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Spin liquids are exotic quantum states characterized by the existence of fractional and deconfined quasiparti-
cle excitations, referred to as spinons and visons. Their fractional nature establishes topological properties such
as a protected ground-state degeneracy. This work investigates spin-orbit coupled spin liquids where, addition-
ally, topology enters via non-trivial band structures of the spinons. We revisit the Z2 spin-liquid phases that
have recently been identified in a projective symmetry-group analysis on the square lattice when spin-rotation
symmetry is maximally lifted [Phys. Rev. B 90, 174417 (2014)]. We find that in the case of nearest neigh-
bor couplings only, Z2 spin liquids on the square lattice always exhibit trivial spinon bands. Adding second
neighbor terms, the simplest projective symmetry-group solution closely resembles the Bernevig-Hughes-Zhang
model for topological insulators. Assuming that the emergent gauge fields are static we investigate vison ex-
citations, which we confirm to be deconfined in all investigated spin phases. Particularly, if the spinon bands
are topological, the spinons and visons form bound states consisting of several spinon-Majorana zero modes
coupling to one vison. The existence of such zero modes follows from an exact mapping between these spin
phases and topological p + ip superconductors with vortices. We propose experimental probes to detect such
states in real materials.

I. INTRODUCTION

Quantum spin liquids are fascinating spin phases that evade
classical magnetic ordering in the ground state due to mag-
netic frustration effects.1–3 While originally, these states have
been described within the resonating-valence bond (RVB)
paradigm by P. Anderson,4 the past decades have unveiled that
their internal structure is much more complex than the pic-
ture of fluctuating singlet dimers might suggest. In particular,
spin liquids exhibit various characteristic topological proper-
ties which manifest themselves in fractional spin excitations
and a topologically protected ground-state degeneracy.5,6 In
the simplest case, these properties follow from an underlying
Z2 gauge theory7–9 where fractional spinon excitations10,11

(that effectively behave as half of a conventional spin-1 spin-
flip operation) couple to fluctuating Z2 gauge fields. Together
with flux excitations of the gauge field (also referred to as
visons)12–14 the spinons represent the fundamental quasipar-
ticles of a spin liquid. While the visons are spinless bosonic
particles, a Z2 gauge theory can be formulated for both,
fermionic and bosonic spinons.

An appealing feature of a Z2 gauge-theory description for
quantum spin liquids is that spinons (as well as visons) nat-
urally appear as deconfined particles that do not experience
any long-range confining forces. This is in contrast to U(1)
gauge theories where the effects of gauge fluctuations may
destabilize spin-liquid phases, possibly driving the systems
into conventional long-range magnetically ordered states.15–17

The deconfined property of spinon excitations opens up the
striking possibility of effectively realizing the physical phe-
nomena of free-fermion systems – including different types
of band structures or superconductivity – in the extreme oppo-
site limit of strongly correlated Mott insulators. (We note that
spinon superconducting pairing terms are a necessary condi-
tion to achieve a Z2 gauge structure.11) This idea becomes
particularly interesting when effects of spin-orbit coupling are

included as this allows for the formation of non-trivial band
topologies in the spinons, effectively leading to “topological
spinon insulators”.18–21 In a way, such states may be consid-
ered as “double topological” in the sense that quasiparticles
which as are already topological (fractional) in the first place,
additionally exhibit a topological band structure.

While these phases nicely combine physical concepts of
two extreme limits – strong coupling versus weak coupling
– they are, unfortunately, extremely hard to investigate on
the level of actual model systems (and it is probably even
harder to find material realizations). This is mainly because
for a generic spin Hamiltonian there is presently no numeri-
cal approach available which directly probes fractional spin-
liquid excitations and their dynamical properties. To still
gain insight into the properties of the aforementioned states,
mainly two different strategies are currently pursued. First,
Kitaev spin models on tri-coordinated lattices22 allow for an
exact analytical solution of the spectrum of fermionic “matter
fields” (which effectively take over the role of spinons but are
typically described in terms of Majorana fermions) and flux
excitations.23–25 In these systems, various interesting phenom-
ena such as topological Majorana band structures,25–28 bound
states between Majorana fermions and fluxes,29–31 or the nu-
cleation of Majorana bands in flux-superlattices32,33 have been
investigated. However, to guarantee exact solvability one is
restricted to models with specially designed Ising interactions
and perturbations beyond these couplings typically compli-
cate their analysis enormously.

A second possibility for investigating fractional excitations
in quantum spin liquids relies on the more general concept
of the “projective symmetry group” (PSG) method34 that is
applied in this work. This approach does not start with a
specific spin Hamiltonian but rather assumes a certain set of
symmetries of the system (e.g. lattice symmetries and time
reversal invariance). Using a fermionic parton representation
for spin operators,35 the interaction terms are mean-field de-
coupled in all possible symmetry-allowed ways, leading to
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a systematic classification of spin liquid phases character-
ized by different types of free spinon band structures (note
that the PSG approach may also be formulated in terms of
Schwinger bosons instead of fermions36–38). So far the PSG
method has mostly been applied to Heisenberg models on dif-
ferent two dimensional lattices,36–44 where – depending on the
precise set of symmetries – hundreds of different spin-liquid
phases are identified. In contrast, the PSG approach is rarely
applied to spin-orbit coupled systems with anisotropic spin
interactions.45–48 One such analysis recently classified all pos-
sible Z2 spin liquids on the square lattice when spin rotation
symmetry is maximally lifted and identified as many as 1760
solutions.48 Remarkably, it has been found that topological
p + ip superconducting pairing represents a generic property
of the spinons which, in many cases, leads to topologically
non-trivial band structures.

In this paper, we revisit the PSG classification of spin-orbit
coupled spin liquids on the square lattice and investigate their
properties in a more realistic and simplified setting. Indeed,
the large number of states quoted above mainly stems from
the rather unrealistic assumption that interactions occur for
all possible bond distances. By restricting the couplings to
first or second neighbor interactions on the square lattice, the
number of spin-liquid phases reduces drastically such that the
most generic states may be identified and studied. We find,
however, that with nearest neighbor interactions only, spinon
band structures of Z2 spin liquids are always topologically
trivial, which can be traced back to the projective implemen-
tation of time-reversal symmetry. Once second neighbor cou-
plings are added, topological spinon bands appear even un-
der the most simplifying assumptions and we find that the
generic spinon Hamiltonian resembles the Bernevig-Hughes-
Zhang (BHZ) model49,50 for the quantum spin Hall material
HgTe.51

A particular focus of this work is on vison excitations. Us-
ing an approximation that treats visons as static quasiparticles,
their interaction potential turns out to be of extreme short-
range nature, confirming that they are effectively deconfined.
Remarkably, depending on the Chern numbers of the topolog-
ical spinon bands we observe that visons can bind multiple
zero modes from the spinon sector. For topological spinon
bands and in the limit of large vison distances, the excitation
energies of such states decay exponentially, indicating that
the bound spinons are effectively described by Majorana zero
modes. The connection between topological spinon bands and
Majorana bound states52 is made explicit by establishing an
exact mapping of our spin-liquid quasiparticles onto a topo-
logical p + ip superconductor with quantum vortices. We fi-
nally consider the more realistic situation where visons form
a dilute gas on randomly arranged local defects, e.g., mimick-
ing the effects of finite temperatures. Due to the tight cou-
pling between Majorana modes and visons, the bound states
form a narrow band around zero energy if the system is in a
topologically non-trivial phase. With increasing vison density
this band is populated by an increasing number of states. We
conclude that such effects might allow one to experimentally
identify topological spinon band structures.

The paper is organized as follows: In Section II we review

the PSG approach for spin systems with maximally lifted spin-
rotation symmetry as has been applied in Ref. 48. We iden-
tify the simplest of such PSG solutions in Section III by first
restricting to nearest neighbor couplings (Section III A) and
then adding second neighbor terms (Section III B). Particu-
larly, we discuss the spinon band structures and topological
phase diagrams of three selected spin-liquid phases. In the
following Section IV we study the properties of vison excita-
tions in these states. After reviewing some basic concepts of
Z2 lattice gauge theories in Section IV A, we determine the
effective vison pair potentials in Secion IV B, confirming that
visons are deconfined. Section IV C investigates spinon-vison
bound states and formulates a mapping of our BHZ-like spin
liquid to a topological p + ip superconductor with vortices.
Finally, Section IV D addresses the properties of a gas of ran-
domly arranged visons. The paper ends with a conclusion and
outlook in Section V.

II. PSG CLASSIFICATION OF SPIN LIQUIDS WITH
SPIN-ORBIT COUPLING

A. Mean-field decoupling

Before we investigate specific spin liquid states in the next
section, we first briefly review the PSG classification proce-
dure in the case of spin-anisotropic systems. For more in-
depth discussion we refer the interested reader to Refs. 34 and
48. The starting point of the PSG analysis is an anisotropic
two-body spin Hamiltonian with the general form

H =
∑
(rr′)

J ijrr′S
i
rS

j
r′ , (1)

where Sir denotes the ith component (i = 1, 2, 3) of a spin-
1/2 operator at lattice position r and J ijrr′ are the exchange
couplings. The sum runs over pairs of sites as indicated by
the symbol (rr′). Note that repeated indices i, j are implic-
itly summed over. We will not further specify the couplings
J ijrr′ but assume that the Hamiltonian respects all lattice sym-
metries of the square lattice. Through their dependence on
the components i and j, the interactions may, however, break
continuous spin-rotation symmetries.

