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Abstract

We study statistical copolymerization effects on the upper critical solution temperature (CST)

of generic homopolymers by means of coarse-grained Langevin dynamics computer simulations and

mean-field theory. Our systematic investigation reveals that the CST can change monotonically

or non-monotonically with copolymerization, as observed in experimental studies, depending on

the degree of non-additivity of the monomer (A-B) cross-interactions. The simulation findings

are confirmed and qualitatively explained by a combination of a two-component Flory-de Gennes

model for polymer collapse and a simple thermodynamic expansion approach. Our findings provide

some rationale behind the effects of copolymerization and may be helpful for tuning CST behavior

of polymers in soft material design.
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I. INTRODUCTION

Thermoresponsive polymers can strongly respond to chemical and physical stimuli in their

environment and have been therefore heavily investigated recently for their use as ’smart’

and adaptable functional materials.1 If the stimulus is strong enough or the system is close to

its critical solution temperature (CST), a volume phase transition of the polymer is triggered

that significantly alters all physicochemical properties of the material. For this reason, the

application of thermosensitive polymers is explored, for example, in the field of sensors,2–4

separation and filtration systems,5–8 as well as drug carriers and tissue engineering.9–11 It is

therefore of high interest to be able to tailor the CST according to the needs of the desired

application.

It is well known that the CST can be tuned by statistical copolymerization, i.e., by re-

placing monomers of a homopolymer by a second monomer type in a random, or statistically

repeated fashion. The CST has been observed then to depend either monotonically12–20 or

non-monotonically15,16,18,19 on the degree of copolymerization. In the typical scenario of a

lower CST (LCST) in aqueous solvents, monotonic trends are often qualitatively explained

by the degree of hydrophobicity/philicity of the copolymerizing monomers.13 Copolymeriz-

ing with hydrophobic monomers leads to a lower LCST17 because the overall hydrophobic

attraction increases and leads to a collapse already at lower temperature, while incorporat-

ing hydrophilic monomers analogously increases the LCST.12,14 However, this explanation

fails to describe non-monotonic trends in the CST behavior.

The typical theoretical approach to describe critical solution temperatures of polymer

systems essentially revolves around extensions of Flory-Huggins (FH) lattice theory,21,22 for

instance, as frequently applied to copolymer blends.23–27 Noteworthy is here the work of Paul

and Barlow25 who demonstrated that the existence of non-monotonic copolymer miscibility

(’miscibility windows’) sensitively depends on the degree of additivity of the monomeric

interaction energies between the components. In another line of work directly applied to the

LCST of a thermosensitive copolymer in water, Kojima and Tanaka28 theoretically explained

the nonlinear depression of the LCST of thermosensitive polymers by a combination of FH

theory and a microscopic level approach based on cooperative hydration effects.

In a related but different view, the CST for a one-component polymer system in solvent

can also be regarded as being signified by a collapse transition (or coil-to-globule) of a long,
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single polymer.29,30 This perspective is taken in this work. In contrast to the FH lattice

theory, single polymer collapse is typically described within a mean-field Flory-de Gennes

approach.21,22,31 In the classical homopolymer case, the free energy F (R) of a chain with

N monomers is the sum of ideal chain entropy ∼ R2/Nb2 and the mean-field monomer

interactions expressed by a virial expansion in monomer density ∼ N/R3, with R describing

the mean polymer size and b the segment length. On the simplest level, the free energy

reads22,31

F (R) ∼ R2/Nb2 +B2N
2/R3 +B3N

3/R6, (1)

where B2 and B3 are the second and third virial coefficients of the monomer gas, respectively.

However, this one-component approach seems not be adequate to describe the effects of

copolymerization on polymer size as effective virial coefficients are used instead of those

distinguishing between the monomer self- and cross-interactions. Supposedly, as in the FH

lattice models for polymer blends, therefore both polymer components need to be considered

with individual effective pair interactions. In contrast to FH approach to polymer blends,

these interactions are ’effective’ for solvated copolymers in the sense that the solvent degrees

of freedom are integrated out and their effects are included in the effective potentials.

