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Abstract 

 We report experimental and theoretical studies of magnetic and related properties of 

ErRuSi compound. Various experimental techniques such as neutron diffraction, magnetization, 

magneto-thermal, magneto-transport, optical have been used to study the compound. Neutron 

diffraction shows ferromagnetic ordering at low temperatures with moments aligned in ab plane. 

Neutron diffraction and magnetization data show reduction in magnetic moment, which may be 

due to crystalline electric field effects at low temperatures. The compound shows good 

magnetocaloric properties with a low field adiabatic temperature change of 4.7 K, which is larger 

than that of many proposed materials for magnetic refrigeration at low temperatures. 

Magnetoresistance shows large negative value at 8 K, which changes its sign and increases in 

magnitude, with decrease in temperature and/or increase in field. The positive MR at low 

temperatures attributed to the Lorentz force effect. The electronic structure calculations 

accounting for electronic correlations of the 4f electrons of Er reproduces the ferromagnetic 

ordering and effective magnetic moment. Interband transitions between the Ru and Er d states 

and Er f states in one spin projection are found to form the main features of the measured optical 

conductivity in this compound. 
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1. Introduction 

In rare earth intermetallic compounds, RTX (R= rare earth, T=transition metal and X= p-

block elements) series is an extensively studied series of compounds owing to its fascinating 

physical properties [1]. These compounds also show good hydrogen storage capacity, large 

magnetocaloric effect (MCE) and large magnetoresistance (MR), which make these compounds 

suitable for potential applications. It has been observed that except Mn, no other transition 

element in RTX contributes significant moment. Therefore, in such compounds, only rare earth 

ion contributes to the net moment. Many compounds of this series are found to show interesting 

magnetic and electrical properties [1]. One of the interesting series in the RTX family is RRuSi, 

where Ru is the 4d element. It has been found that magnetic properties of RRuSi series vary 

considerably as R is varied. Welter et al. [2] performed neutron diffraction and magnetic 

measurements on some RRuSi (R=La-Nd, Sm, Gd) compounds. The authors observed that all 

these compounds crystallize in CeFeSi type tetragonal structure (space group: P4nmm). The 

report [2] shows that LaRuSi is Pauli paramagnet, CeRuSi is Curie-Weiss paramagnetic down to 

4.2 K, PrRuSi and NdRuSi are antiferromagnets, while SmRuSi and GdRuSi are ferromagnets. 

Focusing on some of the compounds of this series, recently some of us have studied magnetic 

and magnetocaloric properties of ErRuSi compound [3]. It has been observed that this compound 

crystallizes in the orthorhombic crystal structure with space group Pnma. Magnetic properties 

show that it orders ferromagnetically below 8 K [3]. The observed effective magnetic moment 

(µeff.=9.48 µB/Er
3+

) and the moment at the lowest measured temperature for the highest measured 

magnetic field (Msat.=6.94 µB/f.u.) estimated from the magnetization data (µth.=9.59 µB/Er
3+

, gJ= 

9 µB/Er
3+

) are found to be smaller than the theoretical values (the case is similar to NdRuSi). 

This was earlier attributed to a small Ru moment that may couple antiferrromgnetically with Er 

moment [3]. To confirm these predictions, neutron diffraction measurements were needed. The 

compound was found to show giant magnetocaloric effect (GMCE) along with negligible 

thermal and field hysteresis [3]. Generally it has been observed that the compound with large 

MCE shows large MR as well [4]. It is attributed to the change in magnetic structure on the 

application of field, which affects both magnetocaloric and magneto-transport properties. 

  

 In this paper we have studied ErRuSi compound in detail by means of various 

experimental probes such as neutron diffraction, magnetization, optical, magneto-thermal and 



magneto-transport measurements. The electronic band structure calculations were also performed 

to support the experimental results.  

