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Abstract 

Cu2ZnSn1-xGexS4 (CZTGS) thin films prepared by flash evaporation of a Zn-rich 

Cu2ZnSn0.5Ge0.5S4 bulk compound in powder form, and a subsequent thermal  annealing 

in S containing Ar atmosphere are studied. The effect of the substrate temperature 

during evaporation and the initial composition of the precursor powder on the growth 

mechanism and properties of the final CZTGS thin film are investigated. The 

microstructure of the films and elemental depth profiles depend strongly on the growth 

conditions used. Incorporation of Ge into the Cu2ZnSnS4 lattice is demonstrated by the 

shift of the relevant X-ray diffraction peaks and Raman vibrational modes towards 

higher diffraction angles and frequencies respectively. A Raman mode at around 348-
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351 cm
-1

 is identified as characteristic of CZTGS alloys for x = [Ge]/([Sn]+[Ge]) = 

0.14-0.30. The supply of Ge enables the reduction of the Sn loss via a saccrifical Ge 

loss. This fact allows increasing the substrate temperature up to 350º C during the 

evaporation, forming a high quality kesterite material and therefore, reducing the 

deposition process to one single stage.  

Keywords: CZTGS, Germanium, Earth abundant, thin film, solar cells 

 

1. Introduction 

Cu2ZnSn(S,Se)4 (CZTSSe) kesterite material is an excellent candidate to be used as 

absorber layer for thin-film solar cells. This is because this earth-abundant material 

presents p-type conductivity, a high absorption coefficient and direct band gap energy 

from 1.0 to 1.5 eV depending on the anions’ ratio [1]. Nowadays, a top efficiency of 

12.6 % has been achieved [2]. However, it is still quite low compared to the 21.7 % 

efficiency reported for Cu(In,Ga)Se2 (CIGSe) solar cells [3]. One of the key factors to 

realize this high performance in CIGSe devices is the Ga/In substitution, leading to 

band gap tuning. As previously reported [4-6], a similar band gap grading is possible to 

be achieved with the partial substitution of tin with germanium in the CZTSSe lattice.  

As a further example also Guo [4] and Hages [7] et al. have reported an enhanced 

performance of CZTSSe devices with the addition of Ge. Tandem photovoltaic devices 

allow light harvesting of a broader part of the light spectrum . Recently, Todorov et al. 

[8] have demonstrated the potential of a monolithic CZTSSe-perovskite architecture as 

multijuncion device. Hence the possibility of tuning the band gap energy and improving 

the device performance by adding Ge makes this material suitable and attractive to be 

used for a tandem solar cell device.  

On the other hand, it is still necessary to understand the role of the growth parameters to 

produce kesterite material with the optimum properties for maximum device efficiency. 

Cu2ZnSnS4 (CZTS), Cu2ZnSnSe4 (CZTSe) and CZTSSe thin films have been 

synthesized via different techniques: thermal evaporation [9-10], co-evaporation [11-

12], sputtering [13-14], sol-gel [15], electroplating [16], etc. Many of them have been 

fabricated by a sequential, or two-stage, process: deposition of precursor followed by 

post-sulfurization/selenization. This is advantageous due to its capability and high 

throughput. However, it is also desirable to reduce the number of stages during the 

growth process. 
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Here, Cu2ZnSn1-xGexS4 (CZTGS) (x = [Ge]/([Sn]+[Ge]) thin films have been grown by 

flash evaporation and subsequent annealing under Ar atmosphere. Different deposition 

parameters, such as substrate temperature during the evaporation, Ar pressure, 

temperature and time during the annealing have been studied. The goal of the present 

work is to investigate the effect of the growth parameters on the distribution of the 

elements, structural, morphological and optical properties of the alloy compound. We 

show that the increased substrate temperature of up to 350º C during the evaporation 

can produce quality kesterite material by a single-stage process. The addition of Ge 

makes possible the reduction of Sn loss via an increased sacrifical loss of germanium. 