In the present work, we explore copolymerization effects on the collapse transition of

a single polymer by coarse-grained, implicit-solvent Langevin dynamics computer simula-

tions and a two-component Flory-de Gennes Model. For this, we use the most generic

polymer model in which the polymer is modeled as a freely jointed chain where individual

monomers are interacting via a Lennard-Jones potential. The degree of copolymerization

of a homopolymer with monomer of type A is then expressed in percentage of statistically

placed monomers of type B. Since we employ temperature-independent effective pair inter-

actions between the monomers, we thus focus on the behavior of the upper CST (UCST).

We first demonstrate that both simulation and Flory theory can reproduce all experimental

trends. A thermodynamic expansion approach of the transition (Flory) free energy is em-

ployed to interpret the changes of the UCST upon copolymerization based on the dominating

monomer pair interactions. The non-monotonic behavior of the UCST can then be traced

back to non-additive cross-interactions between the monomers, resembling the behavior of

miscibility windows in polymer blends.25 This picture is consistent with experimental work

on the LCST of thermosensitive polymers, where preferential hydrogen bonding between
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the unlike NIPAM and N,N-diethylacrylamide (DEAAM) monomers is reported, and it was

pointed out that this is an intramolecular phenomenon, hardly observed for homopolymeric

mixtures.19

We note that our approaches and interpretation should be equally valid, however, for

LCST behavior, at least on a qualitative level. In this case, temperature-dependent effective

pair interactions have to be introduced in the simulations. Hydrophobic interactions lead

to more attractive pair potentials with increasing temperature,32–34 reflected by B2-values

that decrease with rising temperature.35 These effects will drive collapse in both simulation

and Flory theory for increasing temperature as characteristic for LCST behavior. If such a

pair potential picture is sufficient for a quantitative treatment of the thermodynamics of the

collapse transition at the LCST, however, is yet unclear and needs further consideration in

future work.

II. COARSE-GRAINED LANGEVIN COMPUTER SIMULATIONS

A. Simulation model and setup

Our simulations are based on a generic freely jointed chain model,36 where copolymers

composed of two different monomer species, A and B, are investigated. The total number

of monomers is constant and given by N = NA + NB = 100, where NA and NB refer to

the number of monomers of species A and B, respectively. The degree of copolymerization

χ = NB/N is given in percentage of monomer B; hence χ = 0 corresponds to a homopolymer

with 0% of monomer B (100% of monomer A), and χ = 1 corresponds to a homopolymer with

100% of monomer B. Our statistical copolymerization is always performed in a periodically

repeated fashion, that is, all B monomers are placed in equidistant places along the polymer.

A value χ = 0.1, for instance, thus corresponds to a (AAAAAAAAAB)10 repeat, while

χ = 0.5 corresponds to the alternating (AB)50 repeat. All monomers interact through the

Lennard-Jones (LJ) potential

Vij(r) = 4εij[(σij/r)
12 − (σij/r)

6], (2)

where εij and σij set the energy scale and length scale, respectively, and i, j = A,B. The

LJ parameters used for the investigated copolymers are summarized in Tables I and II.

In the former table, the cross interaction obeys the Lorentz-Berthelot mixing rule, which
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states that εAB =
√
εAAεBB and σAB = (σAA + σBB)/2 holds, that is, the interactions are

additive. In the second set of polymer systems, the additivity is violated and we employ

cross energies εAB 6=
√
εAAεBB that are either smaller or larger than the geometrical mean,

while holding the interaction lengths σAA = σBB = σAB fixed. Chemically, the loosening

of the additivity restriction could correspond to A and B monomers that interact similarly

among themselves, e.g., repulsive or only weakly attractive, but more strongly attract the

other type. An example could be donor- and acceptor molecules that preferentially form

hydrogen bonds between each other but effectively repel the same of its kind, as realized for

