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Back-contact silicon heterojunction solar cells with an efficiency of 22% were manufactured, 

featuring a simple aluminium metallisation directly on the doped amorphous silicon films. 

Both the open-circuit voltage and the fill factor heavily depend on the parameters of the 

annealing step after aluminium layer deposition. Using numerical device simulations and in 

accordance with the literature, we demonstrate that the changes in solar cell parameters with 

annealing can be explained by the formation of an aluminium silicide layer at temperatures 

as low as 150°C, improving the contact resistance and thus enhancing the fill factor. Further 

annealing at higher temperatures initialises the crystallisation of the amorphous silicon 

layers, yielding even lower contact resistances, but also introduces more defects, 

diminishing the open-circuit voltage. 

  



  Template for JJAP Regular Papers (Jan. 2014) 

2 

1. Introduction 

Interdigitated back-contact (IBC) cells based on the silicon heterojunction (SHJ) 

architecture have proven to deliver outstanding efficiencies.1-3) No contact grid is required 

on the cell’s front side, which maximises the light absorption and therefore grants very high 

current densities, while good passivation and selective contacts, inherent to the 

heterojunction technology, allow for very high open-circuit voltages (VOC).4) As in 

conventional back-contact cells, patterning the rear side with a suitable contact geometry 

poses a major challenge also in IBC-SHJs.5,6) Taking into account the relatively high contact 

resistivities of heterojunction solar cells, the inherent marked reduction in contact area 

further complicates achieving a low series resistance and thus a high fill factor (FF). To 

guarantee a low series resistance, high-efficiency standard heterojunction cells feature a 

transparent conductive oxide layer between the amorphous silicon layers and the 

metallisation on both the front and rear side. Regarding the former, the transparent 

conductive oxide (TCO) layer must provide a decent lateral conductivity and transparency, 

and also form an efficient contact with the corresponding amorphous silicon. On the rear 

side, the TCO layer should enhance mostly the external quantum efficiency (EQE) in the 

infrared part of the optical spectrum, by suppressing plasmonic absorption effects that occur 

when the metal is in direct contact with silicon.7) Owing to the reduction in contact area, 

having contacts with particularly low contact resistivities becomes increasingly more 

important when a back-contact architecture is considered; although the contact resistivity 

between the commonly used indium tin oxide (ITO) layer and an amorphous silicon emitter 

or back surface field (BSF) layer is sufficiently low when a standard architecture with 

full-area contacts is used, it is usually too high to ensure a low series resistance and a high FF 

in back-contact silicon heterojunction cells.8,9) Recently, alternative materials such as metal 

oxides have been evaluated as possible TCO materials forming less resistive contacts, 

especially on p-doped amorphous silicon, owing to an improved band alignment.10-12) 

However, it is also possible to fully omit any TCO material by simply using a direct 

aluminium contact.13) 

In a previous publication, we compared back-contact silicon heterojunction solar cells 

featuring the popular ITO/Ag contact stack with those using an aluminium contact.14) 

Depending on the annealing time and temperature, especially with regard to the Al device, 

we concluded that the direct Al contact results in a much lower series resistance and 

therefore a much higher FF at the expense of a significantly reduced VOC. In our particular 

case, the Al device outperformed the ITO/Ag one slightly (20.7% vs 20.2%). Note that in 
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other studies, especially those presenting back-contact SHJ solar cells with efficiencies 

above 25%,1-3) a TCO is most likely used; however, until now, the exact contact stack in 

these record devices is unknown. 

In this study, we present an update on the previous Al device, which now features an 

improved front side, leading to higher VOC and short-circuit current density (JSC) values. In 

addition, we further elaborate the interaction between the aluminium and amorphous silicon 

layers. 

 

2. Experimental methods 

Interdigitated back-contact solar cells were built on ~270-µm-thick float-zone crystalline 

silicon wafers (n-doped, 1 – 5 Ωcm). The textured front side (alkaline random pyramids) 

was coated with a double-layer SiNx stack (10 nm with a refractive index of 2.4, followed by 

90 nm with a refractive index of 1.96; these nominal thicknesses refer to a deposition on a 

planar surface), serving both as a front -side passivation layer as well as an antireflective 

coating. Intrinsic and doped hydrogenated intrinsic amorphous silicon (a-Si:H) layers (5 and 

20 nm thick, respectively) were deposited on the rear side by plasma-enhanced chemical 

vapour deposition (PECVD; RF of 13.56 MHz for the intrinsic layers, deposited at 170°C; 