 

2. Experimental 

A Zn-rich Cu2ZnSn0.5Ge0.5S4 compound was synthesized by a modified Bridgman 

method [17]. This compound was first ground to a powder and then used as source 

material for evaporation. CZTGS thin films were fabricated by a sequential, or two-

stage, process: evaporation followed by a thermal treatment. In the first stage, CZTGS 

thin films were deposited by flash evaporation [18] onto Mo coated glass and glass 

substrates using the compound in powder form at nominal substrate temperatures, Tsubstr 

of 100º and 350º C. As previously reported [19], a preferential re-evaporation of Zn 

takes place during the flash evaporation process, leading to Zn-poor thin films. It was 

reported that, despite a Zn-rich precursor powder, a significantly decreased Zn-content 

was obtained after evaporation. This behavior was related to the high partial vapor 

pressure of Zn. Throughout the paper, Flash 1 refers to the evaporation process 

performed at Tsubstr = 100º C. In addition, a precursor with excess of ZnS was prepared 

by two more deposition procedures: Flash 2 at Tsubstr = 100º C and Flash 3 at Tsubstr = 

350º C. Table 1 summarizes the different deposition processes carried out and the 

composition of the thin films and the bulk compound. The composition was measured 

by Energy Dispersive X-ray spectroscopy (EDX) (Oxford instruments, model INCAx-

sight) inside a Hitachi S-3000N scanning electron microscope (SEM). EDX 

measurements were carried out at 25 kV operating voltage, and the Cu K, Zn K, Ge K, 

Sn L and S K lines were used for quantification. The second stage of the process 

consisted of a thermal treatment of the samples in Ar atmosphere (at pressures of 4.5 x 

10
4
 and 9.5 x 10

4
 Pa) under excess of elemental S. For that purpose, the as-evaporated thin 

films were placed in a partially closed graphite box, of 56 mm x 70 mm x 20.5 mm with a hole 
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of 1 mm diameter in the lid, and inserted into a quartz tube furnace. The samples size was of 

100 mm
2
 approximately. In order to have an overpressure of S, 30 mg of elemental sulfur were 

also placed inside the graphite container next to the substrate. The maximum S overpressure 

was of 2.15 x 10
5
 Pa at 550º C and of 1.20 x 10

5
 Pa at 500º C. The heating and cooling rates 

were 20º C/min and 10º C/min respectively. Parameters such as maximum temperature, 

Ar pressure and time at the maximum temperature were varied to obtain the CZTGS 

material with the optimum properties. The composition of the annealed samples and the 

details of the thermal treatments applied are collected in Table 2. The samples coming 

from the process Flash 1 are characterized by a low Zn content; those from Flash 2 by a 

significantly decreased Cu and increased Zn concentrations and the samples from 

process Flash 3 by a near-ideal composition for photovoltaic applications, i.e. Cu-poor 

and Zn-rich.  

Grazing incidence X-ray diffraction (GIXRD) was performed to investigate the 

structural properties of the CZTGS thin films. GIXRD data were collected with a 

PaNAlytical X´Pert Pro MPD diffractometer, using Cu K radiation and a multilayer 

mirror. Detector scans with incident angles of 0.25º, 2º and 4º were carried out. Micro 

Raman spectra were obtained at room temperature in a Horiba Jobin Ivon T64000 

spectrometer. The laser wavelength was adjusted to 514.5 nm with a spot size of 1.25 

μm diameter. The samples from flash evaporation 3 were measured using a 532 nm 

excitation wavelength. Moreover, Raman scattering measurements at 325 nm were 

carried out to enhance the detection sensibility to the potential presence of ZnS phases 

[20]. 532 and 325 nm Raman scattering measurements were performed in back 

scattering configuration with LabRam HR800-UV Horiba-Jobin Yvon spectrometer 

coupled to an Olympus metallographic microscope. The laser spot diameter in both 

cases has been estimated to be in the order of 1 µm and the power density on the surface 

of the samples was kept around 50 W/cm
2
. To avoid effects in the spectra related to 

potential microscopic inhomogeneities, the spot was rastered over an area of 30 x 30 

µm
2
 for both excitations wavelengths. The first-order Raman spectrum of Si single 

crystal was measured as a reference, and the spectra were corrected with respect to the 

Si line at 520 cm
-1

. Both spectrometers gave us almost identical Raman spectra when 

working at 514.5 nm and 532 nm. 

Scanning electron microscopy was used to study the morphology of the 

CZTGS/Mo/glass structure using a Philips XL30S FEG scanning electron microscope at 
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10 kV operating voltage. Glow discharge optical emission spectroscopy (GDOES) with 

a Spectruma GDA 650 was performed in pulsed RF mode to study the elemental depth 

profile through the CZTGS layer. Argon plasma with a pulsed RF mode was used to 

sputter the CZTGS and Mo layer and radiation from the ionized atoms from the layer is 

detected with a CCD array. Cross-sectional EDX mapping was conducted on a LEO 

GEMINI 1530 SEM (Carl Zeiss AG, Oberkochen, Germany) and a Thermo Fisher 

silicon-drift X-ray detector (Thermo Fisher Company, Dreiecich, Germany). 