N-isopropylacrylamide (NIPAM) and N,N-diethylacrylamide (DEAAM).19

The stochastic Langevin simulations are performed in a NVT ensemble in a cubic simula-

tion box with side lengths of Lx = Ly = Lz = 30 nm. The GROMACS simulation package37

is used to integrate Langevin’s equation of motion. A time step of 10 fs is used. The center

of mass translation and rotation is removed every tenth step. The bond length between

neighboring monomers is set to b = 0.38 nm, and is constrained by the LINCS algorithm

as implemented in GROMACS. A friction constant of ξ = 0.5 ps−1 is employed. Moreover,

the LJ-interaction between two neighboring monomers within the chain is excluded, and

the LJ-interactions between all other monomers is calculated within a cut-off distance of

1.2 nm. All simulations are performed with an implicit solvent. The degree of copolymer-

ization of initially χ = 0 (A homopolymer) is explored up to χ = 1 (B homopolymer) in 0.1

increments. For every single χ, a temperature range from 75 to 675 K (in steps of 25 K) is

investigated. Every system has been simulated for 500 ns after 50 ns of equilibration.

B. Definition of the critical solution temperature

It is important to emphasize that a first-order CST is only defined for polymer solutions in

the thermodynamic limit38,39 for polymers with internal degrees of freedom,40 and therefore

it is difficult to obtain the CST from our finite-size simulation using a minimalistic polymer

model. However, we can define and calculate a critical transition temperature, Tc(χ), which

is strongly related but not equal to the CST, to discuss the qualitative trends with changing

copolymerization χ. For this please consider Fig. 1, where the population probability distri-

bution P (Rg) of the radius of gyration Rg is shown for a homopolymer (χ = 0) at different

temperatures T . Obviously, Rg is a function of temperature T (as well as a function of the
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TABLE I. Summary of the investigated additive monomeric interactions. Monomer A and B inter-

act via a Lennard-Jones potential employing the Lorentz-Berthelot mixing rules εAB =
√
εAAεBB

and σAB = (σAA + σBB)/2. The unit of εij is given in [kJ/mol] and the unit of σij in [nm].

εAA σAA εBB σBB

1.00 0.30 0.50 0.30

1.00 0.30 1.50 0.30

1.00 0.30 0.50 0.45

1.00 0.30 1.00 0.45

1.00 0.30 1.50 0.45

TABLE II. Summary of the investigated non-additive monomeric interactions. Here, the interaction

cross parameter εAB is not given via the Lorentz-Berthelot mixing rule. A-A and B-B interactions

are the same. The unit of εij is given in [kJ/mol] and for σ in [nm].

εAA ≡ εBB σAA ≡ σBB εAB σAB

1.50 0.30 1.00 0.30

1.50 0.45 1.00 0.45

1.50 0.30 1.25 0.30

1.50 0.45 1.25 0.45

1.50 0.30 1.75 0.30

1.50 0.45 1.75 0.45

1.50 0.30 2.00 0.30

1.50 0.45 2.00 0.45

degree of copolymerization χ as we show later), thus P = P (Rg;T, χ). It can be clearly

seen that the polymer favors the extended (coil like) state for high temperatures, which

is a clear sign for an upper CST (UCST)-like behavior. This behavior is found to be a

universal feature of all polymers defined in Table I and Table II as we employ temperature-

independent pair potentials. As discussed in literature, e.g., on thermosensitive polymer

systems,35 an explicitly temperature-dependent effective pair potential is needed (typically
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originating from hydrophobic interactions32–35) to obtain a lower CST (LCST) behavior.

We can now define the critical temperature Tc(χ) as the temperature of the state at

which the probability to find the copolymer in a collapsed globule (g) state Pg is equal to

the probability to find the copolymer in a swollen coil (c) state Pc, hence Pg = Pc at T = Tc.

We define the population probabilities by averages of P (Rg), via

Pg =

∫
Rg≤Rcrit

g

P (Rg)dRg

Pc =

∫
Rg>Rcrit

g

P (Rg)dRg, (3)

where Rcrit
g is an arbitrarily (but motivated) chosen threshold value. A reasonable choice

for Rcrit
g is the radius of gyration of an ideal polymer (i.e., describing the chain size in a

θ-solvent) which is given by
√
Nb/
√

6. Hence, to explore transitions in our simulations, we

set Rcrit
g = Rideal

g =
√
Nb/
√

6 = 1.55 nm. We note that the qualitative trends of Tc(χ) are

quite insensitive to the exact value of Rcrit
g and even remain valid if the distribution of the

end-to-end extension of the polymer is evaluated as a measure of polymer size.