We apply a fermionic version of the PSG approach where
the spin operators are written in terms of parton operators,35

Sjr =
1

2
f†rσ

jfr . (2)

Here, σj are the Pauli matrices and fr = (fr↑, fr↓)T denotes
a two-component spinor of fermionic annihilation operators
frα with α =↑, ↓. The parton representation doubles the
dimension of the local Hilbert space on each site where the
physical spin-1/2 states are those that satisfy the single occu-
pancy constraint

∑
α f
†
rαfrα = 1 or equivalently fr↑fr↓ = 0.

These conditions may also be expressed as a gauge freedom,
according to which the states in the physical sector of the
Hilbert space are those that remain unaffected by the local
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gauge transformation

ψr → wrψr , (3)

where ψr = (fr↑, f
†
r↓)

T is a two-component spinor in Nambu
space and wr is an arbitrary (site-dependent) 2× 2 SU(2) ma-
trix obeying w†r = w−1r .

Next, the fermionic version of Eq. (1) is mean-field decou-
pled in all hopping and pairing channels as described by the
mean-field amplitudes 〈f†rαfr′β〉 and 〈frαfr′β〉, respectively
(note that no decoupling is performed in the local channel
〈f†rασ

j
αβfrβ〉 as this would describe trivial, classical magnet-

ically ordered states). In the general case considered here, the
original spin Hamiltonian (1) may break all continuous spin-
rotation symmetries such that the mean-field procedure for-
mally generates anisotropic amplitudes with all possible com-
binations of α and β in spin space. In compact notation, the
decoupled HamiltonianHmf can be written in terms of the full
four-component Nambu spinor Ψr = (fr↑, f

†
r↓, fr↓,−f

†
r↑)

T,
yielding

Hmf =
∑
(r,r′)

(
Ψ†rUrr′Ψr′ + H.c.

)
, (4)

with the 4 × 4 matrix Urr′ containing all mean-field ampli-
tudes. For a PSG analysis it is convenient to write Urr′ in the
form

Urr′ =

(
usrr′ + ut1rr′ ut2rr′ + ut3rr′
−ut2rr′ + ut3rr′ u

s
rr′ − u

t1
rr′

)
(5)

where each entry is a 2 × 2 matrix. These blocks can be ex-
panded in terms of Pauli matrices and the identity matrix σ0,

usrr′ = is0rr′σ
0 + sjrr′σ

j , ut1rr′ = t01,rr′σ
0 + itj1,rr′σ

j ,

ut2rr′ = it02,rr′σ
0 + tj2,rr′σ

j , ut3rr′ = t03,rr′σ
0 + itj3,rr′σ

j .

(6)

Here, the coefficients sjrr′ and tj1/2/3,rr′ are real mean-field
amplitudes. In Eq. (5) the different entries can be distin-
guished according to their behavior under spin rotations. The
term usrr′ is spin-isotropic and describes (spin-independent)
hopping f†r↑fr′↑ + f†r↓fr′↓ and singlet pairing fr↑fr′↓ −
fr↓fr′↑. All other matrices u

t1/2/3
rr′ contain fermionic bi-

linears in the triplet channel, i.e., their action is associated
with a spin flip along a certain direction. Particularly, the
term ut1rr′ breaks SU(2) spin rotation symmetry down to U(1)
symmetry for rotations around the z-axis. The correspond-
ing mean-field amplitudes describe spin-dependent hopping
f†r↑fr′↑ − f

†
r↓fr′↓ and triplet pairing fr↑fr′↓ + fr↓fr′↑. Fi-

nally, the matrices ut2rr′ and ut3rr′ represent spin-flip hopping
f†r↑(↓)fr′↓(↑) and spin-polarized triplet pairing fr↑(↓)fr′↑(↓)
which also break the remaining U(1) symmetry.

In analogy to Eq. (3), the gauge transformation can be for-
mulated for the four-component spinor Ψr, yielding

Ψr →WrΨr with Wr =

(
wr 0
0 wr

)
, (7)

where wr is a 2× 2 SU(2) matrix.
The obvious benefit of a mean-field decoupling is that Hmf

describes free fermions and can be solved exactly. Further-
more, the fermions can be naturally associated with spinons
which are deconfined and fractional quasiparticles in a spin
liquid. Hence, a free fermionic model represents a good
starting point for describing spin liquids and their emergent
spinon excitations but still lacks the correct gauge struc-
ture. This can be seen by gauge-transforming the mean-
field Hamiltonian Hmf in Eq. (4) using site-dependent ma-
trices Wr which effectively changes the mean-field matrix
Urr′ according to Urr′ → W †rUrr′Wr′ . In the generic case,
Urr′ 6= W †rUrr′Wr′ showing that the mean-field Hamilto-
nian does not fulfill the local gauge invariance of the original
Hamiltonian. This indicates that Hmf also operates in the un-
physical sector of the Hilbert space and that its eigenstates are
not even proper spin states obeying the parton constraint. As
explained in Section IV a gauge invariance can be restored
by allowing for fluctuating amplitudes Urr′ , resulting in an
effective gauge-theory description with additional gauge-field
degrees of freedom and vison quasiparticles. The structure
of such fluctuations [Z2, U(1), ...] can already be determined
on the bare mean-field level and is connected to the concept of
the so-called invariant gauge group (IGG).34 While the mean-
field decoupling breaks the local SU(2)×SU(2)×· · · gauge
symmetry, the gauge condition

Urr′ = W †rUrr′Wr′ (8)

is still fulfilled for a subset of transformations Wr. This can
be seen by realizing that Eq. (8) is at least satisfied for (site-
independent) transformations of Z2-type with Wr ≡ W =
+14×4 or Wr ≡ W = −14×4. The subgroup of invari-
ant transformations determines the IGG and the type of gauge
fluctuations in an effective gauge theory. In the minimal case
of aZ2 IGG, the gauge-field excitations – the so-called visons
– are gapped9 and constitute an additional type of deconfined
quasiparticle in a spin liquid (see below for details). In the fol-
lowing, we will restrict ourselves toZ2 spin liquids since they
are closest to a bare mean-field picture but still include long-
range many-body entanglement with all its non-trivial impli-
cations for topological order and non-local excitations.

B. Projective implementation of symmetries and PSG
classification

In this work, we investigate “symmetric” Z2 spin liquids
which do not spontaneously break lattice symmetries or time
reversal invariance T . For a square-lattice system in the x-y-
plane with r = (x, y) and x, y = 0,±1,±2, . . . this means
that the spin liquids need to be invariant under translations
Tx, Ty along both lattice directions [Tx(r) = (x + 1, y),
Ty(r) = (x, y + 1)], refections Px, Py about the x and y axis
[Px(r) = (−x, y), Py(r) = (x,−y)] and a reflection Pxy
about the lattice diagonal [Pxy(r) = (y, x)]. Additionally, re-
flection symmetry about the lattice plane Pz : z → −z needs
to be taken into account when SU(2) spin rotation symme-
try is maximally lifted.48 While this symmetry does not trans-
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form the site positions, it still has an effect in spin space since
z → −z is a subgroup of SU(2) spin rotations.

In the presence of a gauge freedom, a symmetry trans-
formation S acts in two different ways (where S can be
any of the above symmetries). Ignoring the gauge free-
dom, a symmetry transformation S first modifies Urr′ ac-
cording to Urr′ → US(r)S(r′). The additional effect of the
gauge invariance means that a symmetry operation S may al-
ways be supplemented with a gauge transformation Wr lead-
ing to the projective implementation of symmetries Urr′ →
W †S(r)US(r)S(r′)WS(r′). As a consequence, a mean-field
Hamiltonian Hmf satisfies a symmetry S under the weaker
condition that there exists a (site-dependent) gauge transfor-
mation WSr such that

Urr′ = WS†S(r)US(r)S(r′)W
S
S(r′) . (9)

Comparing this relation with Eq. (8), on sees that the elements
of the IGG can be interpreted as the gauge transformation as-
sociated with the identity operation. For a given IGG, a PSG
analysis classifies all possible projective implementations of
symmetries – characterized by the gauge transformations WSr
– that fulfill Eq. (9).

A PSG classification relies on the fact that the symmetries
S (including the action of the corresponding gauge transfor-
mations WSr ) fulfill certain relations among each other. For
example, two symmetry operations Sa, Sb may commute, i.e.,
Oab ≡ S−1a S−1b SaSb = I (this is the case, e.g., for Sa = Px,
Sb = Py), where I is the identity transformation. In a projec-
tive implementation, each individual operation in Oab comes
along with a gauge transformation. The total gauge transfor-
mation WOab

r associated with Oab is given by

WOab
r =

(
WSaS−1

b SaSb(r)

)† (
WSbSaSb(r)

)†
WSaSaSb(r)W

Sb
Sb(r) .