 

3. Results and discussion 

3.1. As-evaporated CZTGS thin films 

Table 1 shows a higher Zn concentration when a 50 atomic % excess of ZnS was added 

to the precursor synthesis. This leads to an atomic ratio of [Zn]/([Sn]+[Ge]) higher than 

1, which is necessary to achieve high efficiency solar cells [21]. A decreased Ge 

concentration is observed when the substrate temperature is increased, as also reported 

by Guo et al. [4]. While an atomic ratio x = [Ge]/([Sn]+[Ge])  of ~ 0.5 is maintained for 

the evaporation processes 1 and 2, x is drastically reduced when a substrate temperature 

of 350º C is used. This can be related to the high vapour pressure of Ge sulfides [22]. 

Figure 1 presents the GIXRD (GI = 4º) spectra of the as-evaporated thin films. The 

JCPDS data for tetragonal Cu2ZnSnS4 (No. 01-075-4122), tetragonal Cu2ZnGeS4 

(CZGS) (No. 04-012-7580), hexagonal wurtzite ZnS (No. 00-012-0688) and cubic Cu2S 

(No. 00-053-0522) are also shown. Inset of Figure 1 shows the 112 and 200/204 

diffraction peaks. Two features can be distinguished here. First, the diffraction peaks are 

shifted towards higher diffraction angles for increased Ge concentrations. This fact is 

explained by the replacement of large Sn atoms by smaller Ge atoms, which leads to 

smaller lattice parameters. These spectra reveal the incorporation of Ge into the lattice. 

Secondly, the higher substrate temperature of 350º C leads to an enhanced crystallinity 

and the presence of the main peaks corresponding to the CZTGS alloy material are 

observed (see as-evaporated sample of process Flash 3). However, it is quite difficult to 

rule out the presence of secondary phases such as ZnS and Cu-S due to the closeness of 

the diffraction peaks of these phases with those of CZTS. 

 

3.2. CZTGS after thermal treatment in Ar atmosphere 

3.2.1. CZTGS thin films coming from evaporation process Flash 1 
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GIXRD spectra of the samples corresponding to the first evaporation process after 

different thermal treatments are displayed in Figure 2. In all of them, the diffraction 

peaks are located between those of tetragonal CZTS and CZGS compounds. Moreover, 

SnS (JCPDS No. 39-0354) is also identified for the samples with atomic ratio [Zn]/([Sn] 

+ [Ge])  0.74. It has been reported a Sn loss when annealing CZTS thin films at high 

temperatures due to the high partial pressure of SnS [23]. We previously detected 

increased Cu and Zn concentrations after the sulfurization process because of the Sn 

loss in the case of Cu2ZnSnS4 thin films [19]. However, here a significant loss of Ge 

takes place, without observing a decrease in the Sn content. From the literature, GeS has 

a much higher vapor pressure than SnS at 550º C [24-25]. As suggested by Chen et al. 

[21], sublimation of Ge sulfides (GeS/GeS2) can be assumed during the sulfurization 

process inducing Ge loss.  Loss of Ge seems to be reduced by using a lower Ar pressure 

for 30 minutes during the sulfurization process.  

Figure 3 displays Raman spectra of the samples under excitation using light with a 

wavelength of 514.5 nm, including fits with Lorentzian curves. These show several 

weak peaks with two dominant peaks at 290 cm
-1

 and 340 cm
-1

. This fingerprint 

contrasts with the Raman spectra reported for the wurtzstannite CZGS semiconductor at 

non-resonant conditions [26]. The Raman spectrum of wurtzstannite CZGS is only 

dominated by a band at 362 cm
-1

. On the other hand, the spectra of Figure 3 show a high 

similarity to the fingerprint of the kesterite CZTS [27], suggesting that these samples 

present the same kesterite structure. The slight red shift of the dominant bands with 

respect to the A modes reported by [27-28] (287 cm
-1

 and 338 cm
-1

) is assigned to the 

Ge incorporation in the Sn sites. As shown in [5], Cu2ZnSn0.9Ge0.1S4 single crystals 

presented the A mode at 339 cm
-1

. Therefore, the mode at 340 cm
-1

 suggests a 

[Ge]/([Sn]+[Ge]) atomic ratio slightly higher than 0.1, which is in the case here .  

The nature of the peak at 348-349 cm
-1

, following from Lorentzian fits of the most 

intense A-band and particularly strong for the sample after TT3, should be discussed. 