FIG. 1. Probability distribution P (Rg) of the polymer size in terms of the radius of gyration Rg for

different temperatures T (see legend) calculated in the coarse-grained simulations. The degree of

copolymerization is χ = 0, and the LJ interaction parameters are σAA = 0.3 nm, εAA = 1 kJ/mol.

The threshold size that separates collapsed and swollen states (see the inset illustrations) is Rcrit
g =

1.55 nm, depicted by the vertical dashed line.
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III. MEAN-FIELD AND THERMODYNAMIC DESCRIPTIONS OF THE CST

In this section a theoretical mean-field approach for calculating the critical temperature

Tc(χ) is presented based on a two-component Flory-de Gennes model.21,22,41 Subsequently,

we discuss a recently introduced thermodynamic expansion approach of the transition free

energy42,43 that relates copolymerization-induced free energy changes to small changes of

the CST and serves for some interpretation of the simulation data.

A. Two-component Flory-de Gennes Model

In the mean-field Flory-de Gennes picture the monomer-monomer interactions are de-

scribed by second and third-order virial coefficients. In contrast to the one-component

approach, cf. eq (1), the copolymerization degrees of freedom are explicitly considered as

the second component, which implies that we define three independent second virial coeffi-

cients BAA
2 , BBB

2 , and BAB
2 . These virial coefficients describe the monomer self-interactions

(AA and BB) and the monomer cross-interactions (AB), respectively. These are in principle

effective interactions as solvent degrees of freedom are integrated out. In our comparison

to implicit-solvent computer simulations, these are given by the LJ pair potential. The re-

sulting expression for the mean-field (Helmholtz) free energy is strongly related to the one

recently introduced describing cosolute-induced polymer swelling and collapse,41 and reads

βFmf(R) =
3R2

2Nb2
+
π2Nb2

12R2
+ V

∑
i,j=A,B

ρiρjB
ij
2

+
V

2

∑
i,j,k=A,B

ρiρjρkB
ijk
3 , (4)

where β = 1/(kBT ) is the inverse thermal energy and we used the index ’mf’ as subscript to

the free energy to signify the mean-field character of this treatment. The second term rep-

resents confinement entropy of the polymer in the collapse state.31 As usual in Flory theory,

the end-to-end distance R serves to represent the mean size of the polymer (irrespective if it

is coil or globule) in an equilibrium state, and with V = 4πR3/3 we approximate the spheri-

cal volume occupied by the polymer that has to be considered configurationally averaged in

the mean-field approach. The number density ρi = Ni/V is then mean monomer density of

monomer species i. The densities are directly related to the copolymerization parameter by

ρA = ρN(1−χ) and ρB = ρNχ, where ρN = N/V is the total monomer density in the sphere
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occupied on average by the polymer. Bij
2 is the second and Bijk

3 the third virial coefficient

for the respective monomer combinations. Due to the mean-field nature of this treatment it

holds for both statistically repeated and random copolymerization as long as the polymer is

long enough, that is, N is much larger than a typical repeat unit or the correlation number

between copolymerizing monomers.

The second virial coefficient is explicitly defined via

Bij
2 (T ) = −1

2

∫
d3r [exp(−βVij(r))− 1] , (5)

where Vij(r) represents the LJ potential. For B2 > 0 the pair interaction is said to be

repulsive and for B2 < 0 attractive. Due to the strong excluded-volume repulsion for small

monomeric separations, there is a turnover form attractive to repulsive for high enough

temperatures, as shown in Fig. 2 (top), where we plot the B2 coeffcient for the LJ potential

versus T for various values of the LJ ε parameter. The third virial coefficient Bijk
3 , also

calculated explicitly as shown in Fig. 2 (bottom), is positive for nearly all temperatures. It

actually turns out that for our purposes the action of 3-body effects is well approximated

by the virial coefficient for hard spheres for all temperatures. It is given by Bijk
3 = 2σ6 (see

the dotted line in Fig. 2 bottom), where the LJ-size σ is the approximate excluded-volume

radius for the corresponding monomer pair potential.