(10)
Since WOab

r is the gauge transformation corresponding to the
identity operation I, it must be an element of the IGG. There-
fore, it follows that either WOab

r = +14×4 or WOab
r =

−14×4 on all sites. More generally, each sequence of sym-
metry transformations that yields the identity operation leads
to two possibilities for choosing the sign of the associated to-
tal gauge transformation. Altogether, these signs characterize
the different projective implementations of symmetries. The
precise form of the gauge transformations follows from the
2 × 2 block structure of WSr consisting of matrices wSr [see
Eq. (7)]. One finds that there is always a gauge in which these
matrices are given by48

wSr = ηSr gS , (11)

where ηSr = ±1 is a site-dependent function and gS is a spa-
tially constant 2 × 2 SU(2) matrix. For the square lattice we
will use the convenient gauge in which the ηSr functions have
the simple structure

ηTr = ηx+yT , ηTx
r = ηy , η

Ty
r = 1 , ηPz

r = ηx+yz

ηPx
r = ηx1η

y
2 , η

Py
r = ηx2η

y
1 , η

Pxy
r = ηxy (12)

with ηT = ±1, η = ±1, ηz = ±1, η1 = ±1, η2 = ±1
independent of each other. Relations of the form of Eq. (10)
can then be rewritten in terms of the gS matrices

g−1Sa g
−1
Sb gSagSb = ±σ0 . (13)

Depending on the sign in this equation, the solutions gS (if
they exist) are either given by the identity σ0 or by Pauli ma-
trices iσj (with j = 1, 2, 3).

In total, for a given set of symmetries S, the spatial sign
pattern of ηSr and the matrices gS characterize a PSG and de-
termine how projective symmetries act. When ηSr = 1 on all
sites and gS = σ0, the projective version of S coincides with
the “naive” implementation of the symmetry (i.e., in the ab-
sence of a gauge freedom). An exception is time-reversal T ,
which we define such that gT = iσ2 corresponds to the com-
mon implementation in a system with spinful fermions (in this
implementation, an arbitrary single-particle wave function |φ〉
acquires a minus sign under T 2, i.e., T 2|φ〉 = −|φ〉). On
the other hand, gT = σ0 characterizes a system where time-
reversal squares to one, T 2 = 1, as is the case for spinless
fermions.

When all gauge transformations WSr are known, Eq. (9)
further puts constraints on the mean-field amplitudes Urr′ .
The precise form of the constraints in the channels usrr′ , u

t1
rr′ ,

ut2rr′ , u
t3
rr′ is given in Appendix A. It is important to empha-

size that these equations do not completely specify all param-
eters contained in Urr′ , but rather relate amplitudes Urr′ and
US(r)S(r′) with each other. Hence, a subset of all Urr′ (e.g.
those for which δr ≡ (δx, δy) = r′−r fulfills δx, δy ≥ 0 and
δy ≤ δx) serves as free parameters of a mean-field solution.
DiagonalizingHmf finally yields the spinon-band structures in
each projective representation as a function of these parame-
ters.

A full classification of PSG representations for Z2 spin
liquids on the square lattice when SU(2) spin rotation sym-
metry is maximally lifted has previously been carried out in
Ref. 48. In the general case where the hopping and pair-
ing mean-field amplitudes can be infinitely long-ranged, such
an analysis yields 1760 different representations. This num-
ber also contains 272 SU(2) spin-rotation invariant states with
ut2rr′ = ut3rr′ ≡ 0 that have already been determined in the
original work by X.-G. Wen.34 The remaining 1760 − 272 =
1488 new representations are those in which the SU(2) sym-
metry is explicitly broken and the inversion symmetry Pz acts
non-trivially. In particular, it is shown in Ref. 48 that the finite
ut2rr′ and ut3rr′ terms in these states have a form that generally
admits chiral px ± ipy pairing of the spinons. Depending on
the particular PSG (e.g., on the implementation of time rever-
sal) and the precise choice of the free mean-field parameters
this may lead to a spin liquid with a non-trivial spinon-band
topology in addition to the fractional and long-range entan-
gled nature of the spinons. In the following Section III we
will study these spin phases in the more realistic situation
where the mean-field amplitudes are short-range (i.e., of near-
est neighbor or second neighbor type only) which reduces the
number of states enormously. Particularly, we will investigate
the spinon band structures in a few cases and determine their
topological properties. Thereafter, Section IV focuses on the
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properties of vison excitations and their coupling to spinons.

III. SHORT-RANGE COUPLINGS AND TOPOLOGICAL
SPINON BANDS

A. Nearest neighbor mean-field amplitudes

We first confine the range of the mean-field parameters
Urr′ to nearest neighbors on the square lattice, where δr =
r′ − r = (±1, 0) or δr = (0,±1). This reduces the num-
ber of spin-liquid states drastically, because on the level of
nearest neighbors many solutions vanish identically. Further-
more, even if solutions are finite, they might no longer have a
Z2 gauge structure, which means that Eq. (8) is fulfilled for
a set of transformations larger than Wr = ±1 [such as U(1)
transformations]. It is therefore crucial to check the IGG of
the PSG mean-field solutions Urr′ . We first briefly outline
our approach to determine the IGG11,34 and then discuss the
spinon properties of such solutions.

The defining condition of the IGG [see Eq. (8)] formulates a
relation between Wr1 and Wr2 for two nearest neighbor sites
r1, r2,

Wr1
= Ur1r2

Wr2
U−1r1r2

. (14)

Inserting the analogous relation Wr2
= Ur2r3

Wr3
U−1r2r3

yields

Wr1
= Ur1r2

Ur2r3
Wr3

(Ur1r2
Ur2r3

)
−1

. (15)

Repeating this scheme for a sequence of nearest neighbor sites
r1, r2, . . . , rn−1, rn, r1 forming a closed loop C, one obtains
a condition for a single gauge operator Wr1

,

Wr1 = PCWr1P
−1
C , (16)

where PC = Ur1r2
Ur2r3

· · ·Urn−1rn
Urnr1

. Writing PC in
2× 2 block form

PC =

(
pC11 pC12
pC21 pC22

)
, (17)

and using Eq. (7) leads to the conditions

[wr1
, pCκ] = 0 (18)

which hold for all blocks κ = 11, 12, 21, 22 and loops C,
simultaneously. If, altogether, these constraints restrict wr1

such that the only possible solution is wr1 = ±σ0, the IGG
is proven to be Z2. To evaluate the commutators, pCκ is ex-
panded in terms of Pauli matrices and the identity matrix
pCκ =

∑3
j=0 α

jC
κ σ

j , and likewise for the gauge operation,
wr1 = α0

r1
σ0 + i

∑3
j=1 α

j
r1
σj (note that in the last equa-

tion, unitarity of wr1 requires the normalization of coeffi-
cients,

∑3
j=0 |αjr1

|2 = 1). The directional components of pCκ
form vectors (α1C

κ , α
2C
κ , α

3C
κ ) in the three-dimensional coordi-

nate space R3. Calculating such vectors for all blocks κ and

loops C it is straightforward to show that if they form a non-
coplanar set, Eq. (18) can only be fulfilled for wr1 = ±σ0,
which proves the Z2 gauge structure. Otherwise, if these vec-
tors span a plane, there is still a continuous set of U(1) gauge
transformations that fulfills Eq. (18).

Applying such an analysis to the aforementioned 1488 PSG
solutions, we find that only 272 mean-field ansätze have finite
nearest neighbor amplitudes. Further eliminating those with
an IGG larger thanZ2 we finally identify 28 spin liquid phases
which are characterized by the signs ηT = ±1, η = ±1,
ηz = ±1, η1 = ±1, η2 = ±1 and the matrices gS listed in
Appendix B. Most strikingly, due to a subtle conflict of the
effects of Pz , T and the requirement of a Z2 gauge structure,
all these solutions are characterized by gT = σ0. This im-
plies that time reversal squares to one, T 2 = 1, and Kramer’s
degeneracy does not exists. As a consequence, there is no
symmetry protection of boundary modes and the spinon bands
are topologically trivial.53–55 In other words, the systems be-
long to the class BDI55,56 in which no topological index is
defined (this is in contrast to systems with gT = iσ2 which
fall into the class DIII). Non-trivial spinon band structures on
the square lattice and aZ2 gauge structure can, therefore, only
exist for mean-field amplitudes of (at least) second-neighbor
range, as studied in Section III B.

Even in the nearest neighbor case, the remaining 28
PSG solutions often have complicated spinon band structures
which still strongly depend on the choice of a certain num-
ber of free mean-field parameters (there are typically three or
four such parameters for each of the 28 non-vanishing near-
est neighbor PSG solutions). By varying these amplitudes the
systems may undergo transitions between phases with fully
gapped band structures and those with discrete Dirac points
in momentum space, indicating that individual PSG represen-
tations can again be subdivided into different phases.57 We
refrain from developing a complete picture of all different
spinon band structures in the remaining 28 solutions but in-
stead, as an example, discuss the simplest case that we could
identify.

Interestingly, we found only one spin-liquid state where –
for a suitable choice of the spinor basis – the matrix represen-
tationUrr′ has a block-diagonal form. The projective symme-
try implementation of this state, characterized by the matrices
gS and the η parameters in Eq. (12), reads

gPz
= iσ3, gT = σ0, gPxy

= iσ3,

gPx
= iσ1, gPy

= iσ1,

ηPz
= 1, ηT = −1, η = 1, η1 = −1, η2 = −1 .