There are two possible interpretations of this peak. This can be an E / B mode, 

manifested in pure CZTS at 347cm
-1

 as shown in [29]. However, it is more likely that 

this peak can be interpreted as CZGS-like A-mode of the mixed crystal CZTGS. Our 

preliminary results on the Raman scattering for several mixed CZTGS compounds [5]  

have shown that this solid solution is characterized by the so-called “two-mode 

rearrangement” of the phonon spectrum (at least for the most intense A-modes). In this 
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case, the Raman spectra of films of an intermediate compositions simultaneously modes 

of both components exist (CZTS and CZGS), and a change in composition is 

accompanied by redistribution of their relative intensities with only small frequency 

shifts. The most intensive A-phonon peak for CZGS has been reported at 360-362 cm
-1 

[26, 30]. With decreasing of Ge content in mixed CZTGS, that peak gradually shifts to 

lower frequencies by about 1 cm
-1

 with the composition change on 10%. This 

interpretation is supported by the fact that on Figure 3, the peak at 349 cm
-1

 is most 

clearly manifested in the sample after TT3, for which the content of Ge is 1.5 times 

more than in the samples after thermal treatments TT1 and TT4 (see Table 2).  

Additionally the Raman measurements under green light excitation do not show bands 

that could be assigned to the Sn-S and Cu-S secondary. Two ways can explain this 

discrepancy with the SnS detection by GIXRD. First, the concentration of SnS phase 

may not be located at the surface. The Raman penetration depth under this condition is 

estimated to below 100 nm and the GI(4º)XRD gives us deeper information. The second 

possible explanation is possibly a concentration below the Raman detection limit. 

No significant differences have been observed for samples annealed at different Ar 

pressures at 550º C for 30 minutes. However, a longer annealing time of 60 minutes, at 

the maximum temperature (TT4), shows a different Raman spectrum. A Raman peak at 

around 317-319 cm
-1

, almost coinciding with the peak in the Raman spectra of CZTS 

[31], is observed for the samples after TT1 and TT3. However, this peak is absent in the 

sample after TT4. This fact can be associated with a lower crystalline perfection of the 

first two samples compared to the last one (such phenomena is known as “defect 

induced scattering”). This is supported by a smaller half-width and higher intensity of 

both A-peaks (290 and 340 cm
-1

) in the spectrum of the sample TT4 (see inset of Figure 

3.c.) and it has been reported for spectra of samples with low crystal quality [28].  

In addition, Raman spectra were measured by using 325 nm excitation wavelength to 

confirm the nature of the mode at around 348-349 cm
-1

 (inset of Figure 3.b.). As 

reported in [20], ZnS is characterized by a main vibrational mode at around 350 cm
-1

 

(LO peak) due to the existence of resonant excitation conditions that lead to an increase 

in the efficiency of this ZnS mode at this frequency. Moreover, a peak at 695 cm
-1

 (LO2 

peak) appears, which has been identified as a second order band from ZnS. However, 

only some residual ZnS can be detected, which agrees with the composition of these 

thin films. 
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Figure 4.a.-4.d. show the cross-sectional SEM micrographs and the surface of the 

samples coming from the evaporation process Flash 1 after different thermal treatments. 

All of them are characterized by a columnar structure and grain size of the order of the 

film thickness. The higher Zn content obtained by a longer annealing time seems to reduce the 

grain size of the surface slightly. Zhang et al. [32] observed a grain size for CZTS thin 

films deposited by sol-gel after sulfurization at 0.04 MPa larger than that of CZTS thin 

films sulfurized at 0.1 MPa under a mixed Ar and sulfur vapor atmosphere. Here, no 

significant changes in the grain size are detected for different Ar pressures and 

annealing times used.   

GDOES depth profiles of the samples of Figure 3 are displayed in Figure 5. Na diffuses 

from the glass towards the CZTGS surface, as for CIGSe solar cells [33].  The positive 

influence of Na on the CIGSe-based photovoltaic devices, generally via increased FF 

and Voc [34], has been extensively reported together with the importance of controlling 

the addition of alkaline material to the absorber accurately [35]. Recently, the effect of 

Na on kesterite solar cells is being investigated, also observing an enhanced efficiency 

of the devices [36- 38]. Therefore, Na is an important parameter to control. Here, the Na 

profile is modified by the thermal treatment applied. A double Sn-gradient is observed 

for the samples after thermal treatments TT1 and TT3. A much higher Sn concentration 

next to the Mo back contact is detected for the sample annealed at lower Ar pressure 