The equilibrium radius Req in the Flory theory is obtained by minimizing eq. (4) with

respect to the polymer size R for a fixed T and χ. The CST in our definition is calculated by

finding the temperature at which the probabilities of being in the globular and coil states,

Pg =

∫
R≤Rcrit

e−βFmf(R)dR

Pc =

∫
R≥Rcrit

e−βFmf(R)dR (6)

respectively, are equal. This definition is analogous to eq. (3) using P (R) = exp(−βFmf(R)).

For small perturbations by copolymerization, we can utilize eq. (4) to derive a simple

equation for the change of the transition temperature, ∆Tc, in the next section that allows

an interpretation of the dominating factors that change Tc with χ. As a prerequisite, we

Taylor-expand eq. (4) in χ around the reference configuration at χ = 0. In first order in χ,
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FIG. 2. (top) Second virial coefficient B2 of the LJ interaction as a function of temperature T with

LJ parameter ε as shown in the legend. (bottom) Third virial coefficient B3 of the LJ interactions

as a function of T with LJ parameters shown in the legend. The dotted line depicts the hard sphere

case approximation with Bijk
3 = 2σ6. Units of ε are in [kJ/mol], and σ is the LJ size parameter.

we obtain per monomer

1

N

∂Fmf

∂χ

∣∣∣∣
χ=0

= 2kBTρN
(
BAB

2 −BAA
2

)
+

3

2
kBTρ

2
N

(
BAAB

3 −BAAA
3

)
, (7)

that is, changes in the free energy for small perturbations originate from differences in the

virial coefficients between the homopolymeric A-state and the first order perturbed state.

Analysis of the simulations data actually shows that the B2-contributions in the collapsed

state are dominating in most of our examples, as the density of the collapsed globule (g)

state, ρg � ρc, is significantly higher than the one of the swollen coil (c) state, and B3

contributions are small or cancel each other for small perturbations. The major changes

in the free energy in eq. (7) from perturbing by a small copolymerization χ � 1 are thus

essentially given by pair energies in the collapsed state, expressed by

∆Fmf ≈ 2kBTNρg
(
BAB

2 −BAA
2

)
χ. (8)

Hence, the crucial quantity which determines the slope of the linear free energy change is

the difference in interactions provided by BAB
2 −BAA

2 . This is similar to the effective Flory

interaction energy parameter in Flory-Huggins lattice approaches to polymer mixtures.21–27

However, it is more general as it includes also the effects of varying excluded-volume inter-

actions and van der Waals attraction, which is not so easy to consider in lattice models. In

the following, we combine this linear analysis with an insightful thermodynamic definition
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of the change in CST for small temperature changes (∆Tc � Tc) that serves for further

interpretation of the simulation data by the Flory approach.

B. Thermodynamic Expansion of the Two-State Free Energy

The following approach is based on a previously introduced thermodynamic expansion

model to describe charge or cosolute effects on the CST.42,43 Here, it is assumed that the

copolymer transition at the CST can be understood as a transition from a dense collapsed

globule to an expanded, coil-like state in a bimodal free energy landscape30,38,40 as a function

of the copolymer specific volume. At the transition state, Tc is defined as the state where

Pg = Pc holds. The transition free energy between the two states is then

∆F (Tc, χ) = Fg − Fc = −kBT ln (Pg/Pc) (9)

and thus vanishes at Tc(χ), that is, ∆F (Tc) = 0. In order to relate how a change of the

transition free energy, defined as ∆∆F = ∆F (Tc, χ > 0)−∆F (Tc, 0), relates to the change

of the CST, ∆Tc(χ), we perform a Taylor-expansion of the transition free energy ∆F with

respect to the temperature T and copolymerization χ around a thermodynamic reference

state up to first order. A reasonable reference state is T = Tc at χ = 0. The expansion then

reads

∆F (Tc + ∆Tc, χ) ≈ ∆F (Tc, 0) +

(
∂∆F (T, χ)