(19)

The block structure becomes obvious in the basis Ψ̂r =
(fr↑, f

†
r↑, fr↓, f

†
r↓)

T which groups together ↑ and ↓ parton
operators. Transforming the mean-field Hamiltonian into k

space (Ψ̂r → Ψ̂k) yields

Hmf =
∑
k

Ψ̂†k

(
h1k 0
0 h2k

)
Ψ̂k (20)

with
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h1k =

(
(α+ β) cos kx + (α− β) cos ky −(γ − δ) sin kx + i(γ + δ) sin ky
(−γ + δ) sin kx + i(γ + δ) sin ky −(α+ β) cos kx − (α− β) cos ky

)
h2k =

(
(α− β) cos kx + (α+ β) cos ky −(γ + δ) sin kx + i(γ − δ) sin ky
−(γ + δ) sin kx + i(γ − δ) sin ky (−α+ β) cos kx − (α+ β) cos ky

)
, (21)

where α, β, γ, δ are free (and real) parameters. Note that the
block form of Eq. (20) does not correspond to a U(1) spin-
rotation symmetry around the z-axis (this would be the case
for a block diagonal Hamiltonian in the original Ψr basis).
Rather, Eq. (20) implies an invariance under a combined spin
and particle-hole transformation. Due to gT = σ0, time rever-
sal does not transform the two blocks into each other and there
is no simple relation between h1k and h2k. If α, β, γ, δ are all
finite and γ 6= δ the spinon bands of Eq. (20) are fully gapped
and non-degenerate, as illustrated in Fig. 1. Even though the
system is in a trivial phase we still find (topologically unpro-
tected) boundary modes inside the bulk gap [see Fig. 1(b)].
Such states may generally appear in the vicinity of lattice in-
homogeneities and their topologically trivial nature manifests
in the fact that they are separated from the continuum of bulk
states. Interestingly, for cylinder edges along the x-direction
(y-direction) we only observe edge states in the h2k block (h1k
block) but not in the h1k block (h2k block). This is again a con-
sequence of the fact that the two blocks are not time-reversal
related. We will revisit this spin state in Secion IV when we
study the effects of vison excitations.

B. Second neighbor couplings and topological spinon bands

As outlined in the last section, topological spinon-bands
cannot exist on the level of nearest neighbor models. To in-
vestigate systems with non-trivial bands we continue adding
second neighbor mean-field amplitudes. As a result of the ex-
tra diagonal bonds, new types of loops can be formed such
that the Z2 gauge requirement is typically fulfilled more eas-
ily. In the first place, such an extension again drastically in-
creases the number of states as compared to the nearest neigh-
bor case. To keep the analysis manageable and to identify
the simplest of such states, we impose certain constraints on

the model parameters. Firstly, we only consider systems with
gT = iσ2 where Kramer’s degeneracy allows for topologi-
cally projected edge modes. Secondly, the second neighbor
mean-field parameters are assumed to be SU(2) spin-rotation
invariant, i.e., of usrr′ type. In other words, we restrict our-
selves to models where spin-orbit coupling only takes place
on nearest neighbor bonds. This can be motivated by the fact
that, taken individually, the effects of spin-orbit coupling and
longer-ranged interactions are often sub-leading in real mate-
rials, such that the combination of both is expected to be even
less important. Finally, to facilitate the analysis of topolog-
ical invariants, we restrict ourselves to models with a simple
block structure such as Eq. (20). Under these assumptions, we
find that there are only two different types of mean-field solu-
tions. For special choices of the free parameters, some of their
properties have already been discussed in Ref. 48. In the fol-
lowing, we study these states in more detail (including gauge
excitations) and map out their complete phase diagrams.

First solution: BHZ-like model

The first model is characterized by the projective symme-
tries

gPz
= iσ3, gT = iσ2, gPxy

= σ0,

gPx
= σ0, gPy

= σ0,

ηPz = 1, ηT = 1, η = 1, η1 = 1, η2 = 1, (22)

leading to a Hamiltonian with three real constants α, β, γ,

Hmf =
∑
k

Ψ̂†k

(
hk 0
0 h∗−k

)
Ψ̂k (23)

where

hk =

(
α (cos kx + cos ky) + β cos kx cos ky γ (i sin kx − sin ky)

γ (i sin kx + sin ky) −α (cos kx + cos ky)− β cos kx cos ky

)
. (24)

Due to gT = iσ2, the two blocks hk and h∗−k are time-
reversal partners of each other. Most importantly, the terms
i sin kx±sin ky ∼ ikx±ky induce the type of spin-momentum
locking that generates non-trivial band structures. Indeed,
Eq. (23) resembles the BHZ model49,50 which is a prototyp-

ical model for a topological insulator and has been used to
describe the electronic bands of the quantum spin Hall mate-
rial HgTe. The difference is that hk in Eq. (24) exhibits a term
∼ β cos kx cos kyσ

3 instead of ∼ [M −B(k2x + k2y)]σ3. Both
terms induce a negative (positive) mass in the upper (lower)
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Figure 1. Spinon-band structure of the nearest neighbor Hamiltonian
in Eq. (20) using the parameters α = β = γ = 1 and δ = 2. The
h1
k bands (h2

k bands) are plotted in red (blue) color. (a) Spinon bands
for periodic boundary conditions in x and y directions. (b) Band
structure of the h1

k block for a cylinder edge along the x direction.
(c) Band structure of the h2

k block for a cylinder edge along the x
direction. Note that for an edge along one of the lattice directions,
only one block shows topologically trivial edge states.

band around the Γ-point, as needed for a topological band
structure. The momentum dependence of β cos kx cos kyσ

3

away from the Γ-point, however, also generates phases which
are not present in the BHZ model, as discussed in the follow-
ing.

Setting α = 1 and varying β, the system goes through a
sequence of different phases as illustrated in Fig. 2. Note
that the parameter γ sets the overall size of the topological
gap but does not shift the phase boundaries. Since the two
blocks hk and h∗−k with Chern numbers n↑ and n↓, respec-
tively, are time-reversal partners, one finds n↑ = −n↓ in each
phase. Furthermore, β → −β reverses the signs of both Chern
numbers but otherwise leaves the band topologies unchanged.
At β = 0, the bulk has gapless nodes at k = (0,±π) and
k = (±π, 0), see Fig. 2(a). A finite term β > 0 opens gaps at
these points, leading to a topological phase with Chern num-
bers n↑ = 1, n↓ = −1 and a pair of helical boundary modes
crossing each other at kx = 0 [Fig. 2(b)]. In this phase the sys-
tem features a non-trivial Z2 topological invariant55,58 given
by ν ≡ n↑−n↓

2 mod 2 = 1. While the phenomenology of the
bands is in complete analogy to a topological insulator, it is
worth emphasizing that the interpretation is rather different
here. Since our quasiparticles are spinons and the “sin”-terms
in Eq. (24) describe spinon pairing, the system can be con-
sidered as two copies of a topological “spinon superconduc-

tor” with opposite chiralities.59–61 Consequently, the counter-
propagating edge states are Majorana zero modes γR, γL and
a mass term iγRγL gapping out these states is forbidden by
time-reversal symmetry.

Increasing β, the system undergoes another transition at
β = 2 where the bulk gap closes at k = (±π,±π), as shown
in Fig. 2(c). Above this point the gap reopens [Fig. 2(d)] and
Chern numbers are given by n↑ = 2, n↓ = −2 (note that
this phase is not present in the BHZ model). Accordingly,
the edge spectrum exhibits two pairs of counter-propagating
Majorana modes crossing each other at kx = 0 and kx =
π. This regime extends up to β → ∞ such that, in total,
Eq. (23) never exhibits trivial bands with vanishing Chern
numbers. This can be traced back to the fact that the terms
[α (cos kx + cos ky) + β cos kx cos ky]σ3 in Eq. (24) always
have a finite “spinon Fermi-surface” such that the additional
γ terms can open a topological gap at these surfaces. Due to
the Chern numbers n↑/↓ = ±2, the Z2 topological invariant
is trivial (ν = 0) and one would expect that the protection
of boundary modes is lost. However, as already discussed in
Ref. 48, when taking into account lattice symmetries, there is
still a protection of the edge states. Denoting the Majorana
zero modes at kx = 0 (kx = π) by γR and γL (ηR and ηL) one
finds that the mass terms iγRγL and iηRηL are forbidden due
to time-reversal symmetry. On the other hand, the coupling
terms iγRηL or iγRηL gapping out boundary states at different
kx require a finite momentum transfer ∆kx = π which is only
possible when translation symmetry in x-direction is broken.
(Note that in this PSG, terms iγRηL and iγRηL are also forbid-
den due to the Pz symmetry.) Hence, as long as translation
and time-reversal symmetries are intact, the edge modes must
remain gapless. Since this protection relies on lattice symme-
tries, the system can be considered as a spinon version of a
topological crystalline superconductor.62–64

Second solution: BHZ-like model with spatially dependent
implementation of time reversal

The second mean-field solution that satisfies the afore-
stated conditions has the projective symmetry implementation

gPz = iσ3, gT = iσ2, gPxy = σ0,

gPx = iσ3, gPy = iσ3,

ηPz
= 1, ηT = −1, η = 1, η1 = −1, η2 = −1 .

(25)

The corresponding Hamiltonian reads

Hmf =
∑
k

Ψ̂†k

(
hk 0
0 h∗−k+(π,π)

)
Ψ̂k (26)

with
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Figure 2. Top: Phase diagram of the topological spinon bands for the mean-field Hamiltonian in Eq. (23) using α = 1. Chern numbers n↑ of
the block hk are indicated in each phase. Note that the phase diagram is independent of γ. (a)-(d) Spinon band structures for β = 0, 1, 2, 3
and α = γ = 1 where the upper plots correspond to a cylinder geometry with an edge along the x-axis and the lower plots are for a torus
geometry. All spinon bands are doubly degenerate with respect to the spin degree of freedom.

hk =

(
α (− cos kx + cos ky) + β cos kx cos ky γ (i sin kx − sin ky)

γ (i sin kx + sin ky) α (cos kx − cos ky)− β cos kx cos ky

)
, (27)

where α, β, γ are three real parameters. Interestingly, time
reversal now has a non-trivial real-space structure given by
ηTr = (−1)x+y which in momentum space corresponds to a
shift k → k + (π, π). Apart from complex conjugation and
k → −k, the two time-reversal-related blocks in Eq. (26)
therefore also differ by a wave vector (π, π). Compared to the
previous BHZ-like model, here, all bands of the upper block
(lower block) are shifted by kx → kx + π and ky unchanged
(ky → ky+π and kx unchanged). On the other hand, the topo-
logical phase diagram and Chern numbers remain the same
and will not be discussed again.