(TT3). A drop of the Sn and a slightly increased Ge GDOES signal are observed near 

the front half of the CZTGS layer. The lower Ar pressure for a shorter sulfurization time 

led to a much higher S signal at the surface. As shown in Figure 2, a SnS phase is 

observed by GI(4º)XRD for both samples, after TT1 and TT3. The much higher Sn and 

S concentrations near the Mo layer could explain the higher intensity of the SnS 

diffraction peak at 31.9º for the sample after TT3. Moreover, no SnS is identified by 

GIXRD for the sample annealed for 1 h (TT4). That sample, TT4, is characterized by a 

much more uniform distribution of all the elements, especially of Sn and S. The longer 

annealing time at 550º C leads to a better diffusion of the elements to potentially form 

the pseudo-quaternary compound. 

The ability to adjust the optical band gap energy of the absorber layer is critical for 

optimizing the performance of photovoltaic devices. The success of Cu(In,Ga)Se2 solar 

cells is mainly based on the absorber band gap engineering [39]. A Ga gradient through 

the absorber layer has been shown to be a key issue to enhance the photovoltaic 
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parameters of CIGSe cells [40]. A similar strategy can be applied to the CZTSSe 

material by alloying with Ge. As shown in Figure 5, the distribution of Sn(Ge) through 

the CZTGS film can be modified by the thermal treatment applied. According to 

theoretical calculations for the electronic band structure of kesterites done by Persson 

[41], the estimated energy for CZTS of the 1 point (band gap energy, Eg) is 1.47 eV. A 

fundamental Eg of 1.59 eV and 1.95 eV was determined for Cu2ZnSn0.9Ge0.1S4 and 

Cu2ZnSn0.5Ge0.5S4 kesterite single crystals respectively by spectroscopic ellipsometry 

[5]. The band gap energy of the sample after TT4 was determined from transmittance 

and reflectance measurements and a value of 1.61 eV was obtained. The stannite-type 

material presents a higher band gap than the kesterite-type CZTGS [42]. According to 

the experimental Eg values obtained here, it is most likely that they show a dominant 

kesterite structure, in agreement with Raman spectroscopy measurements.  

 

3.2.2 CZTGS thin films evaporated with a ZnS excess (Flash 2 and Flash 3) 

The different thermal treatments applied to the samples from experiment Flash 1 

evaporated at Tsubstr=100º C were not enough to achieve an atomic ratio of [Zn]/[IV] > 

1. Therefore, new samples were evaporated at the same substrate temperature, adding an 

extra 50 atomic % of ZnS in the powder precursor (Flash 2). As shown in Table 1, a 

[Zn]/[IV] > 1 could now be achieved. However, the increased Zn concentration led to a 

significantly decreased Cu content after flash evaporation. Annealing of such samples 

resulted in atomic ratios: [Zn]/[IV] > 1 with Cu/([Zn] + [IV]) around 0.7; Cu-poor and 

Zn-rich films. High efficiency devices based on CZTSSe films are typically prepared 

under Zn-rich conditions, and this imposed Zn-excess may lead to the formation of ZnS 

as a secondary phase [9, 19]. GIXRD spectra of the Zn-richer sample after TT1 

measured using different grazing incidence angles, show the characteristic peaks of the 

CZTGS material. However, the presence of ZnS cannot be ruled out at different 

penetration depths (see Figure 6.a.) so far. Raman spectroscopy performed using ZnS 

resonant conditions (325 nm) confirm the formation of ZnS phase [20]. Under these 

conditions a penetration depth of 25 nm is expected. Only ZnS is detected on the 

surface by Raman as shown in Figure 6.b., which displays the different Raman peaks 

associated to ZnS. The LO peak (close to 347 cm
-1

) is strongly enhanced under UV 

conditions. Second and third order peaks of each of these modes are also observed (LO2 

and LO3) at 695-697 and 1043-1045 cm
-1

 respectively. Additionally, small peaks at 
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273-276 cm
-1

 (T2(TO)) and 416 cm
-1

 (second order TO+LA and LO+TA modes) are 

detected. The broad bands centered around 635 and 978 cm
-1

 are higher order 

combinations of theses fundamental modes. Following Fairbrother´s model [43], we can 

expect a bigger ZnS grain size for the sample annealed at 550º C for 1 hour (TT2) 

because of the lower Raman shift of the modes. Meanwhile the first order peak is at 

348.1 cm
-1

 for the sample annealed at 500º C for 30 min (TT5), the first order is at 

346.9 cm
-1

 for the sample after TT2 (see inset of Figure 6.c.). As the grain size 

increases, the corresponding band gap energies are lower, and the free exciton energy 

shifts further away from the excitation energy, leading to increased enhancement of the 

