-
ters Eq. (25) exponentially, substantial effects are expected
following small changes in the interaction. Together with ∆G,
clearly the number of NPs and their size ratio with respect to
the total nanoreactor size are the key quantities to tune. To
save resources N should be small but large enough to warrant
a high catalytic activity.

The behavior of Eq. (25) resembles a Langmuir-binding
isotherm form. The rate as a function of N initially rises
linearly with a slope ε ζ exp(−β∆G) and finally saturates to
the maximum rate k = k−S for large values of N. For a
single NP, N = 1 and not too attractive transfer free energy,
we recover essentially the result for a yolk-shell nanoreactor
k' 4πDiaexp(−β∆G), where a single NP is embedded in the
center of a spherical hydrogel, apart from a slight modification
of the target size, which is not a for the yolk-shell but Ri, the
radius of the interior hollow confinement11,12.

It is instructive to define an efficieny factor f = k/k−S be-
tween 0 and 100 %, that quantifies the desired target efficiency
of the nanoreactor. Solving Eq. (25) for N, we find

N f =

(
eβ∆G

ε ζ

)
f

1− f
(26)

that is, for a fixed efficiency, the NP number needed to main-
tain it changes exponentially with the transfer free energy
change. As a numerical example, let us assume reasonable
values of ζ = 0.2, ε = 0.01, and β∆G = −1. To obtain an
efficiency of 50 %, N f = 184 nanoparticle catalysts would be
needed. If β∆G = −2, the number wold drop of a factor 1/e
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Fig. 2 Diffusion-controlled rate constant of a core-shell nanoreactor normalized to the Smoluchowski rate constant of a perfect sink of the
same size, k−S = 4πDoR0 versus the number N of encapsulated nanoparticles (NP). Symbols are the exact solution of Eqs. (31) (relative
accuracy of TOL = 5×10−4). Each point is an average over 10 independent configurations of the NPs (error bars smaller than the symbol
size), while the solid lines are plots of the monopole approximation, Eq. (24), for the corresponding choice of parameters. The plots refer to
RS/R0 = 0.353 and a/R0 = 0.0146.

to N f = 68. For such values of N the MOA is an excellent
approximation (see Fig. 2), which makes our treatment self-
consistent and sound. Note that N f does not scale with the cat-
alyst surface, as one might naively expect, rather it decreases
linearly with the catalyst size.

Formula (26) provides a simple rule of thumb for optimiz-
ing the design and synthesis of core-shell nanoreactors for
small to intermediate values of the core size. As an exam-
ple, if one aims at 50 % efficiency for a relatively neutral
hydrogel chemical environment (∆G = 0), where the mobil-
ity of the substrate is not significantly reduced (ζ = 1), one
needs to employ N f = 1/ε =R0/a nanoparticles. For ε = 0.01
that would be N f = 100. In the case of a polymer matrix
in physical-chemical conditions leading to a reduced mobil-
ity (e.g. ζ = 0.2), one would need five times more NPs for
∆G = 0, but about the same number for β∆G ' −1.6. This
clearly illustrates how the performance of a composite core-
shell nanoreactor is non-trivially shaped by the combined ac-
tion of the physical chemical properties of the hydrogel shell
matrix, such as the bulk solvent-microgel transfer free energy
jump and changes in translational mobility of the substrate
molecules.

4.2 The role of the core size

In certain configurations, such as in the shrunk phase of ther-
mosensitive core-shell nanoreactors past the lower critical so-
lution temperature (LCST)8, the core size can become com-
parable to the overall size of the nanoreactor. In these circum-
stances, the MOA breaks down and the full solution should
be used instead. Fig. 3 reports an analysis of the rate con-

stant as the core sized is varied for different values of the geo-
metrical and physico-chemical parameters. As a first observa-
tion, the plots confirm and substantiate the discussion laid out
in the previous section, as it can be appreciated that the core
size does not influence the overall rate until γ = RS/R0 . 0.4.
More generally, one can recognize that the rate constant tends
to increase as the shell shrinks (increasing values of RS/R0).
The only exception is for low N and attractive transfer free
energy, where a non-monotonic trend is observed (top left
panel). This is a typical screening effect37, which originates
from the subtle interplay between diffusive interactions among
the nanocatalysts and individual screening due the reflecting
PS core. It turns out that the transfer free energy is the prime
parameter that controls the increase in the rate as the PS core
size increases. The more attractive the transfer free energy,
the less marked the increase. Interestingly, at fixed values of
∆G, the less mobile the substrate in the shell, the more marked
the rate boosting effect of the shell shrinking. Importantly, it
is apparent from the plots reported in Fig. 3 that the role of
the core size is reduced for loading number of the order of a
few tens and small size of the nanocatalysts. All in all, these
results confirm the complex intertwining of the structural, geo-
metrical and physico-chemical features underlying the overall
catalytic activity of core-shell nanoreactors.