 

2. Experimental and computational details 

 

 The polycrystalline sample of ErRuSi was synthesized by the arc melting method taking 

stoichiometric amount of its constituent elements. The melted sample was sealed in 

evacuated quartz tube and annealed for 7 days at 800 ºC followed by furnace cooling. The 

magnetization, M (T, H), and the heat capacity C (T, H) were carried out on Physical 

Property Measurement System (Quantum Design). The resistivity/magnetoresistance 

measurements were performed in homemade setup along with 8-Tesla Oxford 

superconducting magnet system in longitudinal geometry. For neutron diffraction 

measurements 6 g of sample was prepared and crushed to make fine powder. The neutron 

diffraction measurements at different temperatures and zero field have been carried out on E6 

diffractometer at Helmholtz Zentrum Berlin, Germany.  

 

The electronic structure of ErRuSi was obtained within the LSDA+U method [5] that 

combines the local spin density approximation (LSDA) and Hubbard U correction of 

electronic correlations in the 4f shell of erbium. The TB-LMTO-ASA package [6] was used; 

it is based on the linear muffin-tin orbitals with atomic sphere and tight binding 

approximations. The following muffin-tin orbitals were included into the orbital basis set: 

(6s, 6p, 5d, 4f) states of Ho, (5s, 5p, 4d, 4f) states of Rh, and (3s, 3p, 3d) states of Si. Radii of 

the muffin-tin orbitals were R(Er) = 3.63 a.u., R(Ru) = 2.69 a.u. and R(Si) = 2.55 a.u. The 

values of the Coulomb U = 8 eV and exchange Hund JH = 0.7 eV parameters for the 4f shell 

of Er are close to the ones used in previous calculations [7,8]. These values were used to 

account for strong correlations of the 4f electrons of erbium in the LSDA+U calculations.  

The ferromagnetic ordering of the Er magnetic moments was modeled. 

 

3. Results and discussion 

3.1 Neutron diffraction 



 The neutron diffraction pattern was recorded at several temperatures between 1.6 and 25 

K for ErRuSi compound. Fig. 1 shows the Rietveld refinement of neutron diffraction pattern 

recorded at 9 and 1.6 K. Analysis of neutron diffraction data at 9 K shows paramagnetic behavior 

of ErRuSi. The Rietveld analysis in the paramagnetic regime confirms orthorhombic crystal 

structure (space group Pnma). In this structure, the Er, Ru and Si ions occupy the 4c (x 1/4 z), 4c 

(x 1/4 z) and 8d (x y z) positions, respectively. On lowering the temperature below 9K, strong 

enhancement in the intensity of the fundamental reflections (101), (002), (200) is found. No 

superlattice reflections was observed down to the lowest temperature. The absence of magnetic 

ordering in isostructural LaRuSi [2] indicates that the Ru ion does not carry a moment in this 

compound. Hence it is clear that similar to other compounds in the RTX series [1], i.e., in 

ErRuSi, only Er ion contributes to the magnetic moment. Therefore, the magnetic structure was 

modeled with moments only on the Er ion. The ferromagnetic structure obtained for ErRuSi is 

shown in Fig. 2. It can be noted from Fig. 2 that all the moments are parallel and aligned in the a-

b plane, which confirms ferromagnetic ordering in this compound. A small canting of the 

moments away from the b-axis is found to fit the data better. The variation of Er moment with 

temperature is shown in Fig. 3(a). The Curie temperature estimated from the neutron diffraction 

data is 9 K, which is close to the value estimated from the magnetization data (TC =8 K). At 1.6 

K, the magnitude of moment is 5.9 µB [see Fig. 3(a)], which is significantly lower than the 

theoretically estimated value.  