60 MHz for the doped ones, deposited at 135°C; B2H6 and PH3 were used as precursor 

gases). A full RCA cleaning was performed before each deposition. First, a stack of intrinsic 

and p-doped a-Si:H was deposited and structured by photolithography and wet chemistry, 

followed by the deposition of a stack of intrinsic and n-doped a-Si:H and its patterning. The 

latter was achieved by etching the i/n-a-Si:H stack with an alkaline solution, which etches 

intrinsic and n-doped a-Si:H at much higher rates than p-doped a-Si:H. Thus, the already 

structured p-type a-Si:H layer serves as an etch stop layer and remains practically unharmed 

during the structuring of the BSF layer. As contact materials, either aluminium or a stack of 

ITO and silver was chosen. The aluminium was thermally evaporated, while the ITO, as well 

as the initial 400 nm of silver layer, was sputtered. An additional 1.5 µm silver layer was 

then thermally evaporated. Both metallisation variants were also structured by 

photolithography and wet chemistry. 

Surface analysis was performed by near-UV photoelectron spectroscopy in the constant 

final state yield (CFSYS) mode (hv = 3,…,7 eV), using a xenon arc lamp with a 

double-grating monochromator for excitation and a conventional photoelectron energy 

analyser (Specs EA-10P) for detection.15,16) 

Synopsys Sentaurus was used to perform numerical simulations17). To account for lateral 
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current flow in a back-contact solar cell, a two-dimensional unit cell was designed on the 

basis of the dimensions of the real device. A long bulk lifetime (10 ms) and a low front-side 

surface recombination velocity (5 cm/s) were assumed in order to maximise the effects 

related to the rear-side contact system of the solar cell. The defect distributions, charge 

carrier mobilities, and doping levels of the amorphous silicon layers were set to the default 

values provided by AFORS-HET, a numerical 1D simulation tool for homo- and especially 

heterostructure solar cells, developed at Helmholtz-Zentrum Berlin.18) 
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3. Results and discussion 

Table I shows the AM1.5G-illuminated current density vs voltage (J-V) parameters of cells 

with aluminium contacts from both batches 1 and 2 as well as those of cells with ITO/Ag 

contacts from batch 1. In comparison with batch 1, batch 2 features a better front side, which 

shows improvements in reflectivity and passivation quality (see Fig. 2). Although the cells 

with the improved front side have a weaker infrared response, they perform slightly better in 

the much more relevant wavelength range between 600 and 1000 nm. Furthermore, the 

internal quantum efficiency (IQE) of the batch 2 Al device reaches values close to 100%, 

while for batch 1, the IQE peaks at around 95%. This clearly indicates an improved 

front-side passivation and consequently less front-side losses due to recombination. 

These improvements mostly affect VOC and JSC. Batch 1 devices featured JSC values of 

around 40.5 mA/cm2, while batch 2 devices featured JSC values above 41.5 mA/cm2. The 

initial VOC increased by 10 to 15 mV, independent of the metallisation method used. 

The FF of the Al devices is strongly affected by annealing. Heating the devices to 

temperatures of at least 150°C for 10 to 30 min will steadily increase FF. As the overall 

series resistance is calculated by comparing the light and the dark J-V curves, it decreases 

accordingly with FF. Note that the hotplate used to anneal batch 1 devices featured a heat 

reflecting lid, in contrast to that used for batch 2 devices – it is therefore assumed that despite 

using the same temperature setpoint TSET = 150°C, the hotplate with a lid (HP1) introduces a 

higher thermal energy to the device than that without a lid (HP2). In the following, mostly 

results of batch 2 devices will be discussed, meaning that all mentioned temperatures refer to 

HP2 (if not stated otherwise).  

With longer annealing times at sufficiently high temperatures, VOC eventually decreases. 

If HP1 is used, a total of 15 min at a set temperature of 150°C leads to a marked decrease in 

VOC for batch 1 devices. A similar effect can be observed with the batch 2 devices, annealed 

on HP2 at a set temperature of 170°C. At lower temperatures, batch 2 devices could be 

annealed for an extended period of time without losing any VOC. In contrast, a slight increase 

of 3 mV was observed. 

As already pointed out in our previous report,14) the simultaneous increase in FF and 

decrease in VOC result in a trade-off situation and an initially unknown optimal annealing 

time in order to achieve the maximum efficiency. The best cell in batch 1 reached its 

maximum efficiency with a rather low final VOC of 649 mV, but with a high FF of 78.7%. 