5 Concluding remarks

In this paper we have developed a detailed theory to compute
the total reaction rate of core-shell nanoreactors with multiple
catalysts embedded in the shell. The theory is utterly general
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Fig. 3 Diffusion-controlled rate constant of a core-shell nanoreactor as a function of the PS core size for different values of the
physico-chemical parameters and nanocatalyst loading number.

and allows one to compute the overall reaction rate to any de-
sired accuracy for (i) given configuration, dimension and sur-
face reactivity of the encapsulated nanocatalysts, (ii) size of
the core and the shell, (iii) substrate mobility in the bulk and
in the shell and (iv) transfer free-energy jump for substrate
molecules. Furthermore, we computed analytical expressions
in the monopole approximation that provide an excellent inter-
polation of the exact solution for small to intermediate sizes of
the central core in the physically relevant range of parameters,
i.e. small size and high dilution of the nanocatalysts. Our for-
mulas supply ready-to-use simple tools that can be employed
to interpret and optimize the activity of experimentally real-
izable nanoreactor systems. This shall be particularly useful
to estimate the optimal number of embedded NPs, that should
reflect a compromise between a resource-friendly design and
the highest possible catalytic output. Our analytical treatment
predicts an optimal number of NPs given by the following ex-
pression

N f =
f

1− f
R0

a

(
Do

Di

)
eβ∆G (27)

where f ∈ [0,1] is the desired efficiency, a and R0 are the NP
and overall nanoreactor sizes, respectively, and Di,Do are the
substrate mobility in the shell and in the bulk, respectively. For
realistic values of these parameters, one gets N1/2 of the order
of hundreds, a value for which the monopole approximation
is still in excellent agreement with the exact solution for core
sizes such that RS/R0 . 0.4. As discussed already previously,
eq. (27) makes it clear that a decisive factor in the design of op-
timized hydrogel-based nanoreactors must be the tuning of the
reactant-hydrogel interaction towards attraction (∆G< 0) for a
specific reaction (or mix of reactions). Furthermore, as hydro-
gel that cause strongly reduced substrate mobility also demand
more NPs to achieve high efficiency (N f ∝ Do/Di), the choice
of the shell hydrogel should be made so as to privilege smooth
longer-ranged interactions (like electrostatic, hydrophobic, or
dispersion) with respect to short-ranged ones (like H-bonds),
in order to avoid too sticky interactions that would slow down
the reactant mobility substantially due to activated hopping.

Our analytical treatment breaks down if one wishes to push
the nanoreactor performances towards full efficiency ( f → 1),
where the loading number of NP increases rapidly, or in the
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case of larger core sizes (of the order of the whole spherical as-
sembly). In such cases, the diffusive interaction between NPs
can no longer be neglected, as well as the effect of the inert PS
core, as diffusive and screening interactions among the differ-
ent boundaries become important. As a consequence, the full
exact solution should be employed to investigate the behavior
of the rate and elaborate an optimal design of the composite
nanoreactor. Interestingly, we have shown that, as a general
situation, increasing both the core and the nanocatalyst sizes
either has a rather mild effect on the overall performances, or,
more generally, causes a rate-boosting effect, with an increase
of the overall rate constant of up to 40 % for values of the core
size RS/R0 & 0.7.
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A

In order to determine the unknown coefficients in the ex-
pansions (19), we have to express the solution in the local
coordinates on every boundary (the N + 1 spherical surfaces
∂Ωα ) and at the microgel-bulk interface ∂Ω0, where we
impose the pseudo-continuity conditions for the reactant
density field. This can be accomplished by using known
addition theorems for spherical harmonics38,39. After some
lengthy algebra, we obtain the following linear equations

1
λ

Agq +
1
λ

N

∑
β=1

q

∑
n=0

n

∑
m=−n

Bβ
mnV β ,m,n

g,q I{g−(q−n)≤m≤g+(q−n)}−Egq = δg0δq0 (28a)