∂T

)
Tc,0

∆Tc

+

(
∂∆F (T, χ)

∂χ

)
Tc,0

χ+ ... (10)

Here, ∆F (Tc, 0) = 0 for the reference state. Furthermore, we identify the transition en-

tropy ∆S0 = −(∂∆F/∂T )Tc,0 at the reference state. Note that for our relatively simple

(implcit solvent) system ∆S0 = Sc − Ss < 0 is negative as the swollen state has a higher

configurational entropy than the collapsed state. The equation is then solved for ∆Tc with

the condition that the change in critical temperature must satisfy ∆F (Tc + ∆Tc, χ) = 0.

Considering this, identifying (∂∆F/∂χ)Tc,0χ = ∆∆F (χ), and applying the new notation,

we obtain

∆Tc(χ) =
∆∆F (χ)

∆S0

'
2kBTNρg

(
BAB

2 −BAA
2

)
χ

∆S0

, (11)
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for small perturbations χ � 1. Eq. (11) therefore provides explicitly the change of the

critical temperature ∆Tc(χ) upon small copolymerization χ. Within the linear analysis of

the Flory theory above, we see that the perturbation ∆∆Fmf(T, χ) is essentially given by the

pair interaction differences between A-A and A-B monomers in the globular state via eq. (8).

The linear temperature change ∆Tc(χ) is described by this free energy change divided by

the transition entropy at the reference state. For larger perturbations, non-linear behavior

of ∆Tc(χ) can be generally expected as both ∆∆F (T, χ) and the transition entropy will

depend nonlinearly on χ.

IV. RESULTS

A. T and χ-dependence of polymer size

Let us first discuss the swelling and ’transition’ behavior of our investigated homopoly-

mers (χ = 0) in dependence of the temperature T . In the Flory theory the equilibrium size

in terms of the end-to-end distance R is obtained by minimizing the free energy F (R;T ) for

a fixed T (cf. Section III A). We compare those results to the end-to-end distance calculated

in the simulations in Fig. 3, where we plot them scaled by their respective ideal value Rideal

as a function of T . All results show clearly that the polymers favor the extended (coil-like)

state for high T , as expected for an UCST behavior. Both, simulation and theory results

yield intermediate steep slopes of the resulting curves that indicate some higher order, con-

tinuous transition between collapsed and swollen states. For instance, the parameter set

σ = 0.3 nm and ε = 1.0 kJ/mol shows a transition-like behavior between 300 and 400 K in

the Flory theory (green dashed line). We also see that the transition region generally differs

between simulation and Flory theory, pointing to some quantitative shortcomings of the

Flory theory. However, the overall simulation behavior is surprisingly very well captured,

considering the simplicity and mean-field character of the Flory approach, and we will fo-

cus on qualitative trends only. We note that analogous curves for the T -dependence of the

radius of gyration Rg(T ) extracted from simulations show the same qualitative behavior, in

particular the same transition region (not shown).

In Fig. 4 we present theory and simulation data for the polymer size R(χ) scaled by the

respective reference size R(0) as a function of copolymerization χ and a fixed temperature
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FIG. 3. Scaled end-to-end distance R/Rideal as a function of temperature T for various homopoly-

mers (χ = 0) and LJ parameters as in the legend. Dashed lines are obtained from minimizing the

Flory free energy eq. (4), while symbols guided by solid lines depict simulation results.

T = 300 K. In the top panel, we plot results for the Lorentz-Berthelot systems summarized

in Table I. We observe that the polymer size in these additive systems changes monotonically

with χ. As expected, copolymerization with monomers B that are more (less) attractive than

A lead to more collapsed (more swollen) states of the polymer in the simulation. The theory

follows these trends, apart from the set σBB = 0.45 nm and εBB = 1.0 kJ/mol, where the

simulation predicts shrinking while theory predicts swelling. In that special case, A and B

have the same interaction depth (εij = 1.0 kJ/mol) but different monomer sizes. Increasing

the monomer size has two effects: increasing the excluded volume repulsion, while at the

same time increasing the van der Waals attraction. Interestingly, the balance between those

seems subtle enough to not be accurately captured by our mean-field Flory approach that

is based only on an approximative virial expansion. (Note that for the LJ potential the

reduced second virial coefficient B2/σ
3 does depend only on the value of ε, not that of σ, cf.

also Fig. 2.)