  

 Fig. 3(b) shows the temperature dependence of the unit cell volume, derived from the 

neutron data. It can be seen that the volume decreases with increase in temperature. The 

temperature dependence of magnetization for ErRuSi is shown in Fig. 4, while field dependence 

of magnetization is shown in the inset of Fig. 4. The µeff. estimated from the Curie-Weiss fit to 

the magnetic susceptibility data in the paramagnetic regime is 9.48 µB/Er
3+

, which is slightly 

smaller than the theoretically expected value of free Er
3+

(µth.= 9.59 µB/Er
3+

). The smaller value 

of µeff may be attributed to crystalline electric fields (CEF). The saturation moment estimated 

from the extrapolation of magnetization at 3 K is found to be 6.3 µB, which is close to the value 

estimated from neutron diffraction at 1.6 K. The saturation moments observed from 

magnetization and neutron diffraction data are smaller than the theoretical saturation moment, 

(gJ=9 µB). The assumption of small Ru moment made in earlier report is ruled out now in the 



light of the neutron diffraction data that shows no moment on Ru. Therefore, it is reasonable to 

assume that CEF plays a crucial role in determining the moment at low temperatures. Similar to 

this, some other compounds in RTX series also show smaller value of saturation moment [9, 10]. 

The magnetic parameters of the compounds of this series are given in Table I for comparison. It 

is clear from the table that light rare earth compounds of this series either are paramagnetic or 

show antiferromagnetic behavior while heavy rare earth compounds show ferromagnetic 

behavior with the exception of Sm compound, which also shows ferromagnetic behavior. The 

ordering temperature in ErRuSi is smaller than that of the other compounds of this series, which 

show antiferro or ferromagnetic ordering. It can also be noted from Table I that NdRuSi and 

GdRuSi show reduced moment. The authors reported that difference in observed and expected 

values of moment may arise due to CEF. However, the reduction in GdRuSi moment suggests 

that the reduction cannot be due to the first order contribution of CEF. 

 

Fig. 1. Neutron diffraction patterns at 9 and 1.6 K for ErRuSi. The bottom lines show differences 

between observed and calculated intensities.   

 

 

Fig. 2. Suggested magnetic structure for ErRuSi compound at 1.6 K. 
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Fig. 3. The temperature evolution of (a) Er moment (b) unit cell volume for ErRuSi. 

 

 

Fig. 4. The temperature dependence of magnetization for ErRuSi. The inset shows the field 

dependence of magnetization at 3 K. 

 

 

 

 

 

 

 



Table I: Magnetic parameters of members of RRuSi series. 

 

Compound Magnetic nature TN or 

TC (K) 

μeff 

(μB/R
3+

) 

g[J(J+1)]
1/2 

(μB) 

M  

(μB) 

gJ 

(μB) 

Ref. 

LaRuSi Pauli-

paramagnetic 

- - - - - [2] 

CeRuSi Curie-Weiss 

paramagnetic 

- 2.56 2.54 - - [2] 

PrRuSi antiferromagnetic 73 3.52 3.58 - - [2] 

NdRuSi antiferromagnetic 74 3.46 3.62 2.8* 3.2 [2] 

SmRuSi ferromagnetic 65 NCW NCW 0.15 0.72 [2] 

GdRuSi ferromagnetic 85 8.58 7.94 6.4 7 [2] 

ErRuSi ferromagnetic 8 9.48 9.59 6.3, 

9.59* 

9 This 

study 

 

NCW= Non-Curie-Weiss, *= estimated from neutron diffraction 

 

3.2 Heat capacity measurements 

The heat capacity measurements in 0, 10, 20 kOe in the temperature range of 2-100 K is 

shown in Fig. 5. The zero field heat capacity shows λ-shaped peak around 8 K due to the onset of 

magnetic ordering. The peak gets suppressed and the peak position shifts to higher temperatures 

on the application of field, which confirms the ferromagnetic ordering in this compound. 

 

Fig. 5. The temperature dependence of the heat capacity of ErRuSi in 0, 10 and 20 kOe fields. 



 

 

Fig. 6. (a) Non-magnetic fit to the total heat capacity data of ErRuSi (b) The temperature 

dependence of magnetic heat capacity. The inset shows the temperature dependence of total 

magnetic entropy. 