In summary, this analysis shows that for a spin-anisotropic
Z2 spin liquid on the square lattice, topological spinon bands
are only possible for second neighbor coupling terms. If such
terms are present, non-trivial band structures naturally appear
even under the most simplifying assumptions.

IV. VISON EXCITATIONS

A. Effective Z2 gauge theory and static approximation

The bare mean-field models studied so far need to be treated
with caution since their eigenstates generically violate the par-
ton constraint and therefore do not even represent proper spin
states. This is equivalent to the observation that the mean-field
Hamiltonians are not invariant under a general local SU(2)
gauge transformation Wr. The problem is obviously rooted
in the fact that we assumed the matrices Urr′ to be constant

objects instead of fluctuating fields. To correct this deficiency
and restore a gauge freedom, we consider the minimal set of
fluctuations in Urr′ given by

Urr′ → Urr′σ
z
rr′ , (28)

where σzrr′ = ±1 is a Z2 gauge-field variable defined on the
bonds of the lattice. Instead of Eq. (4) the model Hamiltonian
then reads9

H =
∑
(r,r′)

(
Ψ†rσ

z
rr′Urr′Ψr′ + H.c.

)
. (29)

There are various reasons for choosing Z2 gauge fields σzrr′ .
First, it is the simplest extension of a bare mean-field the-
ory which still generates non-trivially correlated phases de-
scribed by lattice gauge theories7–9 (see below). Second, it
can be shown that the fluctuations in Urr′ are dictated by
the IGG of the corresponding PSG mean-field solution34 such
that Eq. (28) is consistent with the systems studied in Sec-
tion III. Finally, there exists a substantial number of spin sys-
tems – the Kitaev honeycomb model22 being one of the most
prominent ones – where a theory of the form of Eqs. (28)
and (29) corresponds to an exact rewriting of the original
spin Hamiltonian.23–25,65,66 For strongly frustrated and mag-
netically disordered spin systems where such a rewriting does
not exist, it is widely believed that Eq. (29) at least provides a
good description of the low energy fractional degrees of free-
dom.

Taking into account the gauge fluctuations, Eq. (29) sat-
isfies a local Z2 gauge invariance G given by the combined
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Figure 3. Effect of a local gauge transformation Sr [Eq. (32)] act-
ing on a site r (black dot): All bond variables σz

rr′ are flipped
(σz

rr′ → −σz
rr′ ) on links forming a star around r (red lines). (a)

For a nearest neighbor mean-field Hamiltonian the star consists of
four bonds emanating from r. When second neighbor mean-field
amplitudes are added (dashed lines), the gauge fields σz

rr′ are also
defined on diagonal links, such that the gauge transformation acts on
all bonds highlighted in (b).

transformation

G : Ψr → −Ψr , σzrr′ → −σzrr′ , (30)

where r′ are all nearest and/or second neighbor sites of r (de-
pending on the range of the parameters Urr′ ). Interpreting the
fields σzrr′ as Pauli matrices, the sign flips in Eq. (30) can also
be expressed in terms of σxrr′ operators, yielding

G : Ψr → −Ψr , σzrr′ → S†rσzrr′Sr , (31)

with

Sr =
∏

r′∈star(r)

σxrr′ (32)

and star(r) denotes all (nearest and/or second) neighbor sites
that form a star around r (see Fig. 3). The existence of a
gauge freedom again indicates that the physical Hilbert space
is smaller than that of the Ψr and σzrr′ degrees of freedom.
The constraint selecting the physical states now takes the form

Sr(−1)f
†
r↑fr↑+f

†
r↓fr↓ = −1 (33)

for all sites r.6,9,67

When the spinons Ψr are gapped, they can formally be in-
tegrated out yielding an effective low energy theory for the
gauge fields. The resulting pure gauge theory can contain all
types of gauge-invariant operators, i.e., those that commute
with Sr on all sites r.5,6,68–70 Terms that fulfill this condition
are σxrr′ fields or loops of σzrr′ operators. Taking into account
the lowest orders (i.e. only the shortest loops in σzrr′ and terms
linear in σxrr′ ) yields the model

Hgauge =− h1
∑
〈rr′〉

σxrr′ − h2
∑
〈〈rr′〉〉

σxrr′ −K1

∑
�

∏
r,r′∈�

σzrr′

−K2

(∑ ∏
r,r′∈

σzrr′ +
∑ ∏

r,r′∈
σzrr′

+
∑ ∏

r,r′∈
σzrr′ +

∑ ∏
r,r′∈

σzrr′

)
− . . . .

(34)

Here, 〈rr′〉 (〈〈rr′〉〉) denotes nearest (second) neighbor pairs
of sites and � stands for the unit squares of the lattice. The
notation r, r′ ∈ � means that the sites r, r′ belong to one
of the square edges. The same convention is used for pairs
r, r′ ∈ , , , where , , , are the four types of ele-
mentary triangles with one diagonal link. Note that the terms
∼ h2 and ∼ K2 only appear for models with second neighbor
mean-field amplitudes.

The pure two-dimensional gauge theory in Eq. (34) is
known to have two different phases: A confined and a decon-
fined phase.2,5,6 When the K-terms (also referred to as “mag-
netic” terms or fluxes) are much larger than the h-terms (often
called “electric” fields), the ground state is given by the con-
figuration where all square-loop (and triangular-loop) opera-
tors fulfill σzr1r2

σzr2r3
σzr3r4

σzr4r1
= 1. Consequently, excita-

tions correspond to configurations with negative loops terms,
σzr1r2

σzr2r3
σzr3r4

σzr4r1
= −1, each associated with an exci-

tation energy ∼ K. Together with the spinons, these fluxes
(also called visons) represent the two types of fundamental
quasiparticles in a spin liquid. In similarity to the spinons, the
visons can only be created in pairs. Most importantly, if the
electric fields∼ h are sufficiently small, there is no long-range
binding force between the visons such that they are effectively
free, i.e., deconfined. It is important to emphasize that the ab-
sence of visons does not necessarily mean that σzrr′ = 1 on
all bonds. Indeed, one can easily see that on a torus there
are four gauge inequivalent ground-state configurations with-
out any visons [they correspond to the configurations where
the gauge strings illustrated in Fig. 4(a), (c) wind around non-
contractible loops of a torus]. This ground-state degeneracy is
topologically protected as it cannot be lifted without closing
the vison gap. A gauge theory in this phase is relevant for a
low-energy description of Z2 quantum spin liquids, since it
correctly captures their long-range entangled and topological
properties.

In the limit where the h-terms are dominant, the system can
(in lowest order) be mapped onto a model of non-interacting
Ising spins in a magnetic field. In this topologically trivial
phase the non-degenerate ground state is given by the config-
uration where σxrr′ = 1 on all bonds and the visons experience
a long-range confining force.

Coming back to Eq. (29), which is the starting point of
the analysis in the next section, the gauge fields only appear
through one type of Pauli matrix σzrr′ . On the level of the
Hamiltonian it therefore seems that the fields σzrr′ are static
Ising variables. The gauge fields, however, become dynamic
if one takes into account the constraint in Eq. (33) since a sin-
gle bond variable σzrr′ does not commute with Sr. With this
constraint, Eq. (29) becomes a complicated many-body prob-
lem that – in similarity to the original spin model – cannot be
easily solved. The most straightforward approximation that
allows us to proceed, is to treat Eq. (29) as it is, but simply
ignore the gauge constraint in Eq. (33). While this might first
appear as a very crude simplification, it is conceptually similar
to the PSG approach where, likewise, spinon band structures
are determined without taking into account the parton con-
straint. Ignoring Eq. (33) means that the gauge fields become
static and the pure gauge theory in Eq. (34) does not contain
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Figure 4. (a) Possible gauge field configuration for a pair of separated visons (marked by stars) in the case of nearest neighbor mean-field
models. The full red lines indicate bonds with σz

rr′ = −1 while σz
rr′ = 1 otherwise. Gauge fields σz

rr′ = −1 occur on all bonds crossing
the “gauge string” (dashed red line). The plaquettes at which the visons reside are threatened by a finite local flux. (b) Vison pair-excitation
energy E(d) as a function of the distance d for the nearest neighbor PSG solution in Eq. (20) using the parameters α = β = γ = 1, δ = 2.
Here, d is defined in units of the nearest-neighbor lattice spacing and the separation is along a lattice direction. For comparison, the spinon
bulk gap ∆ is indicated in the figure. (c) Same as (a) but with additional second neighbor mean-field amplitudes. In this case also diagonal
bond variables σz

rr′ need to be flipped along the gauge string. (d) Vison potentials E(d) for the BHZ-like model [see Eq. (23)] in the phases
with Chern numbers n↑ = 1 (blue line with parameters α = β = γ = 1) and n↑ = 2 (yellow line with parameters α = γ = 1, β = 3).

any σxrr′ terms. In the case of aZ2 spin liquid this can change
details of the low energy properties; for example, vison dis-
persions become flat. On the other hand, the key properties of
Z2 gauge theories such as vison deconfinement, finite vison
gaps, and topological ground-state degeneracies are indepen-
dent of the gauge field dynamics. We note that the situation
is similar to Kitaev spin models on tri-coordinated lattices,22

where the gauge fields are likewise found to be static. In that
sense, a static approximation can be considered as a conve-
nient way of studying generic quasiparticle properties of Z2

spin liquids, without the need to solve a complicated many-
body problem.