In contrast to the additive models, the non-additive models, shown in the bottom panel

of Fig. 4 for a temperature T = 500 K, exhibit a non-monotonical behavior for R(χ).

Here, we intentionally chose the two limiting cases χ = 0 and χ = 1 to possess the same

interactions (and thus same Tc) to clearly demonstrate the effect. Since the cross interactions

are very different than the A-A and B-B interactions, copolymerization must lead to swelling

(shrinking) for more repulsive (more attractive) cross interactions. The strength of the cross-

interaction term εAB is maximal for χ = 0.5, and hence R(χ)/R(0) attains an extremum at

this value. Both theory and simulations qualitatively agree for all parameter sets.
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FIG. 4. Scaled end-to-end distance R(χ)/R(0) as a function of copolymerization χ for different

interaction parameters, see legends. Dashed lines are obtained from minimizing the Flory free

energy, while symbols depict the simulation results (with solid lines guiding the eye). (top) Additive

Lorentz-Berthelot mixing rules apply with σAA = 0.3 nm, εAA = 1 kJ/mol, at T = 300 K, see

Table I. (bottom) Non-additive monomer cross-interactions apply with σAA = σBB = σAB =

0.45 nm at T = 500 K and εAA = εBB = 1.50 kJ/mol, see Table II.

B. Critical Temperature

Let us now focus our discussion on the change of the critical temperature Tc(χ) with

copolymerization χ. In all cases we compare the simulations directly to the Flory theory

and plot the results scaled by the respective reference value Tc(0) (that is, of a homopolymer

of type A) for a better comparison of the qualitative trends with χ. In Fig. 5 we present

the results for the additive systems. The results both for theory and simulations show that

copolymerizing with more attractive monomers (|εBB| > |εAA|) increases the critical temper-

ature (UCST) and vice versa for |εBB| < |εAA|. This is the intuitive behavior since polymers

favor the collapsed (swollen) state for highly attractive (repulsive) monomer-monomer in-

teractions, as discussed in the previous section (cf. Fig. 4). The behavior can be understood

from the expansions eq. (8) and eq. (11). Let us focus for now only at the curves with positive

slope in the top panel of Fig. 5 where the B-B interaction εBB = 1.5 kJ/mol is larger than

the εAA = 1.0 kJ/mol of the A-A interaction. The difference in virial coefficients BAB
2 −BAA

2

is negative for a larger B-B attraction because then also the A-B cross interaction is more

attractive and BAB
2 < BAA

2 . Since the entropy for the transition to the collapsed state is

negative, ∆S0 < 0, Tc(χ) increases with copolymerization. Analogously, Tc(χ) decreases for

the weaker B-B attraction with εBB = 0.5 kJ/mol. The same reasoning holds for all other

14



curves with additive interaction parameters.

An interesting behavior is again seen for B-B interaction set σBB = 0.45 nm and εBB =

1.0 kJ/mol in Fig. 5 (bottom), where only the LJ size σBB is changed. In this case, the

behavior of the polymer size versus χ in Fig. 4 gave contradicting behavior, because appar-

ently the subtle balance between the increase of both excluded-volume repulsion and van

der Waals attraction with increasing σBB is not well described with our Flory approach.

Analogously, Tc(χ) shows opposite behavior in theory and simulation, where, consistent

with the swelling behavior, the simulation shows a slight increase of Tc and the theory a

slight decrease. However, the changes in Tc(χ) in the full χ range are relatively small on

the shown scale, indicating that the repulsive and attractive effects almost cancel out in the

Tc(χ) behavior for increasing σBB in this special case.
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FIG. 5. Critical temperature Tc(χ)/Tc(0) as a function of copolymerization χ for the additive

interaction sets, cf. Table I. The symbols are simulation results with the solid lines guiding the

eyes, while the dashed lines are from Flory theory. Hompolymer A has interactions σAA = 0.3 nm

and εAA = 1 kJ/mol and the B-B interactions are according to the legends.