Although the best cell in batch 2 also achieved a FF of 78%, its maximum efficiency was 

already achieved with a FF of 75%, owing to a much higher and more stable VOC. The 
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implied fill factors (iFFs) determined by minority carrier lifetime measurements are 

reasonably in both cells:19) 81.5% for the batch 1 wafer, and 83.2% for the batch 2 wafer. By 

comparing these values to the corresponding pseudo fill factors (pFF), determined by 

Suns-VOC measurements, it is possible to distinguish between ohmic and non-ohmic 

losses20). In the case of batch 1, pFF was measured after annealing that strongly impacted the 

passivation quality and thus VOC, especially in the high injection range. The measured pFF 

(83.2%) is therefore higher than the aforementioned iFF (81.5%) making it impossible to 

determine the initial loss contributions by a simple comparison. In the case of batch 2, pFF 

was determined after reaching the maximum efficiency (for an identical cell on the same 

wafer as that described in Table I). The resulting value of 82.2% is very close to the obtained 

iFF, suggesting that only 1%abs of the FF losses are non-ohmic and 7.1 %abs ohmic. The 

total FF loss (iFF – FF) for batch 1 after the initial annealing step amount to 8.6%abs. 

Assuming a similar level of non-ohmic losses for batch 2 cells, ohmic losses for batch 1 cells 

are in line with those of batch 2 cells. Annealing is therefore expected to decrease mainly 

ohmic losses, as also indicated by total series resistance measurements (see Table I). The 

current data further suggests that the annealing temperature required to trigger a significant 

improvement in FF is lower than that required to trigger the rapid deterioration the VOC in 

both batches 1 and 2. The cause for this behaviour can be determined by understanding the 

mechanism of interaction of aluminium and amorphous silicon, which will be discussed in 

the next section. 

The interaction of aluminium and amorphous silicon layers after annealing at different 

temperatures has been studied thoroughly by many researchers. Ishihara et al. reported the 

presence of pits in the amorphous silicon layers produced by the interdiffusion of both 

aluminium and amorphous silicon at temperatures as low as 170°C.21) Haque et al. studied 

extensively the aluminium-induced crystallisation of amorphous silicon layers and the 

subsequent changes in their electrical properties at temperatures ranging from 150 to 

300°C.22,23) Hentzell et al. proved the existence of an Al silicide, starting to form at a 

temperature of approximately 170°C, prior to the silicon crystallisation.24) Ashtikar et al. 

proposed a detailed model, including a metastable Al silicide layer at the interface at lower 

temperatures and a gradual crystallisation with increasing temperature.25) 

The effects described in the above-mentioned publications were also used in devices. 

Schaper et al. developed a contact type using the spatial exchange of aluminium and 

amorphous silicon at higher temperatures to form localised Al contacts through an intrinsic 

amorphous silicon passivation layer.26) Bullock et al. proposed a passivated Al contact on 
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heavily diffused homojunction contacts by inserting an intrinsic a-Si layer between the 

metallisation and the diffused emitter or BSF layer.27) Current transport was described to 

occur through a combination of tunnelling and Al spiking. 

The aluminium electrodes in our IBC SHJ devices are annealed at comparably low 

temperatures; thus a full crystallisation or a complete removal of the amorphous layers due 

to diffusion into the much thicker Al layer is not expected to occur. Annealing the cells at a 

temperature of 150°C for extended periods of time (up to 35 min) led to a significant 

improvement in FF and a very slight improvement in VOC. On the basis of the findings of 

Haque et al. and Ashkitar et al., we surmise that a thin Al silicide layer forms at the 

interface that mostly enhances the contact resistivity without deteriorating the passivating 

capability of the intrinsic amorphous silicon layer.22,25) Increasing the annealing 

temperature up to 170°C should initiate the crystallisation of the a-Si:H material and the 

strong interdiffusion between the a-Si:H layers and the Al electrode. In this phase, the 

contact resistivity continues to decrease, as indicated by an ever increasing FF; however, at 

the same time, the Al electrode introduces defects in the band gap, degrading the 

passivation of the crystalline silicon surface.28) Although the new Al defects might even 

enhance the p-type doping in the emitter region, they will lower the n-type doping in the 

BSF regions, reducing the field effect passivation at this interface; prolonged annealing can 

even lead to the counterdoping of n-type amorphous silicon.23) All these effects eventually 

result in a substantial reduction in VOC. Further increase in annealing temperature then 

leads to a strong diffusion of the amorphous silicon material into the Al layer, leaving 

behind either voids or aluminium regions. 