 

To calculate the magnetic heat capacity, the non-magnetic part of the heat capacity 

(obtained by theoretical fitting and shown in Fig. 6 (a)) was subtracted from the total heat 

capacity. The total magnetic entropy (Sm) was calculated using the magnetic heat capacity (as 

shown in the main panel of Fig. 6(b)) employing the relation, Sm= dT
T

C
T

m


0

. The Sm shows 

saturation at higher temperatures, as can be seen from the inset of Fig. 6 (b). At TC, the value of 

Sm is close to R ln2, which suggests that only one Kramer’s doublet participates in the magnetic 

ordering. The saturation value of Sm has been estimated to be 9 J/mol K. The expected value of 

Sm is R ln (2J+1)=23 J/mol K. Therefore it is clear that approximately only 40% of moments 

takes part in magnetic ordering, which plausibly explains the low saturation moment in ErRuSi. 

It is reported earlier that the compound shows giant MCE around its ordering temperature. In 

view of this we calculated the change in adiabatic temperature (ΔTad) from heat capacity data at 

20 kOe field using the relation, SHHHad if
STSTTT ])()([)(   . The value of ΔTad at 20 kOe 

was found to be 4.7 K. The large, low field ΔTad along with large entropy change and the 

refrigerant capacity (RC, reported earlier) makes this compound promising for low temperature 

magnetic refrigeration. 



 

Fig. 7. The temperature dependence of adiabatic temperature change in ErRuSi for 20 kOe. 

 

3.3 Electrical resistivity and magneto-resistance (MR) 

 

The zero field electrical resistivity in the temperature range of 2-100 K is shown in Fig. 

8(a). In paramagnetic regime the resistivity is almost linear showing an increase with 

temperature. At 8 K, the resistivity shows a slope change due to the ferromagnetic ordering in 

this compound. The TC estimated from the resistivity data is close to that found from the 

magnetization and the heat capacity plots. Fig. 8(b) shows the field dependence of MR at 

different temperatures. It can be noted from Fig. 8(b) that at 40 K, the MR is almost negligible, 

but negative. As the temperature decreases, the MR magnitude increases down to 8 K and field 

dependence gradually changes from nearly H
2
 at 40 K to H. Below 8 K, the MR is negligible at 

lower fields and becomes positive at higher fields. The magnitude of positive MR is about 4% at 

1.5 K, for 50 kOe. In ferromagnetic materials, the carrier scattering due to magnons gets 

suppressed with increase in magnetic field, which results in negative magnetoresistance. The 

magnon contribution to resistivity decreases with lowering temperature below TC. Therefore with 

lowering temperature the negative contribution to MR becomes less significant and in the present 

system it is almost negligible even at 4 K. The negligible magnon contribution below this 

temperature is consistent with the temperature variation of moment shown in figure 3(a), where 



M is close to saturation magnetization for T4K. The positive MR at high fields, below TC, 

arises due to the Lorentz force contribution, the magnitude of which increases with lowering 

temperature and/or increasing magnetic field.  

 

 

Fig. 8. (a) The temperature dependence of the zero field resistivity in ErRuSi. (b) The field 

dependence of MR at different temperatures.  

 

3.4 Theoretical calculations and optical study 

 

 

Fig. 9. The LSDA+U calculated total and partial densities of states of ErRuSi.  



 

Fig. 10. The energy dependence of experimental (circles) and theoretical (solid line) optical 

conductivities in ErRuSi. Dashed and dotted lines show spin-up and spin-down contributions, 

correspondingly. 

 

In the LSDA+U calculations for ErRuSi, a ferromagnetic ordering of magnetic moments 

of Er ions was obtained as the ground state. No magnetic moments were found on Rh and silicon 

ions in agreement with the neutron diffraction results. The Er moment was calculated as 3 µB per 

Er ion that includes spin moment but neglects orbital moment component. To account for the 

latter, one can employ the procedure adopted in ref. 11 and take into account L = 6 for the Er
3+

 

ion, then for the Lande factor g = 6/5, the effective magnetic moment of Er can be estimated as  

9.5 μB. This value is in good agreement with the experimental one, but gJ in this case is equal to 

8.9 μB overestimating the saturation moment value that can be attributed to the neglect of the 

lattice changes at low temperatures or the simplified moment estimation procedure.  