B. Vison deconfinement in selected PSG solutions

Using the static approximation discussed in the last sec-
tion, the spinon and vison degrees of freedom in Eq. (29) can
be treated separately, i.e, for each fixed configuration of the
gauge fields σzrr′ , a free fermionic model in the spinons needs
to be solved. This procedure is well-known from Kitaev spin
models but, to the best of our knowledge, has not been system-
atically applied to PSG solutions. While the “electric” fields
∼ h are not accessible within a static scheme, one may still
estimate the vison masses ∼ K and confirm that visons are
indeed deconfined.

To calculate vison creation and separation energies, we in-
troduce a pair of fluxes by changing the signs of σzrr′ on all
bonds crossing a line between the vison cores, see Fig. 4(a),
(c). Note that for second neighbor mean-field terms it is im-
portant to also flip the signs of the gauge fields on diagonal
bonds along the string, as shown in Fig. 4 (c) (otherwise, local
fluxes ∼ K2 would be finite along the string, creating a chain
of visons). The effective vison-pair potentialE(d) (where d is
the vector between the vison cores) is obtained from the total
energy of the two-vison state minus the ground-state energy
E0 of the flux-free state. As an example, we illustrate E(d)
for the nearest neighbor PSG solution in Eq. (20) and for the
second neighbor BHZ-like model in Eq. (23), where for the

latter system we distinguish between phases with Chern num-
bers n↑ = 1 and n↑ = 2, see Fig. 4. (Since the PSG solution
in Eq. (26) differs from the BHZ-like model in Eq. (23) only
by shifts in momentum space, it does not have distinct prop-
erties and will not be further considered here.)

For all models that we have studied and independent of the
Chern numbers we find that E(d) ≡ E(d = (d, 0)) (where
visons are separated along a lattice direction) already satu-
rates after a few lattice spacings, demonstrating that confining
forces between the visons are of very short-range nature. In
the case of the BHZ-like model, visons experience a mild at-
traction at small distances. Interestingly, the excitation energy
E(d = 1) for a pair of nearest neighbor visons agrees with the
asymptotic value E(d → ∞) within ∼ 10% or less. This in-
dicates that in a pure gauge theory description [see Eq. (34)]
obtained by integrating out the spinons, additional contribu-
tions with loops longer than the K1 and K2 terms must be
small. The nearest neighbor energy E(d = 1) therefore pro-
vides a good estimate for the size of the lowest orderK-terms.
Comparing E(d → ∞) with the spinon bulk gap ∆, we find
that for all models studied, the vison mass is roughly on the
order of ∆ (the corresponding numbers are given in Fig. 4).
We note that the deconfined property of visons is already ex-
pected from the structure of the gauge theory in Eq. (29). This
is because, by successively applying gauge transformations
Sr, the gauge string between two visons can be arbitrarily de-
formed without moving the visons. The length of the string
is, therefore, no physical observable and cannot induce con-
fining.

C. Spinon-vison bound states

Since visons represent point defects of the fermionic sys-
tem, they modify the spinon spectrum, possibly leading to
spinon-vison bound states inside the bulk gap. Here, we study
spinon-vison bound states for the three models discussed in
last section and monitor their energies ε(d) as a function of
the vison separation d (where d again measures their distance
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Figure 5. (a)-(c) Excitation energies ε(d) of in-gap states as a func-
tion of the vison-pair separation d for (a) the nearest neighbor spin
liquid in Eq. (20), (b) the BHZ-like spin liquid in the phase with
n↑ = 1 [see Eq. (23)] and (c) the BHZ-like spin liquid in the phase
with n↑ = 2. The corresponding mean-field parameters are the same
as in Fig. 4. The plots in (b) and (c) use a logarithmic energy axis
and only show the positive part of the spectrum (the negative part
is an exact mirror image). Note that all depicted data points are de-
generate with respect to the spin degree of freedom. In (b) we find
indications for an oscillating modulation as indicated by a fit of ε(d)
to a function ∼ e−ad cos(bd+ φ) with fit parameters a, b, φ (blue
line). The quality of the fit becomes worse at larger d, see dashed
blue line. (d) Real-space probability distribution of the spinon wave
function corresponding to the zero energy mode of the n↑ = 1 BHZ-
like system in (b). The locations of the vison cores are given by the
red spots where the wave function is sharply peaked.

along a lattice direction). Particularly, we connect the ex-
istence of zero-energy modes to the topology of the spinon
bands (for a related work, see Ref. 52).

We first calculate the fermionic spinon spectrum for the
nearest-neighbor model in Eq. (20) in the presence of two vi-
sons. Since all models studied here contain superconducting
spinon pairing terms, the spectrum is particle-hole symmetric
and it is sufficient to consider the positive part of the spectrum
only. For the nearest neighbor model we find two degenerate
in-gap modes (one for each spin direction) at finite energies
binding to each vison, see Fig. 5(a). With increasing vison
distance, the energies ε(d) of these states quickly saturate and
remain constant (and finite) for large d. As a generic example
of a fermionic model without any topological invariant, bound
states can always exist, however, they are not protected by a
symmetry. Whether or not they appear depends on the details
of the Hamiltonian. By changing the model parameters, the
bound states can, in principle, be shifted into the continuum
of bulk states without traversing a phase transition.

Bound states in the BHZ-like model of Eq. (23) show a dis-
tinctly different behavior. Considering the phase with Chern
number n↑ = 1, a pair of visons binds two degenerate mid-
gap fermionic spinon modes (one for each spin direction) as
illustrated in Fig. 5(b). In contrast to the trivial band struc-
ture of the nearest neighbor model, the energy ε(d) of this
state shows a rapid exponential decrease as a function of d.

By mapping the visons onto vortices in a topological p + ip
superconductor we will show below that the bound states at
d → ∞ are indeed exactly described by two Majorana zero
modes71 γ↑ and γ↓ associated with each vison core. There-
fore, the existence of zero modes is a topologically protected
property that directly follows from the non-trivial Chern num-
ber of the bulk bands. In similarity to the one-dimensional
edge states discussed above, a coupling term iγ↑γ↓, gapping
out the zero modes, is forbidden due to time-reversal symme-
try. The finite gaps at small d are due to the spatial overlap
of the Majorana wave functions localized at different vison
cores. This is illustrated in Fig. 5(d), showing wave functions
sharply peaked at the vison positions and exponentially de-
caying tails. The quasiparticle excitations within the bulk gap
can, therefore, be considered as composite objects consisting
of one vison and two Majorana modes.

While globally, the binding energies in Fig. 5(b) follow an
exponential decrease, we also observe local deviations from
this behavior. To a certain degree, this can be explained by a
modulation of ε(d) with an oscillating function, even though
not all data points follow this trend (particularly at larger dis-
tances). Interestingly, a similar observation has been reported
for spin liquids on the Kitaev honeycomb model with a super-
lattice of visons, showing a nucleation of Majorana fermion
bands with different Chern numbers.32,33 In these models the
oscillating behavior has been attributed to the fusion rules of
Ising anyons.

We finally consider bound states of the BHZ-like model in
the phase with Chern number n↑ = 2. The in-gap spectrum
effectively corresponds to two copies of the bound states of
the n↑ = 1 case, i.e., we find two fermionic modes with expo-
nentially decaying energies for each spin sector, see Fig. 5(c).
In terms of Majorana degrees of freedom there are now four
zero modes γ↑, η↑, γ↓, η↓ tied to each vison core. In similarity
to the n↑ = 1 phase, a finite gap generated by coupling terms
iγ↑γ↓ or iη↑η↓ is prohibited by time-reversal symmetry. Fur-
thermore, mass terms iγ↑η↓ or iγ↓η↑ are forbidden because
the system possesses an additional inversion symmetry Pz
(which is implemented non-trivially48). The gaplessness of all
zero modes is, therefore, again symmetry-protected. In simi-
larity to the n↑ = 1 case we again find local deviations from
an exponential decrease in Fig. 5(c). Here, however, we could
not identify a simple oscillating modulation that explains this
behavior, possibly because interferences between the two Ma-
jorana modes at each vison complicate the situation compared
to the n↑ = 1 phase.

The binding between flux excitations and fractional spin ex-
citations has previously been described in exactly solvable Ki-
taev models on tri-coordinated lattices.29–31 Furthermore, on
the level of non-interacting fermion systems, Majorana zero
modes bound to flux-vortex cores are a well known property
of topological p+ ip superconductors.71–75 Indeed, there is an
exact mapping between the latter situation and the visons in
our BZH-like spin liquid as we will demonstrate in the fol-
lowing. To show this equivalence, we go back to a real-space
representation of Eq. (23) and assume that the system is in the
phase with n↑ = 1. The general form of the Hamiltonian is
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ϕ = 0
?

r r′

Figure 6. Possible gauge-field configuration σz
rr′ for a single vison,

located at the origin (marked by a red star). Blue (red) bonds corre-
spond to σz

rr′ = 1 (σz
rr′ = −1). Bonds with σz

rr′ = −1 form a
string along the ϕ = 0 line. For large r, r′ � 1, the angle ϕr −ϕr′

between two coupled lattice sites r, r′ vanishes, see text for details.

then given by

H =
∑
(r,r′)

[
Ψ̂†rσ

z
rr′

(
hrr′ 0

0 h∗rr′

)
Ψ̂r′ + H.c.