To examine such a thin a-Si:H film on crystalline silicon (c-Si) after Al deposition and 

annealing, Al/a-Si:H(p)/c-Si(n) test structures were fabricated and analysed by near-UV 

photoelectron spectroscopy in the constant final state mode (CFS; Fig. 3). Prior to the 

measurements, one sample (red curve in Fig. 3) was annealed at 150°C (HP1) for 20 min, 

roughly the same time and temperature that lead to a strong VOC loss in a real solar cell 

device. Subsequently, the Al film was etched back to expose the a-Si:H layer. A second 

sample (blue curve) underwent the same process steps, except annealing. It thus represents 

an a-Si:H bulk film, modified by the chemical treatment used to etch back the Al layer. In 

Fig. 3, an additional CFS data set is shown; this data set was obtained from an n-type c-Si 

wafer after RCA cleaning and silicon oxide removal (1 min etching in 1% HF in H2O). The 

measurement on the annealed and etched sample can be fitted as the sum of the shifted and 

scaled latter two spectra, i.e., 
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Counts(E) = CcSi CountsaSi(E-EaSi) + CcSi CountscSi(E-EcSi), 

where Countsi(E) are the experimental energy-resolved photoelectron counts of the 

reference spectra, CcSi and CaSi are the fit parameters, i.e., the scaling constants of the two 

spectra, and EcSi and EaSi are the shifts of those spectra along the energy axis, 

respectively. In previous publications, we have used the same approach for fitting samples 

consisting of a c-Si bulk with thin, homogeneous aSi:H overlayers. We calculate the 

a-Si:H/c-Si valence band offset from EV = EaSi + EcSi - (EF-EV)aSi – (EF-EV)cSi to 

0.45 eV, which is in accordance with previous findings for the aSi:H/c-Si 

heterointerface.29) Taking into account the scanning electron microscope (SEM) images 

(Fig. 4), we surmise that the measured spectrum results from an a-Si:H film with a 

thickness above the information depth, i.e., > 1-2nm, with small c-Si regions that are not or 

are barely (1 to 2 nm) covered with a-Si:H. Unfortunately, the relative contributions of the 

two bulk reference spectra, expressed by the fitting parameters CcSi and CaSi, cannot be 

used to quantify the percentage of exposed c-Si surface area, since the samples were 

measured on different days and the measured data could not be corrected for the resulting 

different illumination conditions, yielding an additional scaling parameter of the count 

rates. 

Note that the spectrum of the annealed and etched sample shows a significant signal well 

above the Fermi level, in the binding energy region of approximately +0.2 eV. This 

emission probably stems from the occupied gap states of the c-Si substrate. Since the 

a-Si:H/c-Si sample is in contact with the a-Si:H(p) surface, a signal above EF (Ebind=0) 

must be related either to surface charging or to band bending and/or a different surface 

dipole between the sample contact area and the origin of the photoelectron emission. 

Surface charging is unlikely, since the surface consists of a sufficiently conductive layer. 

Thus, a significant band bending and/or surface dipole difference must exist between the 

contact area, i.e., the aSi:H(p)/vacuum interface, and the exposed c-Si regions. From the 

onset of the CFS signal, this energy difference is estimated to be ~500-600 mV, i.e., the 

order of magnitude of the built-in potential at the aSi:H(p)/c-Si(n) interface. 

Thus, the main physical phenomena we expect affect the performance of our IBC SHJ 

solar cells with Al electrodes are the formation of an Al silicide layer, partial crystallisation, 

and the formation of Al defects in the a-Si:H material. According to the results of CFSYS 

analysis, prolonged annealing at temperatures below 200°C already severely damages the 
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integrity of the a-Si:H layers. From the pits seen on the SEM image of the annealed surface 

(Fig. 4), we approximate the area being heavily affected by the Al interaction to a 

maximum of 20%. On the basis of this approximation, we conduct a numerical simulation 

of our IBC-SHJ device by introducing a modified region into the a-Si:H contact layers with 

increased charge carrier mobility and defect density accounting for both the partial 

crystallisation and the introduction of Al defects (see Fig. 5). The minority charge carrier 

mobility was increased by a factor of 10 (from 5 to 50 cm2V-1s-1), which is in accordance 

with the measurement results from Nast et al. for polysilicon layers on glass, created from 

amorphous silicon by aluminium-induced crystallisation (glass/Al/a-Si to 

glass/poly-Si/Al).30) The parameters for Al defects in silicon layers were determined by 

Rosenits et al.; the energetic position of the defect was then altered to account for the 

larger bandgap of amorphous silicon.28) Although our simulation setup already produces 

reasonable results when compared with an experimental setup, we do not aim to fully 

reproduce our measurements, but to confirm experimental trends qualitatively. Indeed, 

despite having made rather vague approximations to incorporate the changes induced by 

Al annealing, the trends for FF and VOC observed in the measurements are also present in 

the simulation results: Without any modification, the simulated cell achieves a VOC of 