LO2 and LO3 peaks. Figure 6.c. shows the area ratios of LO/LO2 and LO/LO3. The 

smallest area ratio LO/LO2 and LO/LO3 is an indication of the reduction of the 

quantum confinement effects that is in agreement with an increase ZnS grain size for the 

sample annealed at higher temperatures for longer time. However, ZnS segregation is a 

well-known problem for the formation of CZTSSe absorbers. This segregation has been 

believed to cause high series resistance [42]. It is possible to remove superficial ZnS 

secondary phase by HCl-based etching [44].  

Cross-sectional SEM micrographs and the surface morphology of this series of samples 

show large grains together with other smaller crystals, which can be identified as ZnS 

(see Figure 4.e. - 4.h.). Inset of Figure 4.f. – 4.h. mainly shows the smaller grains on the 

surface related to the ZnS phase. EDX mappings reveal the primary presence of Zn in the 

smaller grains next to the Mo back contact as shown in Figure 4.j. for the sample 

annealed for 1 h. Therefore, there was not only an excess of Zn on the surface, but also 

inside the film. Kato et al. [10] found that while the ZnS is hardly controlled by varying 

precursor composition, the sulfurization conditions and precursor stacking are efficient. 

In [10], they also observed that the ZnS segregation at the backside of the absorber 

could have beneficial effects such as a back surface field. Here, it is observed that the 

composition of the precursor used for the evaporation is critical to controlling the ZnS 

phase formation. Even a sulfurization process carried out at 550º C for 4 hours led to 

quite Zn-rich samples.  

On the other hand, the thermal treatment at the lower temperature of 500º C (TT5) 

shows the temperature as the parameter that plays the most important role with respect 

to the Ge loss. The sample annealed at 500º C is characterized by smaller grain sizes 
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due to the lower temperature used. This way, it was not possible to achieve the absorber 

layer with the proper composition for solar cells. 

It is interesting to know what happens when the substrate temperature during the flash 

evaporation is increased. The samples evaporated at a substrate temperature of 350º C 

and an extra 50 atomic % of ZnS in the powder precursor, Flash 3, are characterized by 

a much lower Ge concentration. These as-evaporated films show a high crystallinity 

similar to that of the annealed samples and all the characteristic peaks of the CZTGS 

alloy, as presented in Figure 7.a. The different thermal treatments of such samples do 

not modify the material properties significantly. These results suggest that the 

evaporation at higher temperature produces the complete reaction to form high quality 

kesterite material. Different from the behaviour observed for the annealed samples 

coming from processes Flash 1 and 2, lower Cu and Zn concentrations and higher Ge 

contents are now obtained after thermal treatments. This can be related to the fact that 

the samples were already crystalline before annealing and the effect of the thermal 

treatment is entirely different. The composition of the sample annealed at 500º C 

corresponds to that typically reported to produce high efficiency solar cells. However, a 

Cu2S secondary phase is identified by GIXRD for the sample before annealing and after 

annealing at 500º C .  

Raman spectra measured at 532 nm of the samples shown in Figure 7.a. are displayed in 

Figure 7.b. In addition to the two main A symmetry modes at 291 cm
-1

 and 341 cm
-1

 of 

the kesterite phase, a new intense and well resolved Raman peak at 351 cm
-1

 is 

observed. In [5], a Raman mode at 354 cm
-1

 was detected for a Cu2ZnSn0.5Ge0.5S4 single 

crystal. Therefore, this newly resolved peak is due to the CZTGS with x near or equal to 

0.3, in agreement with the thin films composition. The samples of Figure 3 do not show 

this Raman mode at 351 cm
-1

, but a non-resolved contribution at 348-349 cm
-1

. This is 

because of the lower [Ge]/([Sn]+[Ge]) atomic ratio for the samples coming from Flash 

1. A small vibration mode at around 473-474 cm
-1

 can be identified as belonging to the 

Cu2-yS phase for the as-evaporated sample and after TT5 in agreement with GIXRD 

measurements. Raman spectra measured using 325 nm excitation wavelength suggest 

the formation of the ZnS phase on the surface (see Figure 7.c.). However, the 

concentration of ZnS is now much lower than that observed for the samples displayed in 

Figure 6. The LO/LO2 and A-CZTGS/LO-ZnS area ratios indicate that the ZnS grain 

size is around 10-20 nm [42] and of low concentration of ZnS.  
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Cross-sectional SEM micrographs and the surface morphology of CZTGS thin films 

show that the annealed-samples coming from the evaporation process Flash 3 present 

smaller grain sizes than those coming from Flash 1 (see Figure 4). This is related to the 

different growth mechanisms due to the different composition of the precursor 

compound as cause by the nominal substrate temperatures used during the flash 

evaporation. The samples from Flash 1 are Sn-richer, being Sn the largest atom in the system. 