]
. (35)

Here Ψ̂r = (f↑r, f
†
↑r, f↓r, f

†
↓r)T and σzrr′ are the fluctuat-

ing gauge fields. We first consider the vison-free system (i.e.
σzrr′ = 1 on all bonds) and derive a continuum version by
expanding Eq. (24) around k = 0. This yields

H =

∫
d2rΨ̂†(r)

(
h(r) 0

0 h∗(r)

)
Ψ̂(r) , (36)

where

h(r) =

(
− 1

2m∇
2 + µ γ (∂x + i∂y)

γ (∂x − i∂y) 1
2m∇

2 − µ

)
, (37)

and m = − 1
α+β , µ = 2α + β. Note that k = 0 is a point of

band inversion (negative mass in the upper band of h(r) and
positive mass in the lower band) such that Eq. (37) correctly
captures the topological properties of Eq. (24) in the n↑ = 1
phase. This model describes a standard topological p+ ip su-
perconductor with a uniform (and real) superconducting phase
γ.

We now add a vison, located at the origin r = 0 of the
x-y-plane. In this case, the derivation of a continuum model
requires some caution because the line of flipped gauge fields
becomes a singular branch cut in the continuum limit. To
define the exact gauge field configuration and to avoid such
singularities we again go back to the discrete lattice ver-
sion. Assuming that the site positions are given by r =
(0.5+nx, 0.5+ny) with nx, ny ∈ Z (such that the origin is lo-
cated in the center of a unit square) a single vison at r = 0 can
be created by setting σzrr′ = −1 on all bonds (r, r′) crossing
the positive x-axis, while σzrr′ = 1 on all other bonds, see
Fig. 6. Note that the second vison is assumed to be infinitely
far away. Next, we perform the gauge transformation(

fr↑
f†r↓

)
→
(
eiϕr/2 0

0 e−iϕr/2

)(
fr↑
f†r↓

)
, (38)

where ϕr ∈ [0, 2π) is the polar angle of the vector r in the x-
y-plane (as usual, ϕ = 0 corresponds to the positive x-axis).

This transformation changes hrr′ in Eq. (35) according to

hrr′ →

(
h1,1rr′e

−i(ϕr−ϕr′ )/2 h1,2rr′e
−i(ϕr+ϕr′ )/2

h2,1rr′e
i(ϕr+ϕr′ )/2 h2,2rr′e

i(ϕr−ϕr′ )/2

)
. (39)

Here, the superscript indices denote the matrix entries of hrr′ .
A continuum model can now be derived without any branch-
cut singularities. For all bonds (r, r′) that do not cross the
positive x-axis, the differences ϕr − ϕr′ vanish in the large
distance limit r, r′ � 1 and one obtains

hrr′ →
(

h1,1rr′ h1,2rr′e
−iϕr

h2,1rr′e
iϕr h2,2rr′

)
. (40)

For all bonds (r, r′) that cross the positive x-axis (say y > 0,
y′ < 0) we can write ϕr = δϕ, ϕr′ = 2π − δϕ with δϕ > 0.
In the continuum limit δϕ vanishes such that the effect of the
gauge transformation on these bonds is given by

hrr′ → −hrr′ . (41)

This shows that the gauge transformation exactly cancels the
flipped gauge fields σzrr′ along the gauge string. Combining
Eqs. (37) and (39), a continuum model for a single vison at
the origin can now be written as

h(r) =

(
− 1

2m∇
2 + µ γ (∂x + i∂y) eiϕr

γ (∂x − i∂y) e−iϕr 1
2m∇

2 − µ

)
. (42)

Due to the phase factor eiϕr winding around the origin, this
is exactly the Bogoliubov-de Gennes Hamiltonian of a p+ ip
superconductor with a single point-like flux vortex.71,75 It is
well known that for this model topologically protected Majo-
rana zero modes appear as gapless excitations in the vortex
cores.

In the phase with n↑ = 2, an expansion of Eq. (23) around
k = 0 does not capture the full topology of the spinon bands,
since k = (π, π) is another point of inverted bands. In this
case, an expansion of Eq. (23) around k = (π, π) results,
in total, in two copies of the model (42), binding four Majo-
rana zero modes in each vortex core. We therefore conclude
that for a time-reversal invariant spin liquid with spinon-band
Chern numbers n↑ and n↓ = −n↑, there can be up to |2n↑|
Majorana modes (including both spin directions) tied to each
vison excitation. Additional symmetries (such as Pz in our
case) can prevent them from gapping out each other. How the
inclusion of dynamic gauge fields ∼ σxrr′ modifies this obser-
vation remains a subject for future studies.

D. Vison gas

Having discussed the properties of a single vison pair, we
finally consider the more realistic case where visons form a
dilute gas of randomly arranged quasiparticles. Such a situ-
ation is, for instance, expected for thermally excited visons
at finite temperatures or when visons bind to local lattice de-
fects. We particularly investigate to which degree spinon-
vison bound states at different vison cores hybridize and how
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Figure 7. Fermionic spinon density of states N(ε) in the bulk gap for a dilute gas of randomly arranged visons. The vison density is indicated
for each curve. Using a system size of 100 × 100 lattice sites, N(ε) counts the number of states in each energy interval of length 0.01. All
results are averaged over 100 different realizations. The thick gray line indicates the onset of the bulk gap. The data in (a) - (c) corresponds
to the nearest-neighbor spin liquid, the BHZ-like model with n↑ = 1 and the BHZ-like model with n↑ = 2, respectively, with the same
parameters as in Fig. 4. The insets in (b) and (c) show the density of states in the low-energy region.

such effects can be used for an experimental detection of topo-
logical spinon band-structures. To this end, we consider the
three spin-liquid phases of the last sections and populate the
lattice with a mean density of 0.6% and 2% randomly located
visons, corresponding to an average vison distance of ∼ 14
and∼ 7.5 lattice spacings, respectively (note that a vison den-
sity of x percent means that x out of 100 elementary square
plaquettes carry a vison). We then compute the spinon density
of states inside the bulk gap and average the result over 100
different configurations. To avoid unwanted boundary effects,
all calculations are performed on a torus.

For all three models we observe a narrow peak in the den-
sity of states at a position that coincides with the energies of
the bound states for a single vison pair in Fig. 5. For the
nearest-neighbor topologically trivial model [Fig. 7(a)] this
peak is located at a finite energy inside the bulk gap, while
for the BHZ-like model [Fig. 7(b), (c)] the density of states is
maximal at zero energy. The fact that these maxima remain
very narrow even for visons that are (on average) only a few
lattice spacings apart, follows from the sharply peaked nature
of the bound-state wave function, as shown in Fig. 5(d). Only
for the BHZ-like model in the n↑ = 2 phase with 2% vi-
sons (which in Fig. 7 has the largest number of in-gap states),
hybridization effects become more important and the bound
modes start leaking into larger portions of the bulk gap. Gen-
erally, the density of states is roughly linear in the vison den-
sity and a Chern number n↑ = 2 additionally doubles the in-
gap modes as compared to the n↑ = 1 phase. These obser-
vations might have interesting implications for experiments.
We propose that topological spinon bands forming low-energy
bound-state peaks in the spin-structure factor could be de-
tectable in elastic neutron-scattering experiments. A plausible
scenario would be that with increasing temperature (i.e., vison
density) these peaks first become higher, since more bound
states appear at zero energy. Above a certain temperature,
the peaks would start to broaden since hybridization between
the modes becomes stronger. Regardless of the spinon band-
topology, the formation of bound states inside the spin gap
would manifest in a shift of spectral weight from larger to
smaller energies as the temperature increases.

Apart from the dominant peaks, Fig. 7 also shows various
smaller maxima such as the ones at ε ≈ 0.26 in Fig. 7(b).

These features appear if, by chance, two visons happen to be
located very close to each other. Indeed, we find that the peaks
at ε ≈ 0.26 occur for a vison separation of roughly one lat-
tice spacing. Taking into account dynamical gauge fields, we
expect that these signatures might change significantly. For
example, if vison hopping is allowed and the visons experi-
ence an attractive force at small distances [such as in Fig. 4(d)]
the probability of finding two visons close together would in-
crease, leading to higher secondary peaks. Otherwise, repul-
sive forces would diminish them.

V. DISCUSSION AND CONCLUSION

In this work, we have investigated Z2 spin liquids on the
square lattice when SU(2) spin-rotation symmetry is maxi-
mally lifted. Spin liquids on their own are fascinating quan-
tum states since they are examples for condensed matter real-
izations of gauge theories, with all their subtle implications for
fractional quasiparticle excitations and topological ground-
state degeneracies. Breaking spin-rotation symmetry adds an-
other interesting aspect to these states as it allows one to con-
struct spin phases where fractional spinon excitations exhibit
topological band structures. The resulting spin liquids may
be considered as the strongly coupled analogs of topological
insulators or topological superconductors. A recent PSG clas-
sification of Z2 spin liquids on the square lattice shows that
topological band structures are indeed a generic property of
spinons when SU(2) spin symmetry is lifted. Yet, the vast
number of different spin phases and spinon band structures
complicates their analysis enormously.