733 mV and a FF of 69.8%. Although VOC is significantly higher than that in real cells, 

most likely owing to the very good front side passivation, FF is very close to what we 

usually measure with a non-annealed device. As shown in Fig. 6(a), increasing the charge 

carrier mobility does lead to a significant increase in FF, also depending on the modified 

ratio of the contact area. The abscissa of Fig. 6(a) shows only the values for the minority 

carrier mobility; however, the majority carrier mobility is increased by the same factor, 

from a default of 20 cm2V-1s-1 up to 200 cm2V-1s-1. In addition, the increase in FF was 

performed without adding any additional Al defects, as the measurement results suggest 

that the increase in FF occurs prior to the deterioration of VOC. The eventual simulated FF 

increase (up to 77%) is in good agreement with the measurement results obtained after 

heavy annealing. The effect of an additional Al defect density is shown in Fig. 6(b). 

Increasing the Al defect density up to values within the doping density range (charge 

carrier mobility kept at the evaluated maximum values) leads to a strong decrease in VOC, 

again depending on the modified actual area ratio. The losses of 50 to 60 mV are again in 

good agreement with the measurement results of annealed devices. 

 

4. Conclusions 
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We have shown that a direct aluminium metallisation can be a viable option for 

high-efficiency back-contact silicon heterojunction cells. Careful annealing of the 

aluminium layers is crucial to enhancing the contact resistivity and maximising the fill factor 

without deteriorating the open-circuit voltage. The interaction of aluminium and amorphous 

silicon must be limited to the formation of an intermediate Al silicide layer. The extended 

crystallisation or interdiffusion of aluminium and silicon will, despite further increase in FF, 

damage the integrity of the amorphous silicon layers and lead to a significant decrease in 

open-circuit voltage. 
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Figure Captions 

Fig. 1. (Colour online) J-V curves of the three best cells for each metallisation 

concept/front side. Inset: depiction of the solar cell structure. 

 

 

Fig. 2. (Colour online) EQE, IQE, and reflection data for Al and ITO/Ag devices from 

batch 1 (b1) and an Al device from batch 2 (b2, improved front side). 

 

 

Fig. 3. (Colour online) CFSYS spectra, where the red curve (dashed-dotted) represents the 

Al-interacted a-Si:H sample, the blue curve (dashed) the non-annealed, non-interacted 

a-Si:H sample, and the black curve (solid) a pure c-Si sample; the orange curve (dotted) 

shows the fit of the blue and black curves, being in good agreement with the red curve, 

thus indicating that the red curve shows a measurement of a partly disintegrated a-Si:H 

layer on a c-Si surface. 

 

 

Fig. 4. SEM image of the amorphous silicon surface after the removal of annealed 

aluminium. The darker areas are pits in the amorphous silicon layer and the white flakes 

are believed to be residues of the Al silicide layer. 

 

 

Fig. 5. (Colour Online) Simulated unit cell. Ruled areas represent the aluminium interacted, 

modified regions with increased mobility and Al defect density; “pit coverage” refers to the 

portion of the total contact width that has been modified. 

 

 

Fig. 6. (Colour online) Trends extracted from simulation: (a) shows the effect of an 

increased charge carrier mobility (both polarities equally increased; the abscissa shows 

only the values for the minority carriers) on the FF of the device for different affected area 

ratios (correlating with the pits seen in Fig. 4); (b) shows the effect of an additional 

Al defect density on the VOC of the device, again for different affected area ratios. 
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Table I. J-V parameters (solar cells under illumination, b1 = batch 1, b2 = batch 2). 

Metallisation 

concept 

ITO/Ag Al b1 

(5 Min 

150°C*) 

Al b1 

(+10 Min 

150°C*) 

Al b2 

(5 Min 

150°C) 

Al b2 (+30 Min 

150 °C 

+10 Min 

160°C) 

Al b2 

(+10 Min 

170°C) 

JSC (mA/cm2) 40.5 40.5 40.5 41.6 41.9 41.6 

VOC (mV) 687 684 649 696 699 660 

FF (%) 69.1 72.9 78.7 73.8 75.1 78.2 

Pseudo-FF (%) 80.1 / 83.4 / 82.2** / 

Efficiency (%) 19.2 20.2 20.7 21.4 22.0 21.5 

RSER, Total (Ω*cm2) 2.08 1.48 0.49 1.41 1.17 0.71 

* different hotplates were used for batches 1 and 2 

** identical cell on the same wafer 
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Fig.1. (Colour Online) 
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Fig. 2. (Colour online) 
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Fig. 3. (Colour online) 
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Fig. 4. 
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Fig. 5 (Colour online) 
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 Fig. 6. (Colour online) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 