It is well known that bigger grains do not imply better device performance for CIGSe solar cells 

[45]. Generally, it has been observed that larger grains improve the CZTS device performance. 

However, as mentioned above, the higher kesterite solar cell efficiencies are obtained for Cu-

poor and Zn-rich composition.   

On the other hand, the band gap energy of the samples after TT3 and TT5, determined 

from transmittance and reflectance measurements, are of 1.74 eV and 1.77 eV 

respectively. These values are in agreement with those reported for Cu2ZnSn1-xGexS4 

single crystals with x =0.1 and 0.5 and Eg = 1.59 and 1.95 eV respectively [5]. The 

highest Eg for the sample annealed at lower temperature may be related to the presence 

of Cu2-yS.  

From the structural point of view, the quality of the as-evaporated samples at 350º C is 

as high as that obtained after annealing at 500-550º C.  The results suggest that the 

crystallization of the kesterite takes already place at 350º C. This fact will allow 

reducing the stages of the growth of quality kesterite material. 

 

Conclusions 

Cu2ZnSn1-xGexS4 thin films with different compositions have been grown by flash 

evaporation followed by annealing in S containing Ar atmosphere. From our 

experimental observations, some aspects are here presented:  

i) The incorporation of Ge into the CZTS lattice is demonstrated by the shift of the 

diffraction peaks and vibration modes towards higher diffraction angles and frequencies 

respectively. New Raman modes at around 348-351 cm
-1

 are observed when Sn is 

gradually replaced by Ge (x = 0.14 – 0.30), which correspond to CZTGS. Moreover, the 

incorporation of Ge is also confirmed by an increased band gap energy when the Ge 

content is higher. 

ii) Ge loss is more significant at higher temperature and more important than the Sn loss 

during the post-sulfurization due to the higher vapour pressure of Ge sulfides than Sn 
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sulfides. The sublimation of GeS/GeS2 is probably the route for Ge loss during the 

annealing. 

iii) The microstructure of the samples depends strongly on the growth conditions of the 

kesterite layer and the composition of the compound.  

iv) The composition of the initial precursor material for flash evaporation and the 

substrate temperature during the evaporation are the main parameters for the formation 

of different phases as determined by X-ray diffraction and Raman spectroscopy. 

v) The sulfurization process can modify the elemental distribution through the whole 

kesterite layer, specially those of Sn, Ge, S and Na. Na diffusion from the glass 

substrate towards the CZTGS surface is observed, similar to the CIGSe solar cells. 

vi)  CZTGS thin films evaporated at a substrate temperature of 350º C present a 

structural quality as high as that after the annealing. Complete crystallization of the 

kesterite took place at Tsubstr = 350º C. 

Quality kesterite thin films have been grown by a single-stage flash evaporation process 

via the addition of Ge, which enables the reduction of Sn loss during evaporation at a 

substrate temperature of 350º C.  
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Figure Captions 

 

Figure 1. GIXRD spectra of as-evaporated samples by using grazing incidence angle of 

4º. JCPDS references of CZTS, CTGS, ZnS and Cu2S are shown for comparison. 

 

Figure 2. GIXRD spectra of as-evaporated samples coming from process Flash 1 after 

different thermal treatments. Grazing incidence angle of 4º is used. JDPDS references of 

CZTS, CZTGS and SnS are also shown for comparison. 

 

Figure 3. Raman spectra of as-evaporated samples coming from process Flash 1 after 

thermal treatment (a) TT1, (b) TT3 and (c) TT4. An excitation wavelength of 514.5 nm 

is used. Lorentzian fits and linear background were carried out to determine the Raman 

peaks position. Th inset of Figure 3.b. shows the Raman spectra of the sample after 

thermal treatment TT3 measured using excitation by light at 325 nm wavelength. The 

inset of Figure 3.c. displays the comparison of the Raman spectra of the different 

samples. 