−Bα
gq +

(q−hα)

(hα +q+1)

∞

∑
n=0

n

∑
m=−n

(
AmnH(α,g,q)

m,n Iq≤n +
N

∑
β=1,β 6=α

Bβ
mnW (α,β ,g,q)

m,n

)
= 0 (28b)

ζ

[
N

∑
β=1

q

∑
n=0

n

∑
m=−n

Bβ
mnV β ,m,n

g,q I{g−(q−n)≤m≤g+(q−n)}−
q

q+1
Agq

]
−Egq = 0 (28c)

where h1 = 0, hα = h for α > 1 and we
have introduced characteristic functions Im∈I =
{1 for m ∈ I |0 otherwise}. Eqs. (28a), (28b), (28c)

hold ∀ q ∈ [0,∞) with α = 1,2, . . . ,N + 1 and
g = −q,−q + 1, . . . ,q − 1,q. The matrices V,H,W read

V α,m,n
g,q =

(−1)q−n+m−g(q−g)!
(n−m)!(q−n+m−g)!

η
q−n
0α

χ
n+1
α Ym−g,q−n(−Lα) (29a)

H(α,g,q)
m,n =

(
n+m
q+g

)
χ

q
α η

n−q
0α

Ym−g,n−q(Lα) (29b)

W (α,β ,g,q)
m,n = (−1)q+g (n−m+q+g)!

(n−m)!(q+g)!
η
−(n+q)−1
βα

χ
q
α χ

n+1
β

Ym−g,n+q(Lβα) (29c)

where Lαβ = Lβ −Lα (according to this notation L0α = Lα )
and

ηαβ = ηβα =
Lαβ

R0
χα =

Rα

R0
. (30)

Here, for the sake of coherence, we pose R1 =RS (radius of the
PS core) and Rα = a, for α > 1 (radius of the nanocatalysts).
The system (28a), (28b), (28c) can be expressed more conve-

1–13 | 9



(
1
λ
+

q
q+1

ζ

)
Agq +

(
1
λ
−ζ

) N

∑
β=1

q

∑
n=0

n

∑
m=−n

Bβ
mnV β ,m,n

g,q I{g−(q−n)≤m≤g+(q−n)} = δg0δq0 (31a)

−Bα
gq +

(q−hα)

(hα +q+1)

∞

∑
n=0

n

∑
m=−n

(
AmnH(α,g,q)

m,n Iq≤n +
N

∑
β=1,β 6=α

Bβ
mnW (α,β ,g,q)

m,n

)
= 0 (31b)
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niently by subtracting eq. (28c) from eq. (28a), which leads to
If the multipole expansions are truncated at NM multipoles,

the system (31)) comprises (N+2)(NM+1)2 equations, which
can be easily solved numerically. Once the the coefficients
have been determined, the rate constant can be obtained from
eq. (15). Recalling the definitions (19) and making use of

known properties of solid spherical harmonics, it is easy to
see that

k =−k+S
N+1

∑
α=2

Bα
00 (32)

The system to be solved has the following structure



(
1
λ
+

ζ q
q+1

)
I
(

1
λ
−ζ

)
V 1

(
1
λ
−ζ

)
V 2 . . .

(
1
λ
−ζ

)
V N+1

H1 −I W 1,2 . . . W 1,N+1

H2 W 2,1 −I . . . W 2,N+1

...
...

...
. . .

...

HN+1 W N+1,1 W N+1,2 . . . −I


×



A00

...
ANMNM

B1
00

...
B1

NMNM

...
BN+1

00

...
BN+1

NMNM



=



1
...
0

0
...
0

...
0
...
0



To solve this system of equation numerically we employ stan-
dard linear algebra packages (LAPACK). The number of mul-
tipoles NM considered to truncate the system was chosen so
that the relative accuracy on the rate was less than or equal to
TOL = 10−3, namely |k(NM +1)− k(NM)|/k(NM)< TOL.