The motivation of this work is to reduce the complexity of
the full set of PSG solutions by identifying the simplest possi-
ble anisotropic Z2 spin liquids and investigate their spinon
and vison excitations. Limiting the range of hopping and
pairing amplitudes of the PSG mean-field ansätze, we find
that for nearest-neighbor couplings only, a Z2 gauge struc-
ture is incompatible with topological spinon bands. Extend-
ing the range of mean-field amplitudes to second neighbors
and imposing certain simplifying assumptions on the structure
of the PSG solutions (implementation of time reversal with
T 2 = −1, block diagonal structure, and spin-isotropic sec-
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ond neighbor terms), only two spin-liquid solutions remain.
Both have a form similar to the BHZ model for topological
insulators. Particularly, the spinon bands are always topolog-
ically non-trivial, independent of the choice of the mean-field
parameters.

We have selected three different mean-field models (one
nearest-neighbor model and two BHZ-like models with Chern
numbers n↑ = 1 and n↑ = 2 in one spin sector) and stud-
ied the properties of vison excitations. The problem simpli-
fies considerably when we assume static gauge fields since
for each fixed gauge-field configuration a free fermion sys-
tem needs to be solved. We find that forces between pairs of
visons are of very short-range type and die out after a few
lattice spacings. Furthermore, for models with a topologi-
cal spinon band structure we observe bound states between
spinons and visons where 2|n↑| spinon-Majorana zero modes
couple to each vison. The existence of these modes can be
explained by mapping the spinon-vison system to a p+ ip su-
perconductor with vortices. In the latter case, Majorana zero
modes residing in the cores of superconducting vortices are a
well established property.

In total, our analysis shows that the current level of approx-
imation (i.e., including gauge fluctuations but neglecting their
dynamics) still allows one to calculate vison-vison pair po-
tentials as well as spinon-vison interaction effects. Concern-
ing the latter, a vison excitation may be viewed as a point-
like attracting potential for the spinons, trapping a small num-
ber of spinon modes. Other many-body effects can only be
studied when dynamical gauge fields are considered. For
example, dynamical gauge fluctuations could mediate short-
range forces between the spinons, possibly leading to weakly
coupled spinon-spinon bound states. This is in contrast to
our mean-field treatment which assumes that spinons are, by
construction, free fermionic objects that do not interact. A
static approximation is also incompatible with the formation
of vison-vison bound states for which the proper inclusion of
vison kinetics is needed. Finally, it would be interesting to
study the fate of topological spinon edge states when dynam-
ical gauge fluctuations are considered. All these questions,
however, require the solution of complicated many-body sys-
tems which is beyond the scope of the current work.

Concerning the experimental detection of spin liquids with
topological spinon bands, our results indicate that spinon-
vison Majorana modes form a narrow band at small energies
even when the average vison distance is only a few lattice
spacings. Such effects could be seen in the spin-structure fac-
tor measured in neutron scattering experiments. The small hy-
bridization between different spinon-vison bound states stems
from the strongly peaked nature of the corresponding wave
functions. Whether this observation is more general and ap-
plies to larger classes of spin liquids remains a subject for fu-
ture studies.
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Appendix A: Projective symmetry conditions on the mean-field
amplitudes Urr′

In this appendix, we list the constraints on the mean-field
parameters in all channels uXrr′ with X = s, t1, t2, t3 [see
Eq. (5)] following from a projective implementation of sym-
metries. In each channel X the mean fields can be writ-
ten as a function of uXδr which only depends on the distance
δr ≡ (δx, δy) = r′ − r between sites r and r′,

uXrr′ = ηxδyuXδr . (A1)

With this convention and Eq. (12), the symmetry conditions
on uXrr′ read

− ηδx+δyT g†T u
s
δrgT = usδr ,

ηδx1 ηδy2 g†Px
usPx(δr)

gPx = usδr ,

ηδx2 ηδy1 g†Py
usPy(δr)

gPy = usδr ,

ηδxδyg†Pxy
usPxy(δr)

gPxy
= usδr ,

ηδx+δyz g†Pz
usδrgPz = usδr ,

ηδxδy
(
us−δr

)†
= usδr , (A2)

− ηδx+δyT g†T u
t1
δrgT = ut1δr ,

− ηδx1 ηδy2 g†Px
ut1Px(δr)

gPx
= ut1δr ,

− ηδx2 ηδy1 g†Py
ut1Py(δr)

gPy = ut1δr ,

− ηδxδyg†Pxy
ut1Pxy(δr)

gPxy
= ut1δr ,

ηδx+δyz g†Pz
ut1δrgPz

= ut1δr ,

ηδxδy
(
ut1−δr

)†
= ut1δr , (A3)

− ηδx+δyT g†T u
t2
δrgT = ut2δr ,

− ηδx1 ηδy2 g†Px
ut2Px(δr)

gPx
= ut2δr ,

ηδx2 ηδy1 g†Py
ut2Py(δr)

gPy
= ut2δr ,

− iηδxδyg†Pxy
ut2Pxy(δr)

gPxy
= ut3δr ,

− ηδx+δyz g†Pz
ut2δrgPz

= ut2δr ,

− ηδxδy
(
ut2−δr

)†
= ut2δr , (A4)

and

− ηδx+δyT g†T u
t3
δrgT = ut3δr ,

ηδx1 ηδy2 g†Px
ut3Px(δr)

gPx
= ut3δr ,

− ηδx2 ηδy1 g†Py
ut3Py(δr)

gPy
= ut3δr ,

iηδxδyg†Pxy
ut3Pxy(δr)

gPxy
= ut2δr ,

− ηδx+δyz g†Pz
ut3δrgPz

= ut3δr ,

ηδxδy
(
ut3−δr

)†
= ut3δr . (A5)
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In each of these equations, the last line ensures hermiticity of
the mean-field Hamiltonian.

Appendix B: Z2 PSG representations with finite nearest
neighbor mean-field parameters

Restricting the range of PSG mean-field amplitudes to near-
est neighbors leads to 28 finite Z2 solutions with broken
SU(2) spin-rotation symmetry. Labeling these solutions by
the matrices gPz , gT , gPxy , gPx , gPy and the sign parameters
ηz , ηT , η, η1, η2 [see Eq. (12)] one finds that they come in
pairs which only differ by the parameter η. Here, we pro-
vide the full list of such PSG solutions (grouped in pairs with
η = ±1),

gPz
= σ0, gT = σ0, gPxy

= iσ3,

gPx
= iσ1, gPy

= iσ1,

ηz = −1, ηT = −1, η = ±1, η1 = 1, η2 = 1

(B1)

gPz
= σ0, gT = σ0, gPxy

= iσ3,

gPx
= iσ1, gPy

= iσ1,

ηz = −1, ηT = −1, η = ±1, η1 = −1, η2 = −1

(B2)

gPz = iσ3, gT = σ0, gPxy = iσ3,

gPx = iσ1, gPy = iσ1,

ηz = 1, ηT = −1, η = ±1, η1 = −1, η2 = −1

(B3)

gPz = iσ2, gT = σ0, gPxy = σ0,

gPx = iσ3, gPy = iσ3,

ηz = 1, ηT = −1, η = ±1, η1 = −1, η2 = −1

(B4)

gPz
= iσ2, gT = σ0, gPxy

= iσ3,

gPx
= σ0, gPy

= σ0,

ηz = 1, ηT = −1, η = ±1, η1 = 1, η2 = 1

(B5)

gPz = iσ1, gT = σ0, gPxy = iσ3,

gPx = iσ1, gPy = iσ1,

ηz = 1, ηT = −1, η = ±1, η1 = 1, η2 = 1

(B6)

gPz
= iσ2, gT = σ0, gPxy

= iσ3,

gPx
= σ0, gPy

= σ0,

ηz = −1, ηT = −1, η = ±1, η1 = 1, η2 = −1

(B7)
gPz

= iσ1, gT = σ0, gPxy
= iσ3,

gPx
= iσ1, gPy

= iσ1,

ηz = −1, ηT = −1, η = ±1, η1 = −1, η2 = 1

(B8)

gPz
= iσ2, gT = σ0, gPxy

= iσ3,

gPx
= iσ3, gPy

= iσ3,

ηz = 1, ηT = −1, η = ±1, η1 = −1, η2 = −1

(B9)

gPz
= iσ2, gT = σ0, gPxy

= iσ3,

gPx
= iσ1, gPy

= iσ1,

ηz = 1, ηT = −1, η = ±1, η1 = −1, η2 = −1

(B10)

gPz
= iσ1, gT = σ0, gPxy

= iσ3,

gPx
= iσ1, gPy

= iσ1,

ηz = −1, ηT = −1, η = ±1, η1 = −1, η2 = −1

(B11)

gPz
= iσ2, gT = σ0, gPxy

= iσ3,

gPx = σ0, gPy = σ0,

ηz = −1, ηT = −1, η = ±1, η1 = 1, η2 = 1

(B12)

gPz = iσ2, gT = σ0, gPxy = iσ3,

gPx = σ0, gPy = σ0,

ηz = 1, ηT = −1, η = ±1, η1 = −1, η2 = −1

(B13)

gPz = iσ1, gT = σ0, gPxy = iσ3,

gPx = iσ1, gPy = iσ1,

ηz = 1, ηT = −1, η = ±1, η1 = −1, η2 = −1

(B14)
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