In Fig. 6 the results for the non-additive systems prepared according to Table II are

presented. As expected from Fig. 4, a nonlinear, strongly non-monotonic dependence of Tc

on χ is observed. This behavior can be understood again by the difference in the virial

coeffcients BAB
2 − BAA

2 : since BAA
2 = BBB

2 now, for a more attractive BAB
2 < BAA

2 = BBB
2

(and the negative transition entropy), Tc(χ) must increase symmetrically with the same

slope on both sides, for increasing χ at χ = 0, and for decreasing χ at χ = 1. The opposite

behavior is seen for a more repulsive BAB
2 > BAA

2 = BBB
2 . The critical temperature Tc is

extremal for χ = 50% , where a maximum of Tc is obtained for εAB > εAA = εBB and a

minimum for εAB < εAA = εBB. The maximum or minimum themselves can be increased
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or decreased by tuning εAB, respectively. We note that similar trends can be expected

by introducing non-additivity by σAB 6= (σAA + σBB)/2 as long as the resulting change in

BAB
2 versus BAA

2 and BBB
2 is significant. An example of non-monotonic behavior has been

indeed observed experimentally15,19 where preferential hydrogen bonding between NIPAM

and N,N-diethylacrylamide (DEAAM) monomers is reported. We note again that for a

polymer exhibiting a LCST all trends are expected to be inverse.
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FIG. 6. Critical temperature Tc(χ)/Tc(0) as a function of copolymerization χ for the non-additive

interaction sets, cf. Table II. The symbols are simulation results with the solid lines guiding the eyes,

while the dashed lines are from Flory theory. The cross interactions are according to the legend,

while for the equal monomers it is εAA = εBB = 1.5 kJ/mol and σAA = σBB = σAB = 0.3 nm, in

the top figure and σAA = σBB = σAB = 0.45 nm, in the bottom figure.

V. SUMMARY AND CONCLUDING REMARKS

In summary, we have explored how the critical temperature Tc (CST) changes with sta-

tistical copolymerization χ by exploring the size behavior of a single generic polymer model

in implicit-solvent computer simulations. A two-component Flory-de Gennes model could

describe all trends observed in the simulations, in particular both the monotonic and non-

monotonic behavior of Tc(χ), that we have demonstrated to explicitly reflect the degree

of non-additivity of the monomeric cross interactions. The discussed trends resemble the

miscibility behavior in copolymer blends25 and are consistent with experimental LCST be-

havior of thermosensitive polymers. For linear and uncharged copolymers experiments have

reported both, a monotonic14–16,18–20 as well as a non-monotonic15,16,18,19 dependency of Tc

on the degree of copolymerization χ. We demonstrated that the non-monotonicity can be
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explained by the non-additive contributions from the preferential attraction between NI-

PAM and N,N-diethylacrylamide (DEAAM) monomers, where unlike acceptor and donor

pairs attract by H-bonding mechanisms. Our effective mean-field treatment is thus comple-

mentary to the more microscopic explanation of these effects put forward recently on the

basis of cooperative hydration effects.28

Obviously, there are many limitations of our work that could be addressed in future. In

the presented work, for instance, a temperature-independent Lennard-Jones potential has

been used. However, more realistic effective potentials should include solvent and maybe

even cosolvent effects. To directly connect to LCST experiments, it would be necessary

to introduce explicitly temperature-dependent pair potentials32–34 and virial coefficients.35

Other effects not considered in our model are for example the sequential arrangement of

the co-monomers, i.e., the composition effect44 or electrostatic charging effects.45 For the

latter, a simple Donnan-like model was devised by us recently where experimental LCST

changes by charge fractionation of the polymer and the addition of salt could be described

in a satisfactory fashion.42
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