B

The monopole approximation of the system (31) for a given
configuration of the nanocatalysts can be obtained by truncat-
ing the expansion to q = n = 0. The ensuing equations read

A00

λ
+

(
1
λ
−ζ

) N

∑
β=1

Bβ

00V β00
00 = 1

Bα
00 +

hα

1+hα

(
A00H(α00)

00 +
N

∑
β 6=α=1

Bβ

00W (αβ00)
00

)
= 0

(33)
with α = 1,2, . . . ,N. Recalling the definitions (29a), (29b)
and (29c), we have V β00

00 = a/R0, H(β00)
00 = 1, W (αβ00)

00 =

a/Lβα , and ζ = Di/D0, so that Eqs. (33) take the following
form 

A00

λ
+

a
R0

(
1
λ
−ζ

) N

∑
β=1

Bβ

00 = 1

Bα
00 +

hα

1+hα

(
A00 +

N

∑
β 6=α=1

Bβ

00
a

Lαβ

)
= 0

(34)

Since Bα
00 = −kα/k+S , the overall rate constant of the

nanoreactor can be computed simply as k = −k+S ∑
N+1
β=1 Bβ

00

(note that B1
00 = 0 is identically zero as the PS core is

modeled as a reflecting sphere). Moreover, we can average
the system (34) over the catalyst configurations, in the
reasonable hypothesis that spatial correlations between
the positions of the catalysts are negligible. This reduces
the many-body average to a two-body problem, namely
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〈
a

Lαβ

〉
=

9a
2[(R0−a)3− (RS +a)3]2

∫ R0−a

RS+a
r2 dr

∫ R0−a

RS+a
ρ

2 dρ

∫
π

0

sinθ√
r2 +ρ2−2rρ cosθ

dθ

=
2(1− ε)5−5(1− ε)2(γ + ε)3 +3(γ + ε)5

(1− ε)6−2(1− ε)3(γ + ε)3 +(γ + ε)6

(
3a

5R0

)
:= ε C(ε,γ) (35)

where γ = RS/R0. We therefore get from Eqs. (34)
A00

λ
− a

R0

(
1
λ
−ζ

)
k

k+S
= 1

k− h
1+h

[
NA00 k+S − (N−1)k

〈
a

Lαβ

〉]
= 0

(36)

where we have taken hα = h = k∗/k+S ∀ α as the N catalysts
are identical. By eliminating A00 the solution (21) is easily
recovered as

k
k−S

= ζ ε

(
k

k+S

)
(37)

The diffusion-limited solution (24) follows straightforwardly
in the limit h→ ∞.

References

1 V. V. Pushkarev, Z. Zhu, K. An, A. Hervier and G. A. So-
morjai, Topics in Catalysis, 2012, 55, 1257–1275.

2 Y. Zhang, X. Cui, F. Shi and Y. Deng, Chemical Reviews,
2012, 112, 2467–2505.

3 M. Haruta, Chemical Record, 2003, 3, 75–87.
4 G. J. Hutchings and M. Haruta, Applied Catalysis A: Gen-

eral, 2005, 291, 2–5.
5 R. M. Crooks, M. Zhao, L. Sun, V. Chechik and L. K.

Yeung, Accounts of Chemical Research, 2001, 34, 181–
190.

6 J.-H. Noh and R. Meijboom, Applied Catalysis A: Gen-
eral, 2015, 497, 107–120.

7 M. Ballauff, Progress in Polymer Science, 2007, 32, 1135–
1151.

8 Y. Lu and M. Ballauff, Progress in Polymer Science (Ox-
ford), 2011, 36, 767–792.

9 Y. Lu, Y. Mei, M. Drechsler and M. Ballauff, Angewandte
Chemie - International Edition, 2006, 45, 813–816.

10 S. Carregal-Romero, N. J. Buurma, J. Perez-Juste, L. M.
Liz-Marzan and P. Herv es, Chem. Mater., 2010, 22, 3051–
3059.

11 S. Wu, J. Dzubiella, J. Kaiser, M. Drechsler, X. Guo,
M. Ballauff and Y. Lu, Angewandte Chemie - International
Edition, 2012, 51, 2229–2233.

12 S. Angioletti-Uberti, Y. Lu, M. Ballauff and J. Dzubiella,
The Journal of Physical Chemistry C, 2015, 119, 15723–
15730.

13 P. Debye, Trans. Electrochem. Soc., 1942, 92, 265–272.
14 S. Shi, Q. Wang, T. Wang, S. Ren, Y. Gao and N. Wang,

The journal of physical chemistry B, 2014, 118, 7177–86.
15 T. Aditya, A. Pal and T. Pal, Chemical communications

(Cambridge, England), 2015, 51, 9410–31.
16 P. Zhao, X. Feng, D. Huang, G. Yang and D. Astruc, Co-

ordination Chemistry Reviews, 2015, 287, 114–136.
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