 

The total and partial densities of states obtained for ErRuSi in our LSDA+U calculation 

is shown in Fig. 9 relatively to the Fermi energy (EF). The Er 4f states are centered around -9 eV 

for the filled bands in one spin projection, while for another one they are split into the filled part 

at -7.2 eV and the empty part at 1.5 eV above EF. All other states are mostly without spin-



polarization that results in magnetic moment of 0.05 μB for the Er 5d states and negligible 

moments of the others. Below the Fermi energy the extended occupied Ru 4d states contribute 

significantly from -6 eV, while the Er 5d are extended above EF. The electronic states of silicon 

(not shown in Fig. 9) are hybridized with the other states and spread over the whole energy 

region. 

 

Fig. 10 shows the optical conductivity σ(E) for ErRuSi compound. This is the most 

sensitive spectral parameter that characterizes the energy dependence and intensity of optical 

response of medium. In the spectrum of σ(E), two frequency ranges are well defined that 

correspond to two different types of electronic excitation by light: intra- and interband ones. This 

kind of behavior of the optical conductivity is typical for solids with metallic conductivity. In the 

low-energy infrared range (< 0.5 eV) a rapid increase in the optical conductivity is caused by the 

Drude mechanism of interaction of electromagnetic waves with electrons (σ ~ ω
-2

). In this 

spectral interval were estimated kinetic characteristics of conduction electrons, namely, plasma 

ωp and relaxation γ frequencies. Their values are frequency independent in wavelength range 

above 10 µm and equal to ωp = 3.7·10
-15

 s
-1

 and γ = 1.8·10
-14 

s
-1

. With the increase of light 

frequency (visible and ultraviolet intervals) quantum absorption starts to dominate. The spectrum 

of σ(E) in this region reveals a broad intensive band with the peak at ~ 1.5 eV and some weak 

maxima above. These features are formed by interband transitions between the different states 

divided by the Fermi level and reflect the actual structure of electron spectrum of ErRuSi. 

 

The electronic densities for the spin-up and spin-down states, see Fig. 9, were used to 

interpret the optical data. The interband optical conductivity was (shown in Fig. 10 in arbitrary 

units) calculated directly from the electronic structure through the convolution of the total DOS 

below and above EF in approximation that direct and indirect transitions are equally probable. 

The figure also demonstrates the partial contributions in conductivity from each of these spin 

subsystems. The calculated interband σ(E) predict the strong absorption region at 0.7 – 2.4 eV 

that reproduces the experimental absorption band rather well. The maxima in this interval 

according to the calculations are mostly in the spin-down bands due to the electron transitions 

between the Ru 4d and Er 5d states below the EF and Er 4f states above EF. For the higher photon 

energies structural nonmonotonies of σ(E) curve, as it is seen from Fig. 10, are also formed by 



transitions in this spin subsystem. The contribution in conductivity from the electron transitions 

in opposite spin-up bands is rather small and nearly unchanged in the investigated range. On the 

whole experimental energy dependence of the optical conductivity for the ErRuSi in quantum 

absorption range is well described with the electronic structure obtained within the LSDA+U 

method. 

 

Conclusions 

 ErRuSi is ferromagnetic below 8 K, as confirmed by bulk magnetization and  neutron 

diffraction data.  Neutron data shows that Ru has no significant moment in this compound. The 

saturation moment is smaller than the theoretically expected value. The analysis of heat capacity 

data suggests that all the moments do not participate in magnetic ordering, which results in low 

value of saturation moment. Crystalline electric field effect may be the reason for smaller 

saturation moment. MR shows negative sign near ordering temperature and positive at low 

temperatures. The positive MR in this ferromagnetic material arises due to Lorentz force. The 

electronic structure calculations accounting for electronic correlations of the 4f electrons of Er 

reproduces the ferromagnetic ordering and effective magnetic moment. Using the calculated 

densities of states, interband transitions between the Ru and Er d states and Er f states in one spin 

projection are found to form the main features of the measured optical conductivity of ErRuSi. 
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