 

Figure 4. Cross-sectional SEM micrographs of the CZTGS/Mo/glass structure and 

surface morphology of samples coming from process Flash 1 after thermal treatment (a) 

TT1, (b) TT2, (c) TT34, (d) TT4; from process Flash 2 after thermal treatment (e) TT1, 

(f) TT2, (g) TT3, (h) TT5; from process Flash 3 after thermal treatment (i) TT1, (k) TT3 

and (l) TT5. Figure 4.j. shows the EDX elemental mapping of the sample represented in 

(f). Insets of Figure 4.a. – 4.e. and 4.f – 4.l.  show the surface morphology of the films 

using x 5 K and x 50 K amplifications respectively.  

 

Figure 5. GDOES depth profiles of the films coming from process Flash 1 after thermal 

treatments TT1, TT3 and TT4.  

 

Figure 6. (a) GIXRD spectra using grazing incidence angles of 0.25º, 2º and 4º of the 

sample coming from Flash 2 after thermal treatment TT1. (b) Raman spectra measured 

using 325 nm and (c) Area ratio of LO and LO2 or LO3 Raman peaks of the samples 

coming from Flash 2 after different thermal treatments. 
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Figure 7. (a) GIXRD spectra, (b) Raman spectra at 532 nm and (c) 325 nm excitation 

wavelengths of the as-evaporated samples coming from process Flash 3 before and after 

different thermal treatments. In (a) JCPDS references of CZTS, CTGS, ZnS and Cu2S 

are shown for comparison. Insets in (b) and (c) display the Raman spectra in the range 

320-370 cm
-1

. 
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Table I. Composition of the different deposition processes. 

 

 Cu(at%) Zn(at%) Sn(at%) Ge(at%) S(at%) Cu/(Zn+IV) x Zn/IV S/M 

Bulk 21.66 17.03 4.86 5.59 50.87 0.79 0.54 1.63 1.04 
Flash 1 18.68 8.42 10.52 8.81 53.57 0.67 0.46 0.44 1.15 
Flash 2 16.08 16.25 7.20 7.00 53.47 0.53 0.49 1.14 1.15 
Flash 3 23.52 15.78 8.70 2.05 49.94 0.89 0.19 1.47 1.00 

Note: Flash 1: Tsubstrate = 100º C; Flash 2: Tsubstrate = 100º C, 50% extra of ZnS; Flash 3: Tsubstrate = 
350º C, 50% extra of ZnS. 

M = Cu + Zn + Sn + Ge; IV = Sn + Ge. 
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Table II. Thermal treatments of the as-evaporated thin films. All the treatments were carried 

out by using a heating-rate = 20º C/min and at maximum temperature of 550º C with the 

exception of TT5 performed at 500º C 

 Cu(at%) Zn(at%) Sn(at%) Ge(at%) S(at%) Cu/(Zn+IV) x Zn/IV S/M 

Flash 1 (Tsubstrate = 100º C) 
TT1 22.50 10.16 12.64 2.10 52.60 0.90 0.14 0.69 1.11 
TT2 21.90 10.44 11.70 2.38 53.57 0.89 0.17 0.74 1.15 
TT3 22.23 10.15 11.33 3.04 53.25 0.91 0.21 0.71 1.14 
TT4 22.60 10.43 11.81 1.91 53.26 0.94 0.14 0.76 1.14 

Flash 2 (Tsubstrate = 100º C, 50 % extra of ZnS) 
TT1 18.94 11.74 7.94 2.52 52.86 0.67 0.24 1.70 1.12 
TT2 19.10 16.89 8.11 3.39 52.52 0.67 0.29 1.47 1.11 
TT3 19.33 16.07 8.17 3.33 53.10 0.70 0.29 1.40 1.13 
TT5 18.67 16.98 7.75 4.53 52.07 0.64 0.37 1.38 1.09 

Flash 3 (Tsubstrate = 350º C, 50 % extra of ZnS) 
TT1 23.05 14.57 9.89 2.11 50.38 0.87 0.18 1.21 1.02 
TT3 20.78 12.47 9.83 3.41 53.51 0.81 0.26 0.94 1.15 

Note: TT1: P = 9.5 x 104 Pa, t = 30 min; TT2: P = 9.5 x 104 Pa, t = 60 min; TT3: P = 4.5 x 104 Pa, t = 

30 min; TT4: P = 4.5 x 104 Pa, t = 60 min; TT5: P = 9.5 x 104 Pa, t = 30 min, T = 500º C. 
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Figure 1 
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Figure 2 
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Figure 3 

 

 

 



26 

 

Figure 4 
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Figure 5 
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Figure 6a 
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Figure 6b 
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Figure 6c 
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Figure 7a 
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Figure 7b 
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Figure 7c